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Abstract In this paper, we firstly give a general inequality for the lower order eigenvalues

of elliptic operators in weighted divergence form on compact smooth metric measure spaces

with boundary (possibly empty). Then using this general inequality, we get some universal

inequalities for the lower order eigenvalues of elliptic operators in weighted divergence form

on a connected bounded domain in the smooth metric measure spaces.
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1. Introduction

Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M , and let

∆ be the Laplace operator on M . We consider the following eigenvalue problem for the Laplace

operator  ∆u = −λu, in Ω,

u = 0, on ∂Ω.
(1)

It is well known that (1) has a discrete spectrum

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ,

where each eigenvalue is repeated with its multiplicity.

In 1955, Payne, Pólya and Weinberger showed that for any open bounded domain in an

2-dimensional Euclidean space R2 the bound λ2

λ1
≤ 3 holds [1,2]. Based on exact calculations for

simple domains they also conjectured that

λ2

λ1
≤ λ2(S1)

λ1(S1)
=

j21,1
j20,1

≈ 2.539, (2)
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where, S1 ⊂ R2 is a circular disk, and jn,m denotes the mth positive zero of the Bessel function

jn(x). This conjecture and the corresponding inequalities in n-dimensions were proven in 1991

by Ashbaugh and Benguria [3–5]. Furthermore, when M = Rn,∆ =
∑n

i=1
∂2

∂x2
i
, Ashbaugh and

Benguria [6] in 1993 proved

λ2 + λ3 + · · ·+ λn+1

λ1
≤ n(1 +

4

n
). (3)

In 2008, whenM are complex projective spaces, unit spheres, and compact complex submanifolds

of a complex projective space, by making use of the orthogonalization of Gram-Schmidt (QR-

factorization theorem), Sun, Cheng and Yang [7] gave some universal inequalities such as (3).

More results, we refer to [8–10]. Let (M, ⟨, ⟩) be an n-dimensional complete Riemannian manifold

with boundary ∂M and Ω be a bounded connected domain in M , and let A : Ω → End(TΩ)

be a smooth symmetric and positive definite section of the bundle of all endomorphisms of TΩ.

Denote by ∇ the gradient operator. Define

L = −div(A∇), (4)

where divX denotes the divergence of a vector field X on M . The operator L defined in (4) is

an elliptic operator in divergence form. It is easy to see that the Laplace operator is the special

case when A is identity map.

In 2010, do Carmo, Wang and Xia [11] considered the eigenvalue problem of the elliptic

operator in divergence form with weight such that

Lu+ V u = λρu in M, and u = 0 on ∂M,

where M is a compact Riemannian manifold with boundary ∂M (possibly empty), V is a non-

negative continuous function on M and ρ is a weight function which is positive and continuous

on M . They got a Yang type inequality

k∑
i=1

(λk+1 − λi)
2 ≤ 4ξ22ρ

2
2

nρ21

k∑
i=1

(λk+1 − λi)
( 1

ξ1
(λi −

V0

ρ2
) +

n2H2
0

4ρ1

)
, (5)

where ξ1I ≤ A and tr(A) ≤ nξ2 throughout M , ρ1 ≤ ρ(x) ≤ ρ2, ∀x ∈ M , I is the identity

map, ξ1, ξ2, ρ1, ρ2 are positive constants, H0 = maxx∈M |H|(x), V0 = minx∈M V (x), and H is

the mean curvature vector field of M immersed into an Euclidean space RN . Recently, Sun and

Chen gave some universal inequalities for the lower order eigenvalues of the elliptic operator in

divergence form. For more recent developments about universal inequalities of the eigenvalue

of elliptic operator in divergence form on Riemannian manifolds, we refer to [12–15] and the

references therein.

A smooth metric measure space (also known as the weighted measure space) is actually a

Riemannian manifold equipped with some measure which is absolutely continuous with respect to

the usual Riemannian measure. More precisely, for a given complete n-dimensional Riemannian

manifold (M, ⟨, ⟩) with the metric ⟨, ⟩, the triple (M, ⟨, ⟩, e−fdν) is called a smooth metric measure

space, where f is a smooth real-valued function on M and dν is the Riemannian volume element

related to ⟨, ⟩ (sometimes, we also call dν the volume density). On a smooth metric measure
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space (M, ⟨, ⟩, e−fdν), we can define the elliptic operator in weighted divergence form as

Lf = −divfA∇, (6)

where divfX = efdiv
(
e−fX

)
is the weighted divergence of vector field X, and A and ∇ are

defined as before. When A is an identity map, −Lf becomes the drifting Laplacian ∆f , for the

drifting Laplacian, some universal inequalities have been given in [16–20]. As briefly mentioned

above, it is a natural problem how to get the universal inequalities of the eigenvalues of elliptic

operator in weighted divergence form. In this paper, we will give some universal inequalities for

the lower order eigenvalues of the elliptic operator in weighted divergence form on smooth metric

measure space.

2. A key lemma

In this section, we will prove some general inequalities which play the key role in the proof

of the main results.

Lemma 2.1 Let (M, ⟨, ⟩, e−fdν) be an n-dimensional compact smooth metric measure space

with boundary ∂M (possibly empty). Let λi be the ith eigenvalue of the eigenvalue problem of

the fourth-order elliptic operator in weighted divergence form with weight ρ such that (aL2
f + bLf + V )u = λρu, in M,

u = ∂u
∂ν = 0, on ∂M,

and ui be the orthonormal eigenfunction corresponding to λi, that is,
(aL2

f + bLf + V )ui = λiρui, in M,

ui =
∂ui

∂ν = 0, on ∂M,∫
M

ρuiuj = δij , ∀ i, j = 1, 2, . . . .

If gi ∈ C4(M) satisfies
∫
M

ρgiu1uj+1 = 0 for 1 ≤ j < i, then we have

(λi+1 − λ1)
1
2 ∥u1∇gi∥2 ≤ d

∫
M

giu1pidµ+
1

d

∥∥ 1
√
ρ
(⟨∇u1,∇gi⟩+

1

2
u1∆fgi)

∥∥2, (7)

where

pi =− 2a⟨∇gi, A∇(Lfu1)⟩+ aLfgiLfu1 − 2aLf (⟨∇gi, A∇u1⟩)+

aLf (u1Lfgi)− 2b⟨∇gi, A∇u1⟩+ bu1Lfgi,

d is any positive constant and ∥f∥2 =
∫
M

f2dµ.

Proof Let φi = (gi − ai)u1, where ai =
∫
M

ρgiu
2
1dµ. We have

∫
M

ρφiu1dµ = 0. Noticing∫
M

ρgiu1uj+1dµ = 0, for 1 ≤ j < i,

we infer

φi|∂M =
∂φi

∂ν

∣∣∣
∂M

= 0, and

∫
M

ρφiuj+1dµ = 0, for 0 ≤ j < i.
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Then according to Rayleigh-Ritz inequality, we have

λi+1 ≤
∫
M

φi(aL
2
f + bLf + V )(φi)dµ∫
M

ρφ2
idµ

. (8)

From the definition of φi, we have∫
M

ρφ2
idµ =

∫
M

ρφi(gi − ai)u1dµ =

∫
M

ρφigiu1dµ, (9)

and ∫
M

φi(aL
2
f + bLf + V )φidµ =

∫
M

φi(aL
2
f + bLf + V )((gi − ai)u1)dµ

=

∫
M

φi(aL
2
f + bLf + V )(giu1)dµ. (10)

By direct computation, we have

Lf (giu1) = −divf (A∇(giu1)) = −divf (A(u1∇gi + gi∇u1))

= −⟨∇u1, A∇gi⟩ − gidivf (A∇u1)− ⟨∇gi, A∇u1⟩ − u1divf (A∇gi)

= giLfu1 − 2⟨∇gi, A∇u1⟩+ u1Lfgi,

L2
f (giu1) = Lf (giLu1 − 2⟨∇gi, A∇u1⟩+ u1Lfgi)

= giL
2
fu1 − 2⟨∇gi,∇(Lfu1)⟩+ LfgiLfu1 + Lf (−2⟨∇gi, A∇u1⟩+ u1Lfgi).

So, we infer from above equalities that

(aL2
f + bLf + V )(giu1) = λ1ρgiu1 + pi, (11)

where

pi =− 2a⟨∇gi, A∇(Lfu1)⟩+ aLfgiLfu1 − 2aLf (⟨∇gi, A∇u1⟩)+

aLf (u1Lfgi)− 2b⟨∇gi, A∇u1⟩+ bu1Lfgi.

It follows from (10) and (11) that∫
M

φi(aL
2
f + bLf + V )φidµ =

∫
M

φi(aL
2
f + bLf + V )(giu1)dµ

=λ1

∫
M

φiρgiu1dµ+

∫
M

φipidµ

=λ1

∫
M

ρφ2
idµ+

∫
M

giu1pidµ− aibi, (12)

where

bi =

∫
M

piu1dµ

=

∫
M

−2au1⟨∇gi, A∇(L(u1))⟩dµ+

∫
M

au1LfgiLfu1dµ−
∫
M

2au1Lf (⟨∇gi, A∇u1⟩) dµ+∫
M

au1Lf (u1Lfgi)−
∫
M

2bu1⟨∇gi, A∇u1⟩dµ+

∫
M

bu2
1Lfgidµ

=

∫
M

2aLfu1⟨∇gi, A∇u1⟩dµ+

∫
M

au1LfgiLfu1dµ−
∫
M

2aLfu1 (⟨∇gi, A∇u1⟩) dµ+
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M

aLfu1 (u1Lfgi) dµ−
∫
M

2bu1⟨∇gi, A∇u1⟩dµ+

∫
M

2bu1⟨∇gi, A∇u1⟩dµ = 0. (13)

Combining (8), (12) and (13), we have

(λi+1 − λ1)

∫
M

ρφ2
idµ ≤

∫
M

giu1pidµ. (14)

Observing that
∫
M

u1(⟨∇u1,∇gi⟩+ 1
2u1∆gi)dµ = 0, we have∫

M

(−2)φi(⟨∇u1,∇gi⟩+
1

2
u1gi)dµ = −2

∫
M

giu1(⟨∇u1,∇gi⟩+
1

2
u1∆fgi)dµ = ∥u1∇gi∥2.

On the other hand, we have

(λi+1 − λ1)
1
2 ∥u1∇gi∥2 = (λi+1 − λ1)

1
2

∫
M

(−2)
√
ρφi(

1
√
ρ
(⟨∇u1,∇gi⟩+

1

2
u1∆fgi))dµ

≤ d(λi+1 − λ1)∥
√
ρφi∥2 +

1

d

∥∥ 1
√
ρ
(⟨∇u1,∇gi⟩+

1

2
u1∆fgi)

∥∥2
≤ d

∫
M

giu1pi +
1

d

∥∥ 1
√
ρ
(⟨∇u1,∇gi⟩+

1

2
u1∆fgi)

∥∥2,
where d is any positive constant. This completes the proof of Lemma 2.1. �

3. Universal inequalities for lower order eigenvalues

In this section, using Lemma 2.1, we will give some universal inequalities for lower order

eigenvalues of the elliptic operators in weighted divergence form on a connected bounded domain

in complete smooth metric measure spaces. Firstly, we have

Theorem 3.1 Let Ω be a connected bounded domain in an n-dimensional complete smooth

metric measure space
(
M, ⟨, ⟩, e−fdν

)
. Assume that ξ1I ≤ A, tr(A) ≤ nξ2 throughout Ω, and

ρ1 ≤ ρ(x) ≤ ρ2, |∇f |(x) ≤ C0, ∀x ∈ Ω, here I is the identity map, ξ1, ξ2, ρ1, ρ2, C0 are positive

constants and tr(A) denotes the trace of A. Let λi be the i
th eigenvalue of the following problem: (Lf + V )u = λρu, in Ω,

u = 0, on ∂Ω.

Then we have

n∑
i=1

(λi+1 − λ1)
1
2 ≤ ρ2

ρ1

{
nξ2(

λ1 − ρ−1
2 V0

ξ1
+ C0(

λ1 − ρ−1
2 V0

ξ1
)

1
2 +

n2H2
0 + C2

0

4ρ1
)
} 1

2 , (15)

where H0 = maxx∈Ω |H|(x), V0 = minx∈Ω V (x), and H is the mean curvature vector field of M

immersed into an Euclidean space RN .

Proof Since M is a complete Riemannian manifold, from Nash embedding theorem, we know

that there exists an isometric immersion from M into an Euclidean space RN . Thus, M can

be considered as an n-dimensional complete isometrically immersed submanifold in RN . Let

y1, y2, . . . , yN be the standard coordinate functions of RN . Then from (2.2)–(2.5) in [21], we
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have
N∑
i=1

|∇yi|2 = n, ∆(y1, y2, . . . , yN ) = nH, (16)

N∑
i=1

⟨∇yi,∇uj⟩2 = |∇uj |2,
N∑
i=1

⟨∇yi,∇f⟩2 = |∇f |2, (17)

N∑
i=1

⟨∇yi,∇uj⟩⟨∇yi,∇f⟩ =
N∑
i=1

∇uj(yi)∇f(yi) = ⟨∇uj ,∇f⟩, (18)

N∑
i=1

∆yi⟨∇yi,∇uj⟩ =
N∑
i=1

∆yi∇uj(yi) = ⟨nH,∇uj⟩ = 0, (19)

and
N∑
i=1

∆yα⟨∇yα,∇f⟩ =
N∑
i=1

∆yα∇f(yα) = ⟨nH,∇f⟩ = 0. (20)

We also have

N∑
i=1

∆fyi⟨∇yi,∇uj⟩ =
N∑
i=1

(∆yi − ⟨∇yi,∇f⟩)⟨∇yi,∇uj⟩ = ⟨∇uj ,∇f⟩, (21)

and

N∑
i=1

(∆fyi)
2 =

N∑
i=1

(∆yi − ⟨∇yi,∇f⟩)2 =
N∑
i=1

(
(∆yi)

2 − 2∆yi⟨∇yi,∇f⟩+ ⟨∇yi,∇f⟩2
)

= n2|H|2 + |∇f |2. (22)

By using the QR-factorization theorem, we know that there exists an orthogonal N ×N matrix

T = (Tij) such that

N∑
k=1

Tik

∫
M

yku1uj+1 =
N∑

k=1

∫
M

Tikyku1uj+1 = 0, for 1 ≤ j < i ≤ N.

Set gi =
∑N

k=1 Tikyk, we get∫
M

giu1uj+1 =

∫
M

N∑
k=1

Tikyku1uj+1 = 0, 1 ≤ j < i ≤ N. (23)

Since T is an orthogonal matrix, gi also satisfies (16)–(22).

Let a = 0, b = 1 in (7). Taking h = gi and summing for i from 1 to N , we have

N∑
i=1

(λi+1 − λ1)
1
2 ∥u1∇gi∥2 ≤ d

∫
M

N∑
i=1

giu1pidµ+
1

d

N∑
i=1

∥∥ 1
√
ρ
(⟨∇u1,∇gi⟩+

1

2
u1∆gi)

∥∥2, (24)

where pi = −2⟨∇gi, A∇u1⟩+ u1Lfgi. Since

−2

∫
Ω

giu1⟨∇gi, A∇u1⟩dµ =

∫
Ω

u2
1⟨∇gi, A∇gi⟩dµ−

∫
Ω

giu
2
1Lfgidµ,
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we infer from above equality and
∑N

i=1⟨∇gi, A∇gi⟩ = tr(A) ≤ nξ2 that∫
Ω

N∑
i=1

giu1pidµ =

∫
Ω

N∑
i=1

giu1 (−2⟨∇gi, A∇u1⟩+ u1Lfgi) dµ

=

∫
Ω

N∑
i=1

u2
1⟨∇gi, A∇gi⟩dµ ≤ nξ2∥u1∥2 ≤ nξ2ρ

−1
1 . (25)

From ρ−1
2 ≤ ∥u1∥2 ≤ ρ−1

1 and A ≥ ξ1I, we have

λ1 =

∫
Ω

u1 (Lf + V )u1dµ =

∫
Ω

−u1divf (A∇u1)dµ+

∫
Ω

V u2
1dµ

=

∫
Ω

⟨∇u1, A∇u1⟩dµ+

∫
Ω

V u2
1dµ ≥ ξ1∥∇u1∥2 + ρ−1

2 V0,

which implies

∥∇u1∥2 ≤ λ1 − ρ−1
2 V0

ξ1
. (26)

From Schwarz inequality and above inequality, we have∫
Ω

⟨∇f,∇u1⟩dµ ≤
∫
Ω

|∇f ||∇u1|dµ ≤ C0

{
∥∇u1∥2

} 1
2 ≤ C0(

λ1 − ρ−1
2 V0

ξ1
)

1
2 . (27)

Combining (23), (26) and (27), we have∫
Ω

1

ρ

N∑
i=1

(
⟨∇gi,∇u1⟩+

u1∆fgi
2

)2
dµ

=

∫
Ω

1

ρ

N∑
i=1

(
⟨∇gi,∇u1⟩2 + u1∆fgi⟨∇gi,∇u1⟩+

u2
1 (∆fgi)

2

4

)
dµ

=

∫
Ω

1

ρ

(
|∇u1|2 + ⟨∇f,∇u1⟩+

u2
1

4

(
n2|H|2 + |∇f |2

) )
dµ

≤ 1

ρ1

{λ1 − ρ−1
2 V0

ξ1
+ C0(

λ1 − ρ−1
2 V0

ξ1
)

1
2 +

1

4ρ1

(
n2H2

0 + C2
0

) }
. (28)

For any point p ∈ M , by a transformation of coordinates if necessary, we have |∇gi|2 ≤ 1 for any

i. Then we have

N∑
i=1

(λi+1 − λ1)
1
2 |∇gi|2 =

n∑
j=1

(λj+1 − λ1)
1
2 |∇gi|2 +

N∑
k=n+1

(λk+1 − λ1)
1
2 |∇gk|2

≥
n∑

j=1

(λj+1 − λ1)
1
2 |∇gi|2 + (λn+1 − λ1)

1
2 (n−

n∑
l=1

|∇gl|2)

≥
n∑

j=1

(λj+1 − λ1)
1
2 |∇gi|2 +

n∑
l=1

(λl+1 − λ1)
1
2 (1− |∇gl|2)

≥
n∑

i=1

(λi+1 − λ1)
1
2 . (29)



314 Yanli LI and Feng DU

Taking (25), (28) and (29) into (24), we have

n∑
i=1

1

ρ2
(λi+1 − λ1)

1
2 ≤ dnξ2

ρ1
+

1

d

1

ρ1

{λ1 − ρ−1
2 V0

ξ1
+ C0(

λ1 − ρ−1
2 V0

ξ1
)

1
2 +

1

4ρ1

(
n2H2

0 + C2
0

) }
.

Taking δ = { 1
nξ1

(
λ1−ρ−1

2 V0

ξ1
+ C0(

λ1−ρ−1
2 V0

ξ1
)

1
2 + 1

4ρ1
(n2H2

0 + C2
0 ))}

1
2 , we have

n∑
i=1

(λi+1 − λ1)
1
2 ≤ ρ2

ρ1

{
nξ2(

λ1 − ρ−1
2 V0

ξ1
+ C0(

λ1 − ρ−1
2 V0

ξ1
)

1
2 +

1

4ρ1
(n2H2

0 + C2
0 ))

} 1
2 .

This completes the proof of Theorem 3.1. �
In the following, we will give a universal inequality for eigenvalues of the fourth order elliptic

operator in weighted divergence form.

Theorem 3.2 Let Ω be a connected bounded domain in an n-dimensional complete smooth

metric measure space
(
M, ⟨, ⟩, e−fdν

)
. Assume that ξ1I ≤ A ≤ ξ2I throughout Ω, and |∇f |(x) ≤

C0, ∀x ∈ Ω, here I is the identity map, ξ1, ξ2, C0 are positive constants. Let Λi be the ith

eigenvalue of the following problem:

L2
fu = Λu in Ω, and u =

∂u

∂ν
= 0 on ∂Ω.

Then we have
n∑

i=1

(Λi+1 − Λ1)
1
2 ≤

{ξ2
ξ1

((2n+ 4)Λ
1
2
1 + 4C0ξ

1
2
2 Λ

1
4
1 + ξ2(n

2H2
0 + C2

0 ))×

(4Λ
1
2
i + 4C0ξ

1
2
1 Λ

1
4
i + ξ1(n

2H2
0 + C2

0 ))
} 1

2 , (30)

where H0 = maxx∈Ω |H|(x), V0 = minx∈Ω V (x), and H is the mean curvature vector field of M

immersed into an Euclidean space RN .

Proof Let a = 1, b = 0, V ≡ 0 and ρ ≡ 1 in (7). Taking h = gi and summing for i from 1 to

N , where gi is defined as above, we have

N∑
i=1

(Λi+1 − Λ1)
1
2 ∥u1∇gi∥2 ≤ d

∫
M

N∑
i=1

giu1pi +
1

d

N∑
i=1

∥∥ 1
√
ρ
(⟨∇u1,∇gi⟩+

1

2
u1∆fgi)

∥∥2, (31)

where

pi = −2⟨∇gi, A∇(Lfu1)⟩+ LfgiLfu1 − 2Lf (⟨∇gi, A∇u1⟩) + Lf (u1Lfgi) .

By direct computation, we have∫
Ω

giu1pidµ =

∫
Ω

giu1{−2⟨∇gi, A∇(Lfu1)⟩+ LfgiLfu1 − 2Lf (⟨∇gi, A∇u1⟩) + Lf (u1Lfgi)}dµ

=

∫
Ω

2{u1Lfu1⟨∇gi, A∇gi⟩+ giLfu1⟨∇u1, A∇gi⟩ − giu1LfgiLfu1}dµ+

∫
Ω

giu1LfgiLfu1dµ+∫
Ω

{Lfgiu1 + giLfui − 2⟨∇gi, A∇u1⟩}{−2⟨∇gi, A∇u1⟩+ u1Lfgi}dµ

=

∫
Ω

2u1Lfu1⟨∇g1, A∇gi⟩dµ+

∫
Ω

4⟨∇gi, A∇u1⟩2dµ−
∫
Ω

4u1Lfgi⟨∇gi, A∇u1⟩dµ+∫
Ω

(u1Lfgi)
2dµ. (32)
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Since ξ1I ≤ A ≤ ξ2I, we can infer from (16)–(22) that

N∑
i=1

∫
Ω

2u1Lfu1⟨∇gi, A∇gi⟩dµ ≤ 2nξ2

∫
Ω

u1Lfu1dµ ≤ 2nξ2{∥u1∥2∥Lfu1∥2}
1
2 = 2nξ2Λ

1
2
1 , (33)

N∑
i=1

∫
Ω

4⟨∇gi, A∇u1⟩2dµ = 4∥A∇u1∥2 ≤ 4ξ2

∫
Ω

⟨∇u1, A∇u1⟩

= 4ξ2

∫
Ω

u1Lfu1dµ ≤ 4ξ2Λ
1
2
1 , (34)

N∑
i=1

−
∫
Ω

4u1Lfgi⟨∇gi, A∇u1⟩dµ ≤
∣∣∣4ξ2 ∫

Ω

u1∆fgi⟨∇gi, A∇u1⟩dµ
∣∣∣

=
∣∣∣4ξ2 ∫

Ω

u1⟨∇f,A∇u1⟩dµ
∣∣∣ ≤ 4ξ2

∫
Ω

u1|∇f ||∇u1|dµ

≤ 4C0ξ2{∥u1∥2∥A∇u1∥2}
1
2 = 4C0ξ

3
2
2

{∫
Ω

⟨∇u1, A∇u1⟩dµ
} 1

2 ≤ 4C0ξ
3
2
2 Λ

1
4
1 , (35)

and

N∑
i=1

∫
Ω

(u1Lfgi)
2dµξ22 ≤

N∑
i=1

∫
Ω

u2
1(∆fgi)

2dµ = ξ22

∫
Ω

u2
1

(
n2|H|2 + |∇f |2

)
dµ

≤ξ22
(
n2H2

0 + C2
0

)
. (36)

Combining (32)–(36), we have

N∑
i=1

∫
Ω

giu1pi ≤ ξ2((2n+ 4)Λ
1
2
1 + 4C0ξ

1
2
2 Λ

1
4
1 + ξ2(n

2H2
0 + C2

0 )). (37)

Since ∥∇u1∥2 ≤ 1
ξ1

∫
Ω
⟨∇u1, A∇u1⟩dµ = 1

ξ1

∫
Ω
u1Lfu1dµ ≤ Λ

1
2
1

ξ1
, we have∫

Ω

N∑
i=1

(
⟨∇gi,∇u1⟩+

u1∆fgi
2

)2
dµ

=

∫
Ω

(
|∇u1|2 + ⟨∇f,∇u1⟩+

u2
1

4

(
n2|H|2 + |∇f |2

) )
dµ

≤ Λ
1
2
1

ξ1
+

C0Λ
1
4
1

ξ
1
2
1

+
n2H2

0 + C2
0

4
. (38)

Taking (37) and (38) into (31), we have

n∑
i=1

(Λi+1 − Λ1)
1
2 ≤δξ2((2n+ 4)Λ

1
2
1 + 4C0ξ

1
2
2 Λ

1
4
1 + ξ2(n

2H2
0 + C2

0 ))+

1

δ
(
Λ

1
2
i

ξ1
+

C0Λ
1
4
i

ξ
1
2
1

+
n2H2

0 + C2
0

4
). (39)

Let

δ =
{ {Λ

1
2
i

ξ1
+

C0Λ
1
4
i

ξ
1
2
1

+
n2H2

0+C2
0

4 }

ξ2((2n+ 4)Λ
1
2
1 + 4C0ξ

1
2
2 Λ

1
4
1 + ξ2(n2H2

0 + C2
0 ))

} 1
2
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in (39). We have

n∑
i=1

(Λi+1 − Λ1)
1
2 ≤ 1

n

{ξ2
ξ1

((2n+ 4)Λ
1
2
1 + 4C0ξ

1
2
2 Λ

1
4
1 + ξ2(n

2H2
0 + C2

0 ))×

(4Λ
1
2
i + 4C0ξ

1
2
1 Λ

1
4
i + ξ1(n

2H2
0 + C2

0 ))
} 1

2 .

This completes the proof of Theorem 3.2. �

Acknowledgements We thank the referees for their careful reading and valuable comments.

References

[1] L. E. PAYNE, G. PÓLYA, H. F. WEINBERGER. Sur le quotient de deux fréquences propres consécutives
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