Estimates for the Lower Order Eigenvalues of Elliptic Operators in Weighted Divergence Form

Yanli LI ${ }^{1}$, Feng DU ${ }^{2, *}$
1. School of Electronic and Information Science, Jingchu University of Technology, Hubei 448000, P. R. China;
2. School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, P. R. China

Abstract

In this paper, we firstly give a general inequality for the lower order eigenvalues of elliptic operators in weighted divergence form on compact smooth metric measure spaces with boundary (possibly empty). Then using this general inequality, we get some universal inequalities for the lower order eigenvalues of elliptic operators in weighted divergence form on a connected bounded domain in the smooth metric measure spaces.

Keywords universal inequalities; drifting Laplacian; elliptic operators in weighted divergence form; smooth metric measure space
MR(2010) Subject Classification 35P15; 53C20; 53C42

1. Introduction

Let Ω be a bounded domain in an n-dimensional complete Riemannian manifold M, and let Δ be the Laplace operator on M. We consider the following eigenvalue problem for the Laplace operator

$$
\begin{cases}\Delta u=-\lambda u, & \text { in } \Omega \tag{1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

It is well known that (1) has a discrete spectrum

$$
0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots
$$

where each eigenvalue is repeated with its multiplicity.
In 1955, Payne, Pólya and Weinberger showed that for any open bounded domain in an 2-dimensional Euclidean space \mathbb{R}^{2} the bound $\frac{\lambda_{2}}{\lambda_{1}} \leq 3$ holds [1,2]. Based on exact calculations for simple domains they also conjectured that

$$
\begin{equation*}
\frac{\lambda_{2}}{\lambda_{1}} \leq \frac{\lambda_{2}\left(\mathbb{S}^{1}\right)}{\lambda_{1}\left(\mathbb{S}^{1}\right)}=\frac{j_{1,1}^{2}}{j_{0,1}^{2}} \approx 2.539 \tag{2}
\end{equation*}
$$

[^0]where, $\mathbb{S}^{1} \subset \mathbb{R}^{2}$ is a circular disk, and $j_{n, m}$ denotes the $m^{\text {th }}$ positive zero of the Bessel function $j_{n}(x)$. This conjecture and the corresponding inequalities in n-dimensions were proven in 1991 by Ashbaugh and Benguria [3-5]. Furthermore, when $M=\mathbb{R}^{n}, \Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$, Ashbaugh and Benguria [6] in 1993 proved
\[

$$
\begin{equation*}
\frac{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n+1}}{\lambda_{1}} \leq n\left(1+\frac{4}{n}\right) . \tag{3}
\end{equation*}
$$

\]

In 2008, when M are complex projective spaces, unit spheres, and compact complex submanifolds of a complex projective space, by making use of the orthogonalization of Gram-Schmidt (QRfactorization theorem), Sun, Cheng and Yang [7] gave some universal inequalities such as (3). More results, we refer to $[8-10]$. Let $(M,\langle\rangle$,$) be an n$-dimensional complete Riemannian manifold with boundary ∂M and Ω be a bounded connected domain in M, and let $A: \Omega \rightarrow \operatorname{End}(T \Omega)$ be a smooth symmetric and positive definite section of the bundle of all endomorphisms of $T \Omega$. Denote by ∇ the gradient operator. Define

$$
\begin{equation*}
L=-\operatorname{div}(A \nabla) \tag{4}
\end{equation*}
$$

where $\operatorname{div} X$ denotes the divergence of a vector field X on M. The operator L defined in (4) is an elliptic operator in divergence form. It is easy to see that the Laplace operator is the special case when A is identity map.

In 2010, do Carmo, Wang and Xia [11] considered the eigenvalue problem of the elliptic operator in divergence form with weight such that

$$
L u+V u=\lambda \rho u \text { in } M, \quad \text { and } u=0 \text { on } \partial M,
$$

where M is a compact Riemannian manifold with boundary ∂M (possibly empty), V is a nonnegative continuous function on M and ρ is a weight function which is positive and continuous on M. They got a Yang type inequality

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)^{2} \leq \frac{4 \xi_{2}^{2} \rho_{2}^{2}}{n \rho_{1}^{2}} \sum_{i=1}^{k}\left(\lambda_{k+1}-\lambda_{i}\right)\left(\frac{1}{\xi_{1}}\left(\lambda_{i}-\frac{V_{0}}{\rho_{2}}\right)+\frac{n^{2} H_{0}^{2}}{4 \rho_{1}}\right) \tag{5}
\end{equation*}
$$

where $\xi_{1} I \leq A$ and $\operatorname{tr}(A) \leq n \xi_{2}$ throughout $M, \rho_{1} \leq \rho(x) \leq \rho_{2}, \forall x \in M, I$ is the identity $\operatorname{map}, \xi_{1}, \xi_{2}, \rho_{1}, \rho_{2}$ are positive constants, $H_{0}=\max _{x \in M}|\mathbf{H}|(x), V_{0}=\min _{x \in M} V(x)$, and \mathbf{H} is the mean curvature vector field of M immersed into an Euclidean space \mathbb{R}^{N}. Recently, Sun and Chen gave some universal inequalities for the lower order eigenvalues of the elliptic operator in divergence form. For more recent developments about universal inequalities of the eigenvalue of elliptic operator in divergence form on Riemannian manifolds, we refer to [12-15] and the references therein.

A smooth metric measure space (also known as the weighted measure space) is actually a Riemannian manifold equipped with some measure which is absolutely continuous with respect to the usual Riemannian measure. More precisely, for a given complete n-dimensional Riemannian manifold $(M,\langle\rangle$,$) with the metric \langle$,$\rangle , the triple \left(M,\langle\rangle,, e^{-f} \mathrm{~d} \nu\right)$ is called a smooth metric measure space, where f is a smooth real-valued function on M and $\mathrm{d} \nu$ is the Riemannian volume element related to \langle,$\rangle (sometimes, we also call \mathrm{d} \nu$ the volume density). On a smooth metric measure
space $\left(M,\langle\rangle,, e^{-f} \mathrm{~d} \nu\right)$, we can define the elliptic operator in weighted divergence form as

$$
\begin{equation*}
\mathfrak{L}_{f}=-\operatorname{div}_{f} A \nabla \tag{6}
\end{equation*}
$$

where $\operatorname{div}_{f} X=e^{f} \operatorname{div}\left(e^{-f} X\right)$ is the weighted divergence of vector field X, and A and ∇ are defined as before. When A is an identity map, $-\mathfrak{L}_{f}$ becomes the drifting Laplacian Δ_{f}, for the drifting Laplacian, some universal inequalities have been given in [16-20]. As briefly mentioned above, it is a natural problem how to get the universal inequalities of the eigenvalues of elliptic operator in weighted divergence form. In this paper, we will give some universal inequalities for the lower order eigenvalues of the elliptic operator in weighted divergence form on smooth metric measure space.

2. A key lemma

In this section, we will prove some general inequalities which play the key role in the proof of the main results.

Lemma 2.1 Let $\left(M,\langle\rangle,, e^{-f} \mathrm{~d} \nu\right)$ be an n-dimensional compact smooth metric measure space with boundary ∂M (possibly empty). Let λ_{i} be the $i^{\text {th }}$ eigenvalue of the eigenvalue problem of the fourth-order elliptic operator in weighted divergence form with weight ρ such that

$$
\begin{cases}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right) u=\lambda \rho u, & \text { in } M \\ u=\frac{\partial u}{\partial \nu}=0, & \text { on } \partial M\end{cases}
$$

and u_{i} be the orthonormal eigenfunction corresponding to λ_{i}, that is,

$$
\begin{cases}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right) u_{i}=\lambda_{i} \rho u_{i}, & \text { in } M, \\ u_{i}=\frac{\partial u_{i}}{\partial \nu}=0, & \text { on } \partial M, \\ \int_{M} \rho u_{i} u_{j}=\delta_{i j}, & \forall i, j=1,2, \ldots\end{cases}
$$

If $g_{i} \in C^{4}(\bar{M})$ satisfies $\int_{M} \rho g_{i} u_{1} u_{j+1}=0$ for $1 \leq j<i$, then we have

$$
\begin{equation*}
\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}}\left\|u_{1} \nabla g_{i}\right\|^{2} \leq \mathrm{d} \int_{M} g_{i} u_{1} p_{i} \mathrm{~d} \mu+\frac{1}{\mathrm{~d}}\left\|\frac{1}{\sqrt{\rho}}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta_{f} g_{i}\right)\right\|^{2}, \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& p_{i}=-2 a\left\langle\nabla g_{i}, A \nabla\left(\mathfrak{L}_{f} u_{1}\right)\right\rangle+a \mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1}-2 a \mathfrak{L}_{f}\left(\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right)+ \\
& \quad a \mathfrak{L}_{f}\left(u_{1} \mathfrak{L}_{f} g_{i}\right)-2 b\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+b u_{1} \mathfrak{L}_{f} g_{i},
\end{aligned}
$$

d is any positive constant and $\|f\|^{2}=\int_{M} f^{2} \mathrm{~d} \mu$.
Proof Let $\varphi_{i}=\left(g_{i}-a_{i}\right) u_{1}$, where $a_{i}=\int_{M} \rho g_{i} u_{1}^{2} \mathrm{~d} \mu$. We have $\int_{M} \rho \varphi_{i} u_{1} \mathrm{~d} \mu=0$. Noticing

$$
\int_{M} \rho g_{i} u_{1} u_{j+1} \mathrm{~d} \mu=0, \text { for } 1 \leq j<i
$$

we infer

$$
\left.\varphi_{i}\right|_{\partial M}=\left.\frac{\partial \varphi_{i}}{\partial \nu}\right|_{\partial M}=0, \quad \text { and } \quad \int_{M} \rho \varphi_{i} u_{j+1} \mathrm{~d} \mu=0, \text { for } 0 \leq j<i
$$

Then according to Rayleigh-Ritz inequality, we have

$$
\begin{equation*}
\lambda_{i+1} \leq \frac{\int_{M} \varphi_{i}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right)\left(\varphi_{i}\right) \mathrm{d} \mu}{\int_{M} \rho \varphi_{i}^{2} \mathrm{~d} \mu} . \tag{8}
\end{equation*}
$$

From the definition of φ_{i}, we have

$$
\begin{equation*}
\int_{M} \rho \varphi_{i}^{2} \mathrm{~d} \mu=\int_{M} \rho \varphi_{i}\left(g_{i}-a_{i}\right) u_{1} \mathrm{~d} \mu=\int_{M} \rho \varphi_{i} g_{i} u_{1} \mathrm{~d} \mu, \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{M} \varphi_{i}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right) \varphi_{i} \mathrm{~d} \mu & =\int_{M} \varphi_{i}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right)\left(\left(g_{i}-a_{i}\right) u_{1}\right) \mathrm{d} \mu \\
& =\int_{M} \varphi_{i}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right)\left(g_{i} u_{1}\right) \mathrm{d} \mu \tag{10}
\end{align*}
$$

By direct computation, we have

$$
\begin{aligned}
\mathfrak{L}_{f}\left(g_{i} u_{1}\right) & =-\operatorname{div}_{f}\left(A \nabla\left(g_{i} u_{1}\right)\right)=-\operatorname{div}_{f}\left(A\left(u_{1} \nabla g_{i}+g_{i} \nabla u_{1}\right)\right) \\
& =-\left\langle\nabla u_{1}, A \nabla g_{i}\right\rangle-g_{i} \operatorname{div}_{f}\left(A \nabla u_{1}\right)-\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle-u_{1} \operatorname{div}_{f}\left(A \nabla g_{i}\right) \\
& =g_{i} \mathfrak{L}_{f} u_{1}-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+u_{1} \mathfrak{L}_{f} g_{i}, \\
\mathfrak{L}_{f}^{2}\left(g_{i} u_{1}\right) & =\mathfrak{L}_{f}\left(g_{i} L u_{1}-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+u_{1} \mathfrak{L}_{f} g_{i}\right) \\
& =g_{i} \mathfrak{L}_{f}^{2} u_{1}-2\left\langle\nabla g_{i}, \nabla\left(\mathfrak{L}_{f} u_{1}\right)\right\rangle+\mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1}+\mathfrak{L}_{f}\left(-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+u_{1} \mathfrak{L}_{f} g_{i}\right) .
\end{aligned}
$$

So, we infer from above equalities that

$$
\begin{equation*}
\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right)\left(g_{i} u_{1}\right)=\lambda_{1} \rho g_{i} u_{1}+p_{i} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
p_{i}= & -2 a\left\langle\nabla g_{i}, A \nabla\left(\mathfrak{L}_{f} u_{1}\right)\right\rangle+a \mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1}-2 a \mathfrak{L}_{f}\left(\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right)+ \\
& a \mathfrak{L}_{f}\left(u_{1} \mathfrak{L}_{f} g_{i}\right)-2 b\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+b u_{1} \mathfrak{L}_{f} g_{i} .
\end{aligned}
$$

It follows from (10) and (11) that

$$
\begin{align*}
\int_{M} \varphi_{i}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right) \varphi_{i} \mathrm{~d} \mu & =\int_{M} \varphi_{i}\left(a \mathfrak{L}_{f}^{2}+b \mathfrak{L}_{f}+V\right)\left(g_{i} u_{1}\right) \mathrm{d} \mu \\
& =\lambda_{1} \int_{M} \varphi_{i} \rho g_{i} u_{1} \mathrm{~d} \mu+\int_{M} \varphi_{i} p_{i} \mathrm{~d} \mu \\
& =\lambda_{1} \int_{M} \rho \varphi_{i}^{2} \mathrm{~d} \mu+\int_{M} g_{i} u_{1} p_{i} \mathrm{~d} \mu-a_{i} b_{i} \tag{12}
\end{align*}
$$

where

$$
\begin{aligned}
b_{i}= & \int_{M} p_{i} u_{1} \mathrm{~d} \mu \\
= & \int_{M}-2 a u_{1}\left\langle\nabla g_{i}, A \nabla\left(L\left(u_{1}\right)\right)\right\rangle \mathrm{d} \mu+\int_{M} a u_{1} \mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1} \mathrm{~d} \mu-\int_{M} 2 a u_{1} \mathfrak{L}_{f}\left(\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right) \mathrm{d} \mu+ \\
& \int_{M} a u_{1} \mathfrak{L}_{f}\left(u_{1} \mathfrak{L}_{f} g_{i}\right)-\int_{M} 2 b u_{1}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu+\int_{M} b u_{1}^{2} \mathfrak{L}_{f} g_{i} \mathrm{~d} \mu \\
= & \int_{M} 2 a \mathfrak{L}_{f} u_{1}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu+\int_{M} a u_{1} \mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1} \mathrm{~d} \mu-\int_{M} 2 a \mathfrak{L}_{f} u_{1}\left(\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right) \mathrm{d} \mu+
\end{aligned}
$$

$$
\begin{equation*}
\int_{M} a \mathfrak{L}_{f} u_{1}\left(u_{1} \mathfrak{L}_{f} g_{i}\right) \mathrm{d} \mu-\int_{M} 2 b u_{1}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu+\int_{M} 2 b u_{1}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu=0 \tag{13}
\end{equation*}
$$

Combining (8), (12) and (13), we have

$$
\begin{equation*}
\left(\lambda_{i+1}-\lambda_{1}\right) \int_{M} \rho \varphi_{i}^{2} \mathrm{~d} \mu \leq \int_{M} g_{i} u_{1} p_{i} \mathrm{~d} \mu \tag{14}
\end{equation*}
$$

Observing that $\int_{M} u_{1}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta g_{i}\right) \mathrm{d} \mu=0$, we have

$$
\int_{M}(-2) \varphi_{i}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} g_{i}\right) \mathrm{d} \mu=-2 \int_{M} g_{i} u_{1}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta_{f} g_{i}\right) \mathrm{d} \mu=\left\|u_{1} \nabla g_{i}\right\|^{2}
$$

On the other hand, we have

$$
\begin{aligned}
\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}}\left\|u_{1} \nabla g_{i}\right\|^{2} & =\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}} \int_{M}(-2) \sqrt{\rho} \varphi_{i}\left(\frac{1}{\sqrt{\rho}}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta_{f} g_{i}\right)\right) \mathrm{d} \mu \\
& \leq \mathrm{d}\left(\lambda_{i+1}-\lambda_{1}\right)\left\|\sqrt{\rho} \varphi_{i}\right\|^{2}+\frac{1}{\mathrm{~d}}\left\|\frac{1}{\sqrt{\rho}}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta_{f} g_{i}\right)\right\|^{2} \\
& \leq \mathrm{d} \int_{M} g_{i} u_{1} p_{i}+\frac{1}{\mathrm{~d}}\left\|\frac{1}{\sqrt{\rho}}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta_{f} g_{i}\right)\right\|^{2}
\end{aligned}
$$

where d is any positive constant. This completes the proof of Lemma 2.1.

3. Universal inequalities for lower order eigenvalues

In this section, using Lemma 2.1, we will give some universal inequalities for lower order eigenvalues of the elliptic operators in weighted divergence form on a connected bounded domain in complete smooth metric measure spaces. Firstly, we have

Theorem 3.1 Let Ω be a connected bounded domain in an n-dimensional complete smooth metric measure space $\left(M,\langle\rangle,, e^{-f} \mathrm{~d} \nu\right)$. Assume that $\xi_{1} I \leq A, \operatorname{tr}(A) \leq n \xi_{2}$ throughout Ω, and $\rho_{1} \leq \rho(x) \leq \rho_{2},|\nabla f|(x) \leq C_{0}, \forall x \in \Omega$, here I is the identity map, $\xi_{1}, \xi_{2}, \rho_{1}, \rho_{2}, C_{0}$ are positive constants and $\operatorname{tr}(A)$ denotes the trace of A. Let λ_{i} be the $i^{\text {th }}$ eigenvalue of the following problem:

$$
\begin{cases}\left(\mathfrak{L}_{f}+V\right) u=\lambda \rho u, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega\end{cases}
$$

Then we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}} \leq \frac{\rho_{2}}{\rho_{1}}\left\{n \xi_{2}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}+C_{0}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}\right)^{\frac{1}{2}}+\frac{n^{2} H_{0}^{2}+C_{0}^{2}}{4 \rho_{1}}\right)\right\}^{\frac{1}{2}} \tag{15}
\end{equation*}
$$

where $H_{0}=\max _{x \in \Omega}|\mathbf{H}|(x), V_{0}=\min _{x \in \Omega} V(x)$, and \mathbf{H} is the mean curvature vector field of M immersed into an Euclidean space \mathbb{R}^{N}.

Proof Since M is a complete Riemannian manifold, from Nash embedding theorem, we know that there exists an isometric immersion from M into an Euclidean space \mathbb{R}^{N}. Thus, M can be considered as an n-dimensional complete isometrically immersed submanifold in \mathbb{R}^{N}. Let $y_{1}, y_{2}, \ldots, y_{N}$ be the standard coordinate functions of \mathbb{R}^{N}. Then from (2.2)-(2.5) in [21], we
have

$$
\begin{gather*}
\sum_{i=1}^{N}\left|\nabla y_{i}\right|^{2}=n, \Delta\left(y_{1}, y_{2}, \ldots, y_{N}\right)=n \mathbf{H}, \tag{16}\\
\sum_{i=1}^{N}\left\langle\nabla y_{i}, \nabla u_{j}\right\rangle^{2}=\left|\nabla u_{j}\right|^{2}, \sum_{i=1}^{N}\left\langle\nabla y_{i}, \nabla f\right\rangle^{2}=|\nabla f|^{2}, \tag{17}\\
\sum_{i=1}^{N}\left\langle\nabla y_{i}, \nabla u_{j}\right\rangle\left\langle\nabla y_{i}, \nabla f\right\rangle=\sum_{i=1}^{N} \nabla u_{j}\left(y_{i}\right) \nabla f\left(y_{i}\right)=\left\langle\nabla u_{j}, \nabla f\right\rangle, \tag{18}\\
\sum_{i=1}^{N} \Delta y_{i}\left\langle\nabla y_{i}, \nabla u_{j}\right\rangle=\sum_{i=1}^{N} \Delta y_{i} \nabla u_{j}\left(y_{i}\right)=\left\langle n \mathbf{H}, \nabla u_{j}\right\rangle=0, \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{N} \Delta y_{\alpha}\left\langle\nabla y_{\alpha}, \nabla f\right\rangle=\sum_{i=1}^{N} \Delta y_{\alpha} \nabla f\left(y_{\alpha}\right)=\langle n \mathbf{H}, \nabla f\rangle=0 \tag{20}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\sum_{i=1}^{N} \Delta_{f} y_{i}\left\langle\nabla y_{i}, \nabla u_{j}\right\rangle=\sum_{i=1}^{N}\left(\Delta y_{i}-\left\langle\nabla y_{i}, \nabla f\right\rangle\right)\left\langle\nabla y_{i}, \nabla u_{j}\right\rangle=\left\langle\nabla u_{j}, \nabla f\right\rangle \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{N}\left(\Delta_{f} y_{i}\right)^{2} & =\sum_{i=1}^{N}\left(\Delta y_{i}-\left\langle\nabla y_{i}, \nabla f\right\rangle\right)^{2}=\sum_{i=1}^{N}\left(\left(\Delta y_{i}\right)^{2}-2 \Delta y_{i}\left\langle\nabla y_{i}, \nabla f\right\rangle+\left\langle\nabla y_{i}, \nabla f\right\rangle^{2}\right) \\
& =n^{2}|\mathbf{H}|^{2}+|\nabla f|^{2} \tag{22}
\end{align*}
$$

By using the QR-factorization theorem, we know that there exists an orthogonal $N \times N$ matrix $T=\left(T_{i j}\right)$ such that

$$
\sum_{k=1}^{N} T_{i k} \int_{M} y_{k} u_{1} u_{j+1}=\sum_{k=1}^{N} \int_{M} T_{i k} y_{k} u_{1} u_{j+1}=0, \quad \text { for } 1 \leq j<i \leq N
$$

Set $g_{i}=\sum_{k=1}^{N} T_{i k} y_{k}$, we get

$$
\begin{equation*}
\int_{M} g_{i} u_{1} u_{j+1}=\int_{M} \sum_{k=1}^{N} T_{i k} y_{k} u_{1} u_{j+1}=0, \quad 1 \leq j<i \leq N \tag{23}
\end{equation*}
$$

Since T is an orthogonal matrix, g_{i} also satisfies (16)-(22).
Let $a=0, b=1$ in (7). Taking $h=g_{i}$ and summing for i from 1 to N, we have

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}}\left\|u_{1} \nabla g_{i}\right\|^{2} \leq \mathrm{d} \int_{M} \sum_{i=1}^{N} g_{i} u_{1} p_{i} \mathrm{~d} \mu+\frac{1}{\mathrm{~d}} \sum_{i=1}^{N}\left\|\frac{1}{\sqrt{\rho}}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta g_{i}\right)\right\|^{2} \tag{24}
\end{equation*}
$$

where $p_{i}=-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+u_{1} \mathfrak{L}_{f} g_{i}$. Since

$$
-2 \int_{\Omega} g_{i} u_{1}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu=\int_{\Omega} u_{1}^{2}\left\langle\nabla g_{i}, A \nabla g_{i}\right\rangle \mathrm{d} \mu-\int_{\Omega} g_{i} u_{1}^{2} \mathfrak{L}_{f} g_{i} \mathrm{~d} \mu
$$

we infer from above equality and $\sum_{i=1}^{N}\left\langle\nabla g_{i}, A \nabla g_{i}\right\rangle=\operatorname{tr}(A) \leq n \xi_{2}$ that

$$
\begin{align*}
\int_{\Omega} \sum_{i=1}^{N} g_{i} u_{1} p_{i} \mathrm{~d} \mu & =\int_{\Omega} \sum_{i=1}^{N} g_{i} u_{1}\left(-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+u_{1} \mathfrak{L}_{f} g_{i}\right) \mathrm{d} \mu \\
& =\int_{\Omega} \sum_{i=1}^{N} u_{1}^{2}\left\langle\nabla g_{i}, A \nabla g_{i}\right\rangle \mathrm{d} \mu \leq n \xi_{2}\left\|u_{1}\right\|^{2} \leq n \xi_{2} \rho_{1}^{-1} \tag{25}
\end{align*}
$$

From $\rho_{2}^{-1} \leq\left\|u_{1}\right\|^{2} \leq \rho_{1}^{-1}$ and $A \geq \xi_{1} I$, we have

$$
\begin{aligned}
\lambda_{1} & =\int_{\Omega} u_{1}\left(\mathfrak{L}_{f}+V\right) u_{1} \mathrm{~d} \mu=\int_{\Omega}-u_{1} \operatorname{div}_{f}\left(A \nabla u_{1}\right) \mathrm{d} \mu+\int_{\Omega} V u_{1}^{2} \mathrm{~d} \mu \\
& =\int_{\Omega}\left\langle\nabla u_{1}, A \nabla u_{1}\right\rangle \mathrm{d} \mu+\int_{\Omega} V u_{1}^{2} \mathrm{~d} \mu \geq \xi_{1}\left\|\nabla u_{1}\right\|^{2}+\rho_{2}^{-1} V_{0}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left\|\nabla u_{1}\right\|^{2} \leq \frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}} \tag{26}
\end{equation*}
$$

From Schwarz inequality and above inequality, we have

$$
\begin{equation*}
\int_{\Omega}\left\langle\nabla f, \nabla u_{1}\right\rangle \mathrm{d} \mu \leq \int_{\Omega}|\nabla f|\left|\nabla u_{1}\right| \mathrm{d} \mu \leq C_{0}\left\{\left\|\nabla u_{1}\right\|^{2}\right\}^{\frac{1}{2}} \leq C_{0}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}\right)^{\frac{1}{2}} \tag{27}
\end{equation*}
$$

Combining (23), (26) and (27), we have

$$
\begin{align*}
& \int_{\Omega} \frac{1}{\rho} \sum_{i=1}^{N}\left(\left\langle\nabla g_{i}, \nabla u_{1}\right\rangle+\frac{u_{1} \Delta_{f} g_{i}}{2}\right)^{2} \mathrm{~d} \mu \\
& \quad=\int_{\Omega} \frac{1}{\rho} \sum_{i=1}^{N}\left(\left\langle\nabla g_{i}, \nabla u_{1}\right\rangle^{2}+u_{1} \Delta_{f} g_{i}\left\langle\nabla g_{i}, \nabla u_{1}\right\rangle+\frac{u_{1}^{2}\left(\Delta_{f} g_{i}\right)^{2}}{4}\right) \mathrm{d} \mu \\
& =\int_{\Omega} \frac{1}{\rho}\left(\left|\nabla u_{1}\right|^{2}+\left\langle\nabla f, \nabla u_{1}\right\rangle+\frac{u_{1}^{2}}{4}\left(n^{2}|\mathbf{H}|^{2}+|\nabla f|^{2}\right)\right) \mathrm{d} \mu \\
& \quad \leq \frac{1}{\rho_{1}}\left\{\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}+C_{0}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}\right)^{\frac{1}{2}}+\frac{1}{4 \rho_{1}}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right\} \tag{28}
\end{align*}
$$

For any point $p \in M$, by a transformation of coordinates if necessary, we have $\left|\nabla g_{i}\right|^{2} \leq 1$ for any i. Then we have

$$
\begin{align*}
\sum_{i=1}^{N}\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}}\left|\nabla g_{i}\right|^{2} & =\sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}}\left|\nabla g_{i}\right|^{2}+\sum_{k=n+1}^{N}\left(\lambda_{k+1}-\lambda_{1}\right)^{\frac{1}{2}}\left|\nabla g_{k}\right|^{2} \\
& \geq \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}}\left|\nabla g_{i}\right|^{2}+\left(\lambda_{n+1}-\lambda_{1}\right)^{\frac{1}{2}}\left(n-\sum_{l=1}^{n}\left|\nabla g_{l}\right|^{2}\right) \\
& \geq \sum_{j=1}^{n}\left(\lambda_{j+1}-\lambda_{1}\right)^{\frac{1}{2}}\left|\nabla g_{i}\right|^{2}+\sum_{l=1}^{n}\left(\lambda_{l+1}-\lambda_{1}\right)^{\frac{1}{2}}\left(1-\left|\nabla g_{l}\right|^{2}\right) \\
& \geq \sum_{i=1}^{n}\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}} . \tag{29}
\end{align*}
$$

Taking (25), (28) and (29) into (24), we have

$$
\sum_{i=1}^{n} \frac{1}{\rho_{2}}\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}} \leq \frac{\mathrm{d} n \xi_{2}}{\rho_{1}}+\frac{1}{\mathrm{~d}} \frac{1}{\rho_{1}}\left\{\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}+C_{0}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}\right)^{\frac{1}{2}}+\frac{1}{4 \rho_{1}}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right\}
$$

Taking $\delta=\left\{\frac{1}{n \xi_{1}}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}+C_{0}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}\right)^{\frac{1}{2}}+\frac{1}{4 \rho_{1}}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right)\right\}^{\frac{1}{2}}$, we have

$$
\sum_{i=1}^{n}\left(\lambda_{i+1}-\lambda_{1}\right)^{\frac{1}{2}} \leq \frac{\rho_{2}}{\rho_{1}}\left\{n \xi_{2}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}+C_{0}\left(\frac{\lambda_{1}-\rho_{2}^{-1} V_{0}}{\xi_{1}}\right)^{\frac{1}{2}}+\frac{1}{4 \rho_{1}}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right)\right\}^{\frac{1}{2}}
$$

This completes the proof of Theorem 3.1.
In the following, we will give a universal inequality for eigenvalues of the fourth order elliptic operator in weighted divergence form.

Theorem 3.2 Let Ω be a connected bounded domain in an n-dimensional complete smooth metric measure space $\left(M,\langle\rangle,, e^{-f} \mathrm{~d} \nu\right)$. Assume that $\xi_{1} I \leq A \leq \xi_{2} I$ throughout Ω, and $|\nabla f|(x) \leq$ $C_{0}, \forall x \in \Omega$, here I is the identity map, ξ_{1}, ξ_{2}, C_{0} are positive constants. Let Λ_{i} be the $i^{t h}$ eigenvalue of the following problem:

$$
\mathfrak{L}_{f}^{2} u=\Lambda u \text { in } \Omega, \text { and } u=\frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega
$$

Then we have

$$
\begin{gather*}
\sum_{i=1}^{n}\left(\Lambda_{i+1}-\Lambda_{1}\right)^{\frac{1}{2}} \leq\left\{\frac{\xi_{2}}{\xi_{1}}\left((2 n+4) \Lambda_{1}^{\frac{1}{2}}+4 C_{0} \xi_{2}^{\frac{1}{2}} \Lambda_{1}^{\frac{1}{4}}+\xi_{2}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right) \times\right. \\
\left.\left(4 \Lambda_{i}^{\frac{1}{2}}+4 C_{0} \xi_{1}^{\frac{1}{2}} \Lambda_{i}^{\frac{1}{4}}+\xi_{1}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right)\right\}^{\frac{1}{2}} \tag{30}
\end{gather*}
$$

where $H_{0}=\max _{x \in \Omega}|\mathbf{H}|(x), V_{0}=\min _{x \in \Omega} V(x)$, and \mathbf{H} is the mean curvature vector field of M immersed into an Euclidean space \mathbb{R}^{N}.

Proof Let $a=1, b=0, V \equiv 0$ and $\rho \equiv 1$ in (7). Taking $h=g_{i}$ and summing for i from 1 to N, where g_{i} is defined as above, we have

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\Lambda_{i+1}-\Lambda_{1}\right)^{\frac{1}{2}}\left\|u_{1} \nabla g_{i}\right\|^{2} \leq \mathrm{d} \int_{M} \sum_{i=1}^{N} g_{i} u_{1} p_{i}+\frac{1}{\mathrm{~d}} \sum_{i=1}^{N}\left\|\frac{1}{\sqrt{\rho}}\left(\left\langle\nabla u_{1}, \nabla g_{i}\right\rangle+\frac{1}{2} u_{1} \Delta_{f} g_{i}\right)\right\|^{2} \tag{31}
\end{equation*}
$$

where

$$
p_{i}=-2\left\langle\nabla g_{i}, A \nabla\left(\mathfrak{L}_{f} u_{1}\right)\right\rangle+\mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1}-2 \mathfrak{L}_{f}\left(\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right)+\mathfrak{L}_{f}\left(u_{1} \mathfrak{L}_{f} g_{i}\right) .
$$

By direct computation, we have

$$
\begin{align*}
& \int_{\Omega} g_{i} u_{1} p_{i} \mathrm{~d} \mu=\int_{\Omega} g_{i} u_{1}\left\{-2\left\langle\nabla g_{i}, A \nabla\left(\mathfrak{L}_{f} u_{1}\right)\right\rangle+\mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1}-2 \mathfrak{L}_{f}\left(\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right)+\mathfrak{L}_{f}\left(u_{1} \mathfrak{L}_{f} g_{i}\right)\right\} \mathrm{d} \mu \\
&= \int_{\Omega} 2\left\{u_{1} \mathfrak{L}_{f} u_{1}\left\langle\nabla g_{i}, A \nabla g_{i}\right\rangle+g_{i} \mathfrak{L}_{f} u_{1}\left\langle\nabla u_{1}, A \nabla g_{i}\right\rangle-g_{i} u_{1} \mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1}\right\} \mathrm{d} \mu+\int_{\Omega} g_{i} u_{1} \mathfrak{L}_{f} g_{i} \mathfrak{L}_{f} u_{1} \mathrm{~d} \mu+ \\
& \int_{\Omega}\left\{\mathfrak{L}_{f} g_{i} u_{1}+g_{i} \mathfrak{L}_{f} u_{i}-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle\right\}\left\{-2\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle+u_{1} \mathfrak{L}_{f} g_{i}\right\} \mathrm{d} \mu \\
&= \int_{\Omega} 2 u_{1} \mathfrak{L}_{f} u_{1}\left\langle\nabla g_{1}, A \nabla g_{i}\right\rangle \mathrm{d} \mu+\int_{\Omega} 4\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle^{2} \mathrm{~d} \mu-\int_{\Omega} 4 u_{1} \mathfrak{L}_{f} g_{i}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu+ \\
& \int_{\Omega}\left(u_{1} \mathfrak{L}_{f} g_{i}\right)^{2} \mathrm{~d} \mu . \tag{32}
\end{align*}
$$

Since $\xi_{1} I \leq A \leq \xi_{2} I$, we can infer from (16)-(22) that

$$
\begin{gather*}
\sum_{i=1}^{N} \int_{\Omega} 2 u_{1} \mathfrak{L}_{f} u_{1}\left\langle\nabla g_{i}, A \nabla g_{i}\right\rangle \mathrm{d} \mu \leq 2 n \xi_{2} \int_{\Omega} u_{1} \mathfrak{L}_{f} u_{1} \mathrm{~d} \mu \leq 2 n \xi_{2}\left\{\left\|u_{1}\right\|^{2}\left\|\mathfrak{L}_{f} u_{1}\right\|^{2}\right\}^{\frac{1}{2}}=2 n \xi_{2} \Lambda_{1}^{\frac{1}{2}} \tag{33}\\
\sum_{i=1}^{N} \int_{\Omega} 4\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle^{2} \mathrm{~d} \mu=4\left\|A \nabla u_{1}\right\|^{2} \leq 4 \xi_{2} \int_{\Omega}\left\langle\nabla u_{1}, A \nabla u_{1}\right\rangle \\
=4 \xi_{2} \int_{\Omega} u_{1} \mathfrak{L}_{f} u_{1} \mathrm{~d} \mu \leq 4 \xi_{2} \Lambda_{1}^{\frac{1}{2}} \tag{34}\\
\sum_{i=1}^{N}-\int_{\Omega} 4 u_{1} \mathfrak{L}_{f} g_{i}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu \leq\left|4 \xi_{2} \int_{\Omega} u_{1} \Delta_{f} g_{i}\left\langle\nabla g_{i}, A \nabla u_{1}\right\rangle \mathrm{d} \mu\right| \\
=\left|4 \xi_{2} \int_{\Omega} u_{1}\left\langle\nabla f, A \nabla u_{1}\right\rangle \mathrm{d} \mu\right| \leq 4 \xi_{2} \int_{\Omega} u_{1}|\nabla f|\left|\nabla u_{1}\right| \mathrm{d} \mu \\
\leq 4 C_{0} \xi_{2}\left\{\left\|u_{1}\right\|^{2}\left\|A \nabla u_{1}\right\|^{2}\right\}^{\frac{1}{2}}=4 C_{0} \xi_{2}^{\frac{3}{2}}\left\{\int_{\Omega}\left\langle\nabla u_{1}, A \nabla u_{1}\right\rangle \mathrm{d} \mu\right\}^{\frac{1}{2}} \leq 4 C_{0} \xi_{2}^{\frac{3}{2}} \Lambda_{1}^{\frac{1}{4}} \tag{35}
\end{gather*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{N} \int_{\Omega}\left(u_{1} \mathfrak{L}_{f} g_{i}\right)^{2} \mathrm{~d} \mu \xi_{2}^{2} & \leq \sum_{i=1}^{N} \int_{\Omega} u_{1}^{2}\left(\Delta_{f} g_{i}\right)^{2} \mathrm{~d} \mu=\xi_{2}^{2} \int_{\Omega} u_{1}^{2}\left(n^{2}|\mathbf{H}|^{2}+|\nabla f|^{2}\right) \mathrm{d} \mu \\
& \leq \xi_{2}^{2}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right) \tag{36}
\end{align*}
$$

Combining (32)-(36), we have

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} g_{i} u_{1} p_{i} \leq \xi_{2}\left((2 n+4) \Lambda_{1}^{\frac{1}{2}}+4 C_{0} \xi_{2}^{\frac{1}{2}} \Lambda_{1}^{\frac{1}{4}}+\xi_{2}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right) \tag{37}
\end{equation*}
$$

Since $\left\|\nabla u_{1}\right\|^{2} \leq \frac{1}{\xi_{1}} \int_{\Omega}\left\langle\nabla u_{1}, A \nabla u_{1}\right\rangle \mathrm{d} \mu=\frac{1}{\xi_{1}} \int_{\Omega} u_{1} \mathfrak{L}_{f} u_{1} \mathrm{~d} \mu \leq \frac{\Lambda_{1}^{\frac{1}{2}}}{\xi_{1}}$, we have

$$
\begin{align*}
& \int_{\Omega} \sum_{i=1}^{N}\left(\left\langle\nabla g_{i}, \nabla u_{1}\right\rangle+\frac{u_{1} \Delta_{f} g_{i}}{2}\right)^{2} \mathrm{~d} \mu \\
& \quad=\int_{\Omega}\left(\left|\nabla u_{1}\right|^{2}+\left\langle\nabla f, \nabla u_{1}\right\rangle+\frac{u_{1}^{2}}{4}\left(n^{2}|\mathbf{H}|^{2}+|\nabla f|^{2}\right)\right) \mathrm{d} \mu \\
& \quad \leq \frac{\Lambda_{1}^{\frac{1}{2}}}{\xi_{1}}+\frac{C_{0} \Lambda_{1}^{\frac{1}{4}}}{\xi_{1}^{\frac{1}{2}}}+\frac{n^{2} H_{0}^{2}+C_{0}^{2}}{4} \tag{38}
\end{align*}
$$

Taking (37) and (38) into (31), we have

$$
\begin{align*}
\sum_{i=1}^{n}\left(\Lambda_{i+1}-\Lambda_{1}\right)^{\frac{1}{2}} \leq & \delta \xi_{2}\left((2 n+4) \Lambda_{1}^{\frac{1}{2}}+4 C_{0} \xi_{2}^{\frac{1}{2}} \Lambda_{1}^{\frac{1}{4}}+\xi_{2}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right)+ \\
& \frac{1}{\delta}\left(\frac{\Lambda_{i}^{\frac{1}{2}}}{\xi_{1}}+\frac{C_{0} \Lambda_{i}^{\frac{1}{4}}}{\xi_{1}^{\frac{1}{2}}}+\frac{n^{2} H_{0}^{2}+C_{0}^{2}}{4}\right) \tag{39}
\end{align*}
$$

Let

$$
\delta=\left\{\frac{\left\{\frac{\Lambda_{i}^{\frac{1}{2}}}{\xi_{1}}+\frac{C_{0} \Lambda^{\frac{1}{i}}}{\xi_{1}^{\frac{1}{2}}}+\frac{n^{2} H_{0}^{2}+C_{0}^{2}}{4}\right\}}{\xi_{2}\left((2 n+4) \Lambda_{1}^{\frac{1}{2}}+4 C_{0} \xi_{2}^{\frac{1}{2}} \Lambda_{1}^{\frac{1}{4}}+\xi_{2}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right)}\right\}^{\frac{1}{2}}
$$

in (39). We have

$$
\begin{aligned}
\sum_{i=1}^{n}\left(\Lambda_{i+1}-\Lambda_{1}\right)^{\frac{1}{2}} \leq & \frac{1}{n}\left\{\frac{\xi_{2}}{\xi_{1}}\left((2 n+4) \Lambda_{1}^{\frac{1}{2}}+4 C_{0} \xi_{2}^{\frac{1}{2}} \Lambda_{1}^{\frac{1}{4}}+\xi_{2}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right) \times\right. \\
& \left.\left(4 \Lambda_{i}^{\frac{1}{2}}+4 C_{0} \xi_{1}^{\frac{1}{2}} \Lambda_{i}^{\frac{1}{4}}+\xi_{1}\left(n^{2} H_{0}^{2}+C_{0}^{2}\right)\right)\right\}^{\frac{1}{2}}
\end{aligned}
$$

This completes the proof of Theorem 3.2.
Acknowledgements We thank the referees for their careful reading and valuable comments.

References

[1] L. E. PAYNE, G. PÓLYA, H. F. WEINBERGER. Sur le quotient de deux fréquences propres consécutives Comptes Rendus. Acad. Sci. Paris, 1955, 241: 917-919.
[2] L. E. PAYNE, G. PÓLYA, H. F. WEINBERGER. On the ratio of consecutive eigenvalues. J. Math. Phys., 1956, 35: 289-298.
[3] M. S. ASHBAUGH, R. D. BENGURIA. Proof of the Payne-Pólya-Weinberger conjecture. Bull. Amer. Math. Soc. (N.S.), 1991, 25(1): 19-29.
[4] M. S. ASHBAUGH, R. D. BENGURIA. A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions. Ann. of Math. (2), 1992, 135(3): 601-628.
[5] M. S. ASHBAUGH, R. D. BENGURIA. A second proof of the Payne-Pólya-Weinberger conjecture. Comm. Math. Phys., 1992, 147(1): 181-190.
[6] M. S. ASHBAUGH, R. D. BENGURIA. More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions. SIAM J. Math. Anal., 1993, 24(6): 1622-1651.
[7] Hejun SUN, Qingming CHENG, Hongcang YANG. Lower order eigenvalues of Dirichlet Laplacian. Manuscripta Math., 2008, 125(2): 139-156.
[8] Qingming CHENG, Guangyue HUANG, Guoxin WEI. Estimates for lower order eigenvalues of a clamped plate problem. Calc. Var. Partial Differential Equations, 2010, 38(3-4): 409-416.
[9] Feng DU, Yanli LI, Jing MAO. Eigenvalue inequalities of the Schrödinger-type operator on bounded domains in strictly pseudoconvex CR manifolds. Bull. Korean Math. Soc., 2015, 52(1): 223-238.
[10] Guangyue HUANG, Xingxiao LI, Ruiwei XU. Extrinsic estimates for the eigenvalues of Schrödinger operator. Geom. Dedicata, 2009, 143: 89-107.
[11] M. P. do CARMO, Qiaoling WANG, Changyu XIA. Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds. Ann. Mat. Pura Appl. (4), 2010, 189(4): 643-660.
[12] H. ALENCAR, G. S. NETO, Detang ZHOU. Eigenvalue estimates for a class of elliptic differential operators on compact manifolds. Bull. Braz. Math. Soc. (N.S.), 2015, 46(3): 491-514.
[13] Feng DU, Chuanxi WU, Guanghan LI. Estimates for eigenvalues of fourth-order elliptic operators in divergence form. Bull. Braz. Math. Soc. (N.S.), 2015, 46(3): 437-459.
[14] Feng DU, Chuanxi WU, Guanghan LI, et al. Estimates for eigenvalues of fourth-order elliptic operators in divergence form on complete Riemannian manifolds. Acta Math. Sinica (Chin. Ser.), 2015, 58(4): 635-648. (in Chinese)
[15] Hejun SUN, Daguang CHEN. Inequalities for lower order eigenvalues of second order elliptic operators in divergence form on Riemannian manifolds. Arch. Math. (Basel), 2013, 101(4): 381-393.
[16] Feng DU, Jing MAO, Qiaoling WANG, et al. Universal inequalities of the poly-drifting Laplacian on the Gaussian and cylinder shrinking solitons. Ann. Global Anal. Geom., 2015, 48(3): 255-268.
[17] Feng DU, Jing MAO, Qiaoling WANG, et al. Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons. J. Differential Equations, 2016, 260(7): 5533-5564.
[18] Feng DU, Chuanxi WU, Guanghan LI, et al. Estimates for eigenvalues of the bi-drifting Laplacian operator. Z. Angew. Math. Phys., 2015, 66(3): 703-726.
[19] Changyu XIA, Hongwei XU. Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds. Ann. Global Anal. Geom., 2014, 45(3): 155-166.
[20] Yuming ZHU, Gusheng, LIU, Feng DU. Eigenvalue inequalities of elliptic operators in weighted divergence form on smooth metric measure spaces. J. Inequal. Appl., 2016, 191: 1-15.
[21] Daguang CHEN, Qingming CHENG. Extrinsic estimates for eigenvalues of the Laplace operator. J. Math. Soc. Japan, 2008, 60(2): 325-339.

[^0]: Received March 31, 2016; Accepted December 9, 2016
 Supported by the National Natural Science Foundation of China (Grant No. 11401131) and the Natural Science Foundation of Hubei Provincial Department of Education (Grant No. Q20154301).

 * Corresponding author

 E-mail address: liyanli1891@163.com (Yanli LI); defengdu123@163.com (Feng DU)

