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Abstract In this paper, we study the iterated commutators of BMO functions and multilinear
operators kernel of which satisfies some mild regularity condition. Some new properties for
the commutator on weighted Lebesgue spaces are established.
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1. Introduction and results

In 1975, Coifman and Meyer [1] studied the bilinear singular integral operators. Then many
researchers were interested in the bilinear or multilinear sigular integrals [2-10]. The multilinear
operators T are initially defined on the m-fold product of Schwartz space . (R™), and take their

values into the space of tempered distributions on ./ (R"™),
T:R") x - x L(R") = S'(R").

We will assume that the distributional kernel of the operator K on (R™)™*! is defined away from

the diagonal {(2,y1,...,Ym) : T =91 = -+ = Y} in (R?)™F! 50 that

T(f1, f2y s fm) (@) = /(Rn)m K(z,y1,- 5 ym) f1(y1) - fm(Ym)dyr -+ - Ay,

whenever f1,..., fm € C5°(R") and x ¢ N72;supp f;.

Grafakos and Torres [7] discussed the multilinear operator T’ with kernel K satisfying the s-
tandard estimates and obtained the weak endpoint estimate of the multilinear Calderén-Zygmund
operator. Grafakos and Torres [8] established the weighted estimates with A, weights for T" and

the corresponding maximal operator. Pérez and Torres [10] used a variant of the sharp maximal
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operator M* of Fefferman and Stein [11] to get the weighted estimates of the operator 7. One
can see [12]-[19] for more estimates about multilinear operators.

In this paper, we consider the multilinear operator which was discussed in [16]. Suppose
that T is a multilinear operator and there exist py > 1 and a constant C' > 0 so that the following
conditions hold

(H1) For all pg < q1,...,qm < 00 and 0 < ¢ < oo satisfying

1 1 1

— 4 ... — =,

q1 dm q
T is bounded from L% (R™) x --- x LI (R™) to L (R").

(H2) There exists ¢ > pﬂo, so that for the conjugate exponent pj of pg, one has

/ po’ 1/po’
( |K(x,y1,...,ym)—K(x,yl,...,ym)’ dy1"'dym>
Sjm (Q) S5, (Q)

J

z—2 )"0 )
SC(| ‘ ||)m§ m6]0,

for all balls @, all z,2’ € %, and (y1,...,ym) # (0,...,0), where jo = max{jx : k =1,...,m},
and S;(Q) =27Q\ 2971Q, if j > 1, otherwise S;(Q) = Q.
Bui and Duong [16] proved the weighted boundedness of commutator T~ b(_> which is

defined as follows: .

Ts (@) =Y T] (F),
j=1

J

where f= (f1,..., fm), b= (b1,-..,bm), b; € BMO(R™), 1 < j < m, and
[bj, T);() (@) = T} (f)(x)
= b](l')T(fl,,fj,,fm)(fE) —T(fl,...,bjfj,...,fm)(l'), j = 1,...,m.

For the multilinear operator T, b = (b1,...,b,,) is a family of locally integrable functions.

In 2014, Pérez, Pradolini et al. [20] considered the iterated commutator of multilinear operator

Trb(f1s-- -5 fm) = b1, b2, [br—1 [bms Tl m—15 - - J21 (f1, -+ 5 fm),

that is

Tinn () (@) = /( o TI00) = b )G ) ) ) -
j=1
When m =1, sz(f) = Tun(f) = [b,T)f = bT(f) — T(bf), which is the well-known classical
commutator with BMO function in [21]. They got that [b, T] is bounded on LP(R™) for 1 <
p < oo if and only if b € BMO(R™). In this paper, we mainly discuss the weighted boundedness
of the iterated commutator Ty (f), when the multilinear operator T satisfies (H1), (H2) and
b; € BMO(R"),1 < j <m.

Our main results are the following theorems.

Theorem 1.1 Assume that T satisfies (H1) and (H2). For all pg < pi1,...,pm < 00 and
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0 < p < oo with
1 1 1

— ==
p1 Pm p
and b; € BMO(R"),1 < j <m, w € Aj/p,, p = min{p1,...,pm}. Then, there exists a constant
C > 0 such that
1T ()l 2oy < C TT 10130 [T 15127 (-
j=1 j=1
Theorem 1.2 Assume that T satisfies (H1) and (H2). For all pg < p1,...,pm < 0o and

0 < p < oo with

1 1 1
— 4 — =,
b1 Pm p

and b; € BMO(R"™), 1 <j <m, W€ Ap, . Then, there exists a constant C' > 0 such that

B/po
T (F)| 1o (o) < C [T le5lieneo TT 151275 (o -
j=1 j=1

The rest of this paper is organized as follows. After recalling some preliminary notations
and lemmas in Section 2, we will prove our results in Section 3. We would like to remark that
the main methods employed in this paper is a combination of ideas and arguments from [16] and
[19].

Throughout this paper, we let p’ satisfy 1/p + 1/p’ = 1. The letter C, sometimes with
additional parameters, will stand for positive constants, not necessarily the same one at each

occurrence but is independent of the essential variables.

2. Preliminaries and lemmas

In order to prove the theorems, we will formulate some lemmas and preliminaries. For a
function f € Ljoc(R™), the Hardy-Littlewood maximal and Sharp maximal functions are defined
by

Mf(z) AT !f )|dy,
\QI

and

# _ ~ in _
MEf(@) = sup ‘Q|/!f - faldy ~ sup f|Q|/Q\f<y> Cldy

respectively, where fo denotes the average of f over ball Q.
For § > 0, we denote Ms(f) and Mg(f) by

Ms(f) = M(If1°)5, MI(f) = [M*(1£1°)°.

Let 0 < p, 6 < 00, w € Aso. Then there exists a constant C', such that

M;sf(z)Pw(z)de < C Mgf(x)pw(x)dx,
R‘H. R‘VL

for any function f for which the left hand side is finite.
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Following the notation in [22], for m exponents py, ..., pm, we denote by p the number given
by % = p%"'""ﬂ% and P for the vector P = (p1y--yPm). Let 1 <p1,...,pm < 0o. A multiple

weight @ = (wy, ..., wy,) is said to satisfy the multiple weight A5 condition if for

L — ™ .P/Pj
Vg = Hj:]_wj / ’

slép (Lé'/va)l/le?@1<|é/ijl_p;)l/p; < Q.

When p; =1, (|712| fQ wjl_p;')l/pli is understood as (supg w;)~!. One can check that A,y is

it holds that

contained in A5 for each P. In fact, one has
5L, Ap; C Ap
with strict containment. Moreover,

1—p;- A .
: =1,...
u—]r E AP'.‘ w] e mpj/v .] ? 7m
Vg € Amp
e 1-p} . .
where the condition w; Pi e Ampj, in the case p; = 1 is understood as w;/m € A;. Observe
that in the linear case (m = 1) the above condition represents the same A, condition.

We will use the following Kolmogorov inequality

1£llzrus) < CllFllnoeqq s )

a1
where 0 < p < ¢ < 00. See ([22,23]).

The following lemma is our main ingredient in the proof of our main results.

Lemma 2.1 ([22]) Ifw € Ap, then vy € A,y and there exists min{py,...,pm} > 7 > 1 such
that w € Aﬁ/r’ where 13/7‘ = (p1/7ry- ., Pm/T).
For f: (f1,..., fm) and p > 1, we define the operator

—

My(Pa) = st (o [ 1nPas)
x) = sup IIj2, ( — (y)|Pdy; )
p 0> 7j=1 |Q| 0 VAV J

As a result of [16, Proposition 2.3], we have

Lemma 2.2 Assume that T satisfies (H1) and (H2). And let 0 < § < € < pg/m. Then for any

qo > po, we have

— —

ME(TY ())(@) < Cllb Mo M, (F) ().

Lemma 2.3 ([16]) Assume that py > 1 and p; > py (Vj = 1,...,m) with 5 = - 4.+ 1

P1 P
We have

My (F)lLr(vg) < CUTL | Fill 225 ;)
if and only if @ € Aﬁ/po’ where ]3/p0 = (p1/Po,---,Pm/Po)-

Lemma 2.4 ([16]) Suppose T satisfies (H1) and (H2). For any py < p1,...,Pm < 00 and p so
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that 1/p=1/p1 + -+ 1/py and @ € Aﬁ/po’ we have
m
TP 2o sy < C TT L2 (-
j=1
3. Proofs of main theorems

For the sake of simplicity, we only consider the case m = 2 and the proof of Theorems is

based on the following estimate of sharp maximal function.

Lemma 3.1 Suppose that T satisfies (H1) and (H2). Let by,bo € BMO(R"), 0 < § < 1/3 <
€ < 1/2. For qg > po, then we have

M (T (f1, 2))(x) <Cb1 Mo Me (T2, (f1, £2)) (@) + Cllba || svio M- (T3, (f1, f2)) (@) +

Cllb1]|Bmol[b2][BMo M (T'(f1, f2))(x) + C|b1|[B7mO|1b2([BMO My, (f) ().

Proof For any constants A\; and Ay, write

Tia () (x) =(b1(x) = M) (ba(2) = A2)T(f1, f2) (&) — (b1 () = M)T(fr, (b2 — Xo) f2) () —
(b2(@) = A2)T((b1 — M) f1, f2) (@) + T((br — A1) fr, (b2 — A2) f2) (@)
= (b1(2) = M) (ba2(2) = A)T(f1, fo) (@) + (b1(x) = M),y (f1, o) (2)+
(ba () = A2)T(y, 2,y (f1, f2) (@) + T((br = A1) f1, (b2 — A2) fo) ().

For any fixed x € R™, a ball Q) centered at x and a constant ¢, since 0 < § < %, we can estimate

(7 [, It ey = )

@/QITnb(fl,fg)(z) _C|5dz>%

gc(ﬁ/ 1(b1(2) = A1) (b2 (2) — AT (f1, f2)(2)] dz)%
‘Ql/ 01(2) = M) Th (o R)I0E)

\Q|/ [(b2(2) = A2) Ty, (f1,f2)(z)|5dz)g+

=

(g [ 170 =201, (2 = M) ) eldz)
=I1+1I+1I1+4+1V.
To deal with I. Set \; = (bj)g+, Q" = 8Q, there exist s1,52,53 > 1, ds3 < ¢ < & and

1

1 1 - o . . . L .
ot t 5 =1 Using Holder’s inequality and Jensen’s inequality, we have

L s10 515 1 558 sié
< _ S1 _ S2
I_C(|Q|/ 1b1(2) — M| dz Q|/Qb2(z) Ao dz) X

(g [t e Jodz)
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<C|lb1llBmo b2 llBMo M (T'(f1, f2)) ().
Since I1 is similarly as I71. We only consider /1. For 1 < t;,ty < 00,t2 < £/d < 5% satisfying
E + g =1, we get

1

v |Q|/| ba—A (f1, f2)(= )|t25d2>75
<C|b1llBmo M (T3, _5(f1, f2))(x) = C|IbillBro M (T3, (f1, f2)) ().

Similarly, we have

1 t16
11 <C(@|/Q|b1(z)—)\1| dz

ITT < C|lb | Bro Me(Ty, (f1, f2)) ().

Next we consider IV, decompose f; = fixq- + fix(q+)e» ¢ = E?Zl ¢;, where
= T(fixq~ (b2 — A2) fax (@) ) (@),
= T(fix(@+)e» (b2 = A2) faxo+) (@),

cs = T(fix(@=)e, (b2 — X2) fax(g#)e) ().

Thus

a-.\»—A

v §<|Q|/ IT((b1 — A1) fixq, (b2 — A2) faxq-)(2)] dz)

(|Q|/ IT((b1 — A1) fixgs, (b2 — A2) fax(@+)<)(2) — cil dZ)g

(|Q| / I T((b1 — A1) fix(@e)e, (b2 — A2) faxq+) (2 )—02|5d2> i

1
|Q| / IT((b1 — A1) fix(@=)e, (b2 — A2) fax (=)< ) (2 )—03\%1»’3)(s
IV} + IVy + IV + IV,

There exists 1 < s < 36, such that s§ < % < B, and there exists o > po, we get

1

v <(ig /Q (T((by — M) fixge (b — Ao) foxgr) ()] dz) ™

<C|T((br — A1) fixg+, (b2 — X2) faxo-)

po .
L2 2(Q,187)

_C(@ﬂ o |(b1(2) — )\1>fl(z)‘p°dz)%x
(ﬁ o |(b2(2) — )\2)f2<z)|p0dz)%

<C|by [|Bno b2l Byo My, ()(z).
The proofs of I'V,, IV, are similarly as IV3, we only consider IV5,
[T((b1 — A1) fixq, (b2 — A2) fax(q+)e)(2) — T(fixq-, (b2 — A2) fax(q#)<) ()]

< / [(b1(y1) — A1) fi(yr) \/ |K (2, y1,92) — K(z,y1,92)||(b2(y2) — A2) f2(y2)|dy2dys
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<o [ 1ot = A stman)

1

Z (/ / |K (2,91,2) — K(a?,y1,y2)|p6dy2dyl) 70 x
* S]'1(Q*)

Jji=1

(/S @) |(b2(y2) — )\2)f2(y2)|p0dy2> %0

<o [ 10um) - 2ontmran) ™

L

oo 2(6—2)

r—z PO’ 55 -
S T ([ () - ) e
ji=1 |Q ‘ " S5, (Q*)

LS . . 1 N
< 2]1(—5‘*%) _ Po i)
st (BRG] Jyg 10100) = A0 )™

1 E
AT Al — Po Po
(|2j1Q*\ 2 [(b2(y2) — A2) f2(y2)] dz)
< C”bl||BMO||b2HBMoMqO(f)(x).
Thus

—

IVy < Cllbr|lBmo ||ba||BMo My, (f) (2),

=

IV3 < C|lbr||Bmol[b2[lByo My, (f) (),

=

IVy < C|lbrllBmol[b2[lByo Mg, (f) ().

Thus we complete the proof of Lemma 3.1. O
When Theorem 1.2 is proved, Theorem 1.1 is obviously true. We only prove Theorem 1.2.

Proof of Theorem 1.2 For 0 < § < 1/3 < e < 1/2, and by Lemma 3.1, we have

I Taab (f1, F2)ll Lo on) < I1Ms(Trw (f1, £2) ooy < CUME T (fro f2))ll L (o)
< Clb1[leymo | Me (T3, (f1, fo))ll Lo (wg) + Cllb2llBrno |Me(Ty, (fis f2))ll o (o) +

—

Clb1|[Bmolb2|[BMO [[M (T (f1, f2))llLr (vg) + Cllb1lIBMol|b2llBMol| My ()l Lo (0)-

When ¢ < % Since W € Aﬁ/po’ there exists r > 1 such that o € A};/Tpo. Take gg = rpg, by

Lemma 2.2
ME(ng(flva))(x) < CllbjllBmo Mg, (f1, f2)(2).
Thus
I Ti6 (f1, fo)ll e (vg) < CllbillBMollb2llBMOl| My, (f1, f2) + M (T (f1, f2))ll 2 (vg) -

Since w € Aﬁ/po’ w € Aﬁ/qo’ by Lemma 2.3, we have

Mgy (f1, F2) | ooy < C T Il 295 ()

j=1
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Since vg € Agp/p,, by Lemma 2.4, we get

| Mc(T(f1, f2))ll Lrwg) < CINT(f1, fo)llrws) < CH £l 23 ()

Jj=1

Thus we complete the proof of Theorem 1.2. [J
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