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Abstract Let (Mn, g) (n ≥ 3) be an n-dimensional complete Riemannian manifold with

harmonic curvature and positive Yamabe constant. Denote by R and R̊m the scalar curvature

and the trace-free Riemannian curvature tensor of M , respectively. The main result of this

paper states that R̊m goes to zero uniformly at infinity if for p ≥ n, the Lp-norm of R̊m is

finite.

As applications, we prove that (Mn, g) is compact if the Lp-norm of R̊m is finite and

R is positive, and (Mn, g) is scalar flat if (Mn, g) is a complete noncompact manifold with

nonnegative scalar curvature and finite Lp-norm of R̊m. We prove that (Mn, g) is isometric to

a spherical space form if for p ≥ n
2
, the Lp-norm of R̊m is sufficiently small and R is positive.

In particular, we prove that (Mn, g) is isometric to a spherical space form if for p ≥ n, R is

positive and the Lp-norm of R̊m is pinched in [0, C), where C is an explicit positive constant

depending only on n, p, R and the Yamabe constant.

Keywords Harmonic curvature; trace-free curvature tensor; constant curvature space
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1. Introduction and main results

Recall that an n-dimensional Riemannian manifold (Mn, g) is said to be a manifold with har-

monic curvature if the divergence of its Riemannian curvature tensor Rm vanishes, i.e., δRm = 0.

In view of the second Bianchi identity, we know that M has harmonic curvature if and only if the

Ricci tensor of M is a Codazzi tensor. When n ≥ 3, by the Bianchi identity, the scalar curvature

is constant. Thus, every Riemannian manifold with parallel Ricci tensor has harmonic curva-

ture. Moreover, the constant curvature spaces, Einstein manifolds and the locally conformally

flat manifolds with constant scalar curvature are also important examples of manifolds with har-

monic curvature, however, the converse does not hold [1]. According to the decomposition of

the Riemannian curvature tensor, the metric with harmonic curvature is a natural candidate for

this study since one of the important problems in Riemannian geometry is to understand classes

of metrics that are, in some sense, close to being Einstein or having constant curvature. The
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another reason for this study on the metric with harmonic curvature is the fact that a Rieman-

nian manifold has harmonic curvature if and only if the Riemannian connection is a solution

of the Yang-Mills equations on the tangent bundle [2]. In recent years, the complete manifolds

with harmonic curvature have been studied in literature [3–11]. Recently, Tian and Viaclovsky

[11], Chen and Weber [12] have obtained ϵ-rigidity results for critical metric which relies on a

Sobolev inequality and integral bounds on the curvature in dimension 4 and in higher dimension,

respectively. The curvature pinching phenomenon plays an important role in global differential

geometry. We are interested in Lp pinching problems for complete Riemannian manifold with

harmonic curvature.

Throughout this paper, we always assume that M is an n-dimensional complete Riemannian

manifold with n ≥ 3. We now introduce the definition of the Yamabe constant. Given a complete

Riemannian n-manifold M , the Yamabe constant Q(M) is defined by

Q(M) = inf
0̸=u∈C∞

0 (M)

∫
M

(
|∇u|2 + (n−2)

4(n−1)Ru2
)

( ∫
M

|u|
2n

n−2
)n−2

n

,

where R is the scalar curvature of M . The important works of Schoen, Trudinger and Yamabe

showed that the infimum in the above is always achieved [13,14]. There are complete noncompact

Riemannian manifolds of negative scalar curvature with positive Yamabe constant. For example,

any simply connected complete locally conformally flat manifold has positive Yamabe constant

[15], and Q(M) is always positive if R vanishes [16]. In contrast with the noncompact case, the

Yamabe constant of a given compact manifold is determined by the sign of scalar curvature [13].

In this note, we extend in some sense some results due to [4,6,7,9,10] to obtain the following

rigidity theorems.

Theorem 1.1 Let M be a complete Riemannian n-manifold with harmonic curvature. Assume

that M has the positive Yamabe constant or satisfies the Sobolev inequality(∫
M

|f |
2n

n−2

)n−2
n ≤ CS

∫
M

|∇f |2, ∀f ∈ C∞
0 (M).

For p ≥ n, if
∫
M

|R̊m|p < +∞, then, given any ϵ > 0 and any x0 ∈ M there exists a geodesic

ball Br(x0) with center x0 and radius r such that |R̊m|(x) < ϵ for all x ∈ M \Br(x0).

Theorem 1.2 Let M be a complete Riemannian n-manifold with harmonic curvature and

positive scalar curvature. Assume that M has the positive Yamabe constant. For p ≥ n, if∫
M

|R̊m|p < +∞, then M must be compact.

Corollary 1.3 Let M be a complete noncompact Riemannian n-manifold with harmonic curva-

ture and nonnegative scalar curvature. Assume that M has the positive Yamabe constant. For

p ≥ n, if
∫
M

|R̊m|p < +∞, then M must be scalar flat.

Theorem 1.4 Let M be a complete Riemannian n-manifold with harmonic curvature and
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positive scalar curvature. Assume that M has the positive Yamabe constant. For p ≥ n, if(∫
Mn

|R̊m|p
) 1

p

< C,

where

C =


3pR

4(2p− n)c(n)
[
8(2p− n)Q(M)

3nR
]

n
2p , n = 3 and 3 ≤ p < 6

R

(n− 1)c(n)
[
4(n− 1)Q(M)

(n− 2)R
]

n
2p , n = 3 and p ≥ 6, and n ≥ 4,

then M is isometric to a spherical space form.

Theorem 1.5 Let M be a complete Riemannian n-manifold with harmonic curvature, positive

scalar curvature and positive Yamabe constant. Then there exists a small number C such that

if (∫
Mn

|R̊m|p
) 1

p

< C, p ≥ n

2
,

then M is isometric to a spherical space form. In particular, when p = n
2 , there exists an explicit

positive constant C = 4Q(M)
(n−2)c(n) .

Remark 1.6 When R ≥ 0, some L
n
2 trace-free Riemannian curvature pinching theorems have

been shown by Kim [7] and Chu [3], in which the constant C is not explicit.

Theorem 1.7 Let Mn (n ≥ 10) be a complete Riemannian n-manifold with harmonic cur-

vature and negative scalar curvature. Assume that M has positive Sobolev constant. For

γ ∈ (1,
n(n−2)+

√
n(n−2)(n2−10n+8)

4(n−1) ), if
∫
M

|R̊m|γ < ∞, then there exists a small number C such

that if ∫
M

|R̊m|p < C, p ≥ n

2
,

then M is a hyperbolic space form.

Remark 1.8 Theorem 1.7 can be considered as generalization of some result in [12]. When

p ≥ n in Theorem 1.7, γ ∈ (0,
n(n−2)+

√
n(n−2)(n2−10n+8)

4(n−1) ). In the case of γ ∈ (0, 1]. Since∫
M

|R̊m|p < C, by Theorem 1.1, |R̊m| is bounded. Hence
∫
M

|R̊m|γ+1 < ∞ for
∫
M

|R̊m|γ < ∞.

For γ + 1 ∈ (1,
n(n−2)+

√
n(n−2)(n2−10n+8)

4(n−1) ), we apply Theorem 1.7 to prove the above result.

Remark 1.9 Let M be a complete, simply connected, locally conformally flat Riemannian

n-manifold. Using the same argument as in this note, Peng and the first author obtain some

analog of Theorems in this note and generalize the result due to [10] (see [17]).

2. Proof of Lemma

In what follows, we adopt, without further comment, the moving frame notation with respect

to a chosen local orthonormal frame.

Let M be a Riemannian manifold with harmonic curvature. The decomposition of the
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Riemannian curvature tensor into irreducible components yields

Rijkl =Wijkl +
1

n− 2
(Rikδjl −Rilδjk +Rjlδik −Rjkδil)−

R

(n− 1)(n− 2)
(δikδjl − δilδjk)

=Wijkl +
1

n− 2
(R̊ikδjl − R̊ilδjk + R̊jlδik − R̊jkδil)+

R

n(n− 1)
(δikδjl − δilδjk),

where Rijkl, Wijkl, Rij and R̊ij denote the components of Rm, the Weyl curvature tensor W ,

the Ricci tensor Ric and the trace-free Ricci tensor R̊ic = Ric − R
n g, respectively, and R is the

scalar curvature.

The trace-free Riemannian curvature tensor R̊m is

R̊ijkl = Rijkl −
R

n(n− 1)
(δikδjl − δilδjk). (1)

Then the following equalities are easily obtained from the properties of curvature tensor:

gikR̊ijkl = R̊jl, (2)

R̊ijkl + R̊iljk + R̊iklj = 0, (3)

R̊ijkl = R̊klij = −R̊jikl = −R̊ijlk, (4)

|R̊m|2 = |W |2 + 4

n− 2
|R̊ic|2. (5)

Moreover, by the assumption of harmonic curvature, we compute

R̊ijkl,m + R̊ijmk,l + R̊ijlm,k = 0, (6)

and

R̊ijkl,l = 0. (7)

Now, we compute the Laplacian of |R̊m|2.

Lemma 2.1 Let M be a complete Riemannian n-manifold with harmonic curvature. Then

△|R̊m|2 ≥ 2|∇R̊m|2 − 2c(n)|R̊m|3 − 8R

n(n− 1)
|R̊ic|2 + 4R

n
|R̊m|2, (8)

where c(n) = 5 +
√

(n−1)(n−2)
n .

Remark 2.2 Lemma 2.1 has been proved in [4], in which the constant c(n) is not explicit. For

completeness, we also write it out.

Proof By the Ricci identities, we obtain from (1)–(7)

△|R̊m|2 =2|∇R̊m|2 + 2⟨R̊m,△R̊m⟩ = 2|∇R̊m|2 + 2R̊ijklR̊ijkl,mm

=2|∇R̊m|2 + 2R̊ijkl(R̊ijkm,lm + R̊ijml,km)

=2|∇R̊m|2 + 4R̊ijklR̊ijkm,lm
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=2|∇R̊m|2 + 4R̊ijkl(R̊ijkm,ml + R̊hjkmRhilm+

R̊ihkmRhjlm + R̊ijhmRhklm + R̊ijkhRhmlm)

=2|∇R̊m|2 + 4R̊ijkl(R̊hjkmRhilm + R̊ihkmRhjlm+

R̊ijhmRhklm + R̊ijkhRhmlm)

=2|∇R̊m|2 + 4R̊ijkl(R̊hjkmR̊hilm + R̊ihkmR̊hjlm + R̊ijhmR̊hklm+

R̊ijkhR̊hmlm) +
4R

n(n− 1)
R̊ijkl(R̊ljki + R̊ilkj + R̊ijlk+

R̊jkδil − R̊ikδjl) +
4R

n
|R̊m|2

=2|∇R̊m|2 − 4R̊ijkl(2R̊ihkmR̊hjml +
1

2
R̊hmijR̊klhm + R̊ijkhR̊hl)−

8R

n(n− 1)
|R̊ic|2 + 4R

n
|R̊m|2

≥2|∇R̊m|2 − 2c(n)|R̊m|3 − 8R

n(n− 1)
|R̊ic|2 + 4R

n
|R̊m|2,

where the algebraic inequality |λi| ≤
√

n−1
n |T | for the eigenvalues λi of trace-free symmetric

n-matrices T is used in the above. This completes the proof of this Lemma. �
From (5), we have |R̊ic|2 ≤ n−2

4 |R̊m|2. Combining the above with (8), we obtain

△|R̊m|2 ≥ 2|∇R̊m|2 − 2c(n)|R̊m|3 + 2AR|R̊m|2, (9)

where

A =


1

n− 1
, R ≥ 0

2

n
, R < 0.

3. Proof of Theorems

Now we can prove Theorem 1.1 based on (9).

Proof of Theorem 1.1 From (9), by the Kato inequality |∇R̊m|2 ≥ |∇|R̊m||2, we obtain

|R̊m|△|R̊m| = 1

2
△|R̊m|2 − |∇|R̊m||2 ≥ −c(n)|R̊m|3 +AR|R̊m|2. (10)

Let u = |R̊m|. By (10), we compute

uα△uα =uα
(
α(α− 1)uα−2|∇u|2 + αuα−1△u

)
=
α− 1

α
|∇uα|2 + αu2α−2u△u

≥α− 1

α
|∇uα|2 − c(n)αu2α+1 + αARu2α, (11)

where α is a positive constant. When α ≥ 1, using the Young’s inequality, from (11) we obtain

uα△uα ≥ −au4α − bu2α, (12)
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where a and b are positive constants depending only on n, α and R. Setting w = uα, we can

rewrite (12) as

−△w ≤ aw3 + bw. (13)

Since M has the positive Yamabe constant or satisfies the Sobolev inequality, combining with

(13), we can carry out the proof of this Theorem by using the same argument as in the proof of

[18, Theorem 1.1]. �

Proof of Theorem 1.2 By (1), we have

Rijij = R̊ijij +
R

n(n− 1)
. (14)

Note that R is positive. From (14), we see from Theorem 1.1 that there is a positive constant δ

such that Rijij > δ in M \ Ω for some compact set Ω. This implies that the Ricci curvature is

bounded from below by a positive constant outside some geodesic sphere, hence the manifold is

compact (for detail, see [10, Lemma 3.5]). �

Proof of Theorem 1.4 When R > 0, we see from Theorem 1.2 that M is compact. Taking

α = p
n . By (11), using the Young’s inequality, we have

uα△uα ≥ α− 1

α
|∇uα|2 − c(n)

2
ϵ1−2αu4α − [

c(n)

2
(2α− 1)ϵ−ARα]u2α. (15)

Setting w = uα, we can rewrite (15) as

w△w ≥ α− 1

α
|∇w|2 − c(n)

2
ϵ1−2αw4 − [

c(n)

2
(2α− 1)ϵ−ARα]w2. (16)

From (16), we obtain

wβ△wβ ≥ (1− 1

αβ
)|∇wβ |2 − c(n)

2
βϵ1−2αw2(β+1) − β[

c(n)

2
(2α− 1)ϵ−ARα]w2β , (17)

where β is a positive constant. From (17), integrating by parts, we get

(2− 1

αβ
)

∫
M

|∇wβ |2 − c(n)

2
βϵ1−2α

∫
M

w2(β+1) − β[
c(n)

2
(2α− 1)ϵ− Rα

n− 1
]

∫
M

w2β ≤ 0. (18)

By the Hölder inequality and (18), we have

(2− 1

αβ
)

∫
M

|∇wβ |2−c(n)

2
βϵ1−2α(

∫
M

w
2nβ
n−2 )

n−2
n (

∫
M

wn)
2
n−

β[
c(n)

2
(2α− 1)ϵ− Rα

n− 1
]

∫
M

w2β ≤ 0. (19)

Case 1 When n = 3 and 1 ≤ α < 2, set ϵ = 3αR
4(2α−1)c(n) and β = 1

α . By the definition of Yamabe

constant Q(M), from (19) we get[
Q(M)− c(n)ϵ1−2α

2α

(∫
M

|R̊m|p
) 2

n
]( ∫

M

w
2nβ
n−2

)n−2
n ≤ 0. (20)

We choose (
∫
M

|R̊m|p)
1
p < 3pR

4(2p−n)c(n) [
8(2p−n)Q(M)

3nR ]
n
2p such that (20) implies (

∫
M

w
2nβ
n−2 )

n−2
n = 0,

that is, |R̊m| = 0, i.e., M is Einstein manifold and locally conformally flat manifold. Hence M

is isometric to a spherical space form.
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Case 2 When n = 3 and α ≥ 2, and n ≥ 4, set ϵ = R
(n−1)c(n) and 1

αβ = 1 +
√
1− 2

(n−2)α . We

also get [
(2− 1

αβ
)Q(M)− c(n)

2
βϵ1−2α

(∫
M

|R̊m|p
) 2

n
]( ∫

M

w
2nβ
n−2

)n−2
n ≤ 0. (21)

We choose (
∫
M

|R̊m|p)
1
p < R

(n−1)c(n) [
4(n−1)Q(M)

(n−2)R ]
n
2p such that (21) implies (

∫
M

w
2nβ
n−2 )

n−2
n = 0,

that is, |R̊m| = 0, i.e., M is Einstein manifold and locally conformally flat manifold. Hence M

is isometric to a spherical space form. �

Proof of Theorem 1.5 Let ϕ be a smooth compactly supported function on M . Taking

α = p
n ≥ 1

2 . First choosing β = n
2 in (17), multiplying (17) by ϕ2 and integrating over M , we

obtain

(1− 2

nα
)

∫
M

|∇w
n
2 |2ϕ2 ≤nc(n)ϵ1−2α

4

∫
M

wn+2ϕ2 +

∫
M

w
n
2 ϕ2△w

n
2 +

n

4
[c(n)(2α− 1)ϵ− 2Rα

n− 1
]

∫
M

wnϕ2

=
nc(n)ϵ1−2α

4

∫
M

wn+2ϕ2 − 2

∫
M

w
n
2 ϕ⟨∇ϕ,∇w

n
2 ⟩−∫

M

|∇w
n
2 |2ϕ2 +

n

4
[c(n)(2α− 1)ϵ− 2Rα

n− 1
]

∫
M

wnϕ2,

which gives

(2− 2

nα
)

∫
M

|∇w
n
2 |2ϕ2 ≤nc(n)ϵ1−2α

4

∫
M

wn+2ϕ2 − 2

∫
M

w
n
2 ϕ⟨∇ϕ,∇w

n
2 ⟩+

n

4
[c(n)(2α− 1)ϵ− 2Rα

n− 1
]

∫
M

wnϕ2. (22)

Using the Cauchy-Schwarz inequality, we can rewrite (22) as

(2− 2

nα
− ε)

∫
M

|∇w
n
2 |2ϕ2 ≤nc(n)ϵ1−2α

4

∫
M

wn+2ϕ2 +
1

ε

∫
M

wn|∇ϕ|2+

n

4
[c(n)(2α− 1)ϵ− 2Rα

n− 1
]

∫
M

wnϕ2, (23)

for the positive constant ε. By the definition of Yamabe constant Q(M) and (23), we have

Q(M)
(∫

M

(ϕwn)
n

n−2

)n−2
n ≤

∫
M

(
|∇(ϕw

n
2 )|2 + (n− 2)Rwnϕ2

4(n− 1)

)
=

∫
M

(wn|∇ϕ|2 + ϕ2|∇w
n
2 |2 + 2ϕw

n
2 ⟨∇ϕ,∇w

n
2 ⟩+ (n− 2)Rwnϕ2

4(n− 1)
)

≤ (1 +
1

η
)

∫
M

wn|∇ϕ|2 + (1 + η)

∫
M

ϕ2|∇w
n
2 |2 +

∫
M

(n− 2)Rwnϕ2

4(n− 1)

≤ B

∫
M

wn|∇ϕ|2 + E

∫
M

wn+2ϕ2 +D

∫
M

wnϕ2, (24)

where

B = 1 +
1

η
+

1 + η

ε(2− 2
nα − ε)

, E =
(1 + η)nc(n)ϵ1−2α

4(2− 2
nα − ε)

,
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D =
(n− 2)R

4(n− 1)
− (1 + η)nαR

2(n− 1)(2− 2
nα − ε)

+
(1 + η)nc(n)(2α− 1)ϵ

4(2− 2
nα − ε)

.

Noting that ϵ and ε are sufficiently small, we choose η > max{0, (n−2)(nα−1)
n2α2 − 1} such that

D ≤ 0. Thus from (24) we have

Q(M)
(∫

M

(ϕwn)
n

n−2

)n−2
n ≤ B

∫
M

wn|∇ϕ|2 + E

∫
M

wn+2ϕ2

≤ B

∫
M

wn|∇ϕ|2 + E
(∫

M

(ϕwn)
n

n−2

)n−2
n

(∫
M

wn
) 2

n

.

Since
∫
M

unα is sufficiently small, the second term on the right-hand side of the above can be

absorbed in the left-hand side. Therefore, there exists a constant F > 0, such that

F
(∫

M

(ϕunα)
n

n−2

)n−2
n ≤ B

∫
M

unα|∇ϕ|2. (25)

Let us choose a cutoff function ϕ satisfying the properties that

ϕ(x) =

{
1 on B(r)

0 on M \B(2r),

and |∇ϕ| ≤ 2
r . In particular, if M is compact, and if r > d, where d is the diameter of M , then

ϕ = 1 on M . From (25), we get

F
(∫

Br

u
n2

n−2α
)n−2

n ≤ 4

r2
B

∫
M

unα. (26)

Let r → +∞. By assumption that
∫
M

unα < ∞, from (26), we have u = 0, i.e., M is Einstein

manifold and locally conformally flat manifold. Hence M is isometric to a spherical space form.

When p = n
2 , we choose η such that D = 0, i.e., (2− 2

nα − ε) = (1+η)n
(n−2) . Thus we have

Q(M)

E
=

4Q(M)Λ0(2− 2
nα − ϵ)

nc(n)(1 + η)
=

4Q(M)

(n− 2)C(n)
.

So we choose (
∫
M

|R̊m|n2 ) 2
n < 4Q(M)

(n−2)C(n) such that Q(M) − E(
∫
M

u
n
2 )

2
n > 0. The rest of the

proof runs as before. �

Remark 3.1 Taking α = 1
2 in the proof of Theorem 1.5, we obtain some trace-free Riemannian

curvature pinching theorems for complete Riemannian manifolds with harmonic curvature, zero

scalar curvature and positive Yamabe constant, which were proved in [4,7].

Proof of Theorem 1.7 Multiplying (17) by ϕ2 and integrating over M , we obtain

(1− 1

αβ
)

∫
M

|∇wβ |2ϕ2 ≤c(n)

2
βϵ1−2α

∫
M

w2(β+1)ϕ2 +

∫
M

wβϕ2△wβ+

β[
c(n)

2
(2α− 1)ϵ− 2Rα

n
]

∫
M

w2βϕ2

=
c(n)

2
βϵ1−2α

∫
M

w2(β+1)ϕ2 − 2

∫
M

wβϕ⟨∇ϕ,∇wβ⟩−∫
M

|∇wβ |2ϕ2 + β[
c(n)

2
(2α− 1)ϵ− 2Rα

n
]

∫
M

w2βϕ2,
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which gives

(2− 1

αβ
)

∫
M

|∇wβ |2ϕ2 ≤c(n)

2
βϵ1−2α

∫
M

w2(β+1)ϕ2 − 2

∫
M

wβϕ⟨∇ϕ,∇wβ⟩+

β[
c(n)

2
(2α− 1)ϵ− 2Rα

n
]

∫
M

w2βϕ2. (27)

Using the Cauchy-Schwarz inequality, we can rewrite (27) as

(2− 1

αβ
− ε)

∫
M

|∇wβ |2ϕ2 ≤c(n)

2
βϵ1−2α

∫
M

w2(β+1)ϕ2 +
1

ε

∫
M

w2β |∇ϕ|2+

β[
c(n)

2
(2α− 1)ϵ− 2Rα

n
]

∫
M

w2βϕ2, (28)

for the positive constant ε. By the definition of Yamabe constant Q(M) and (28), we have

Q(M)
(∫

M

(ϕwβ)
2n

n−2

)n−2
n ≤

∫
M

(
|∇(ϕwβ)|2 + (n− 2)Rw2βϕ2

4(n− 1)

)
=

∫
M

(w2β |∇ϕ|2 + ϕ2|∇wβ |2 + 2ϕwβ⟨∇ϕ,∇wβ⟩+ (n− 2)Rw2βϕ2

4(n− 1)
)

≤ (1 +
1

η
)

∫
M

w2β |∇ϕ|2 + (1 + η)

∫
M

ϕ2|∇wβ |2 +
∫
M

(n− 2)Rw2βϕ2

4(n− 1)

≤ G

∫
M

w2β |∇ϕ|2 +H

∫
M

w2(β+1)ϕ2 + I

∫
M

w2βϕ2, (29)

where

G = 1 +
1

η
+

1 + η

ε(2− 1
αβ − ε)

, H =
(1 + η)c(n)βϵ1−α

2(2− 1
αβ − ε)

,

I =
(n− 2)R

4(n− 1)
− 2(1 + η)αβR

n(2− 1
αβ − ε)

+
(1 + η)c(n)(2α− 1)βϵ

2(2− 1
αβ − ε)

.

We first consider the case of γ ∈ (1,
n(n−2)+

√
n(n−2)(n2−10n+8)

4(n−1) ). When n ≥ 10, noting that

ϵ, ε and η are sufficiently small, we choose 1
2 < αβ <

n(n−2)+
√

n(n−2)(n2−10n+8)

8(n−1) such that I ≤ 0.

Thus from (29) we have

Λ0

(∫
M

(ϕwβ)
2n

n−2

)n−2
n ≤G

∫
M

w2β |∇ϕ|2 +H

∫
M

w2(β+1)ϕ2

≤G

∫
M

w2β |∇ϕ|2 +H
(∫

M

(ϕwβ)
2n

n−2

)n−2
n

(∫
M

wn
) 2

n

.

Since
∫
M

wn =
∫
M

unα is sufficiently small, the second term on the right-hand side of the above

can be absorbed in the left-hand side. Therefore, there exists a constant J > 0, such that

J
(∫

M

(ϕuαβ)
2n

n−2

)n−2
n ≤ G

∫
M

u2αβ |∇ϕ|2. (30)

Let us choose a cutoff function ϕ satisfying the properties that

ϕ(x) =

{
1 on B(r)

0 on M \B(2r),

and |∇ϕ| ≤ 2
r . In particular, if M is compact, and if r > d, where d is the diameter of M , then
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ϕ = 1 on M . From (30), we get

J
(∫

Br

u
2n

n−2αβ
)n−2

n ≤ 4

r2
B

∫
M

u2αβ . (31)

Let r → +∞. By assumption that
∫
M

u2αβ < ∞, from (31), we have u = 0, i.e., M is Einstein

manifold and locally conformally flat manifold. Hence M is isometric to a hyperbolic space form.

�
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[18] P. BÉRARD, M. DO CARMO, W. SANTOS, Complete hypersurfaces with constant mean curvature and

finite total curvature. Ann. Global Anal. Geom., 1998, 16(3): 273–290.


