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Gradient Based Iterative Solutions for Sylvester-Conjugate
Matrix Equations
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Abstract This paper presents a gradient based iterative algorithm for Sylvester-conjugate
matrix equations with a unique solution. By introducing a relaxation parameter and applying
the hierarchical identification principle, an iterative algorithm is constructed to solve Sylvester
matrix equations. By applying a real representation of a complex matrix as a tool and using
some properties of the real representation, convergence analysis indicates that the iterative
solutions converge to the exact solutions for any initial values under certain assumptions.
Numerical examples are given to illustrate the efficiency of the proposed approach.
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1. Introduction

In the matrix algebra fields, iterative approaches for solving matrix equations and recursive
identifications have attracted a lot of attention from many researchers since Huang proposed an
iterative method for solving the linear matrix equation over skew-symmetric matrix. Ding derived
iterative solutions of various Sylvester matrix equations by extending the well-known Jacobi and
Gauss Seidel iterations for in [1-4]. In [5], Niu proposed a relaxed gradient based on algorithm for
solving Sylvester equations by introducing a relaxation parameter. In [6,7] and [8-11], Song and
Wu respectively gave iterative algorithms to solve Sylvester-conjugate and Sylvester-transpose
equations. In [12,13], Xie gave different algorithms for Sylvester matrix equations. In [14], Wang
constructed an iterative algorithm of generalized Sylvester matrix equation. Efficiently numerical
algorithms were presented based on the hierarchical identification principle which regards the
unknown matrix as the system parameter matrix to be identified.

In this paper, we firstly discuss the Sylvester matrix equation AXB + CXD = F with
the unknown matrix X. Obviously, the matrix equations AX — XB = C and X — AXB = F
are included as special cases. Due to these facts, AXB + CXD = F can be regarded as a
general form of Sylvester matrix equation. By introducing a relaxation parameter and applying

the hierarchical identification principle, we propose a gradient based algorithm with a relaxation
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parameter for finding the iterative solution to the Sylvester-conjugate matrix equation and give
the convergence properties of the algorithm. By applying a real representation of a complex
matrix as a tool and using some properties of the real representation, the range of the convergence
factor is provided to guarantee that the iterative solution converges to the exact solution. No
matter what value of parameter is determined in its range, it is different from the algorithm
given by Wu in [10]. In addition, a more general case is also considered. Convergence analysis
and numerical examples are given to illustrate the effectiveness of the algorithm.

Through out this paper, I[i,j] denotes the set [i,i 4+ 1,..., ] for two integers ¢ < j. The
symbols A, AT, A" +tr(A), ||All, ||Al|2 denote the transpose, the trace, the Frobenius norm. For
a matrix X = [z12g -+ x,] € R™*™, vec(X) is the column stretching operation of X,

vee(X) = [xTad - 2117,

n

For two matrices M and N, M € R™™ M € R"** M XN is their Kronecker product. For

matrices M, N, X with appropriate dimension,
vec(MXN) = (NT @ M)vec(X)

and ||A]| = ||vec(A)|| for an arbitrary matrix A.

2. Preliminaries

In this section, some important conclusions which play important roles in the following

section are provided.

Lemma 2.1 ([1]) Consider the equation
AXB=F (1)

where A € CP*™ B € C"*1 F € CP*4 are the given known matrices and X € C™*" is unknown
to be determined.

The iterative algorithm of the equation is written as

X(k+1)=X(k) + pA"(F — AX(k)B)B? with 0<pu< _z
IA[311B113
If (1) has the unique solution X, then iterative solution X (k) converges to the unique solution,
that is limg o, X (k) = X,.

Now, we introduce a real representation of a complex matrix. The concept was firstly used
in [14]. Let A € C™*™. Then A can be uniquely written as A = Ay + Agi with Ay, Ay € R™*™,
i = v/—1. Define real representation as
Ay A
Ay —Ay

A, is called the real representation of the matrix A. For an n X n complex matrix A, define

A% = (A,)', and
[ o0 (o g
Pj_[o Ij]’ QJ_[_Ij 0}’

AO‘ _ |: :| c R2m><2n
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where I; is the j x j identity matrix. The real representation possesses the following properties.

Lemma 2.2 ([14]) The properties of the real representation
(i) If A,B € C™*" q € R, then

(A+ B)y = Ay + Bo,
(al), = aA,,
PL,A,P,=A,.

(i) If A€ C™*" B € C"™ ", C' € C™*P, then

(AB), = A,P,B, = A, B, P,,
(ABC), = A, B,C.,.

(iii) If A € C™*" then ApnAs A, = A,.
(iv) If A € C™*", then ((AT)U)T.

Lemma 2.3 ([10]) Given a complex, we have
(i) [14:1* = 2/l A]1%,
(i) [|Acll2 = [ All2-

Lemma 2.4 ([10]) For two square matrices A € C™*™ B € C"*", iftr(A) + tr(B) is real, then

tr(A) + tr(B) = tr(A) + tr(B) = tr(A) + tr(B).

3. The matrix equation
In this section, we consider the following equation,
AXB+CXD =F, (2)

where A,C € C™*", B,D € C**" and F € C™*" are the given constant matrices, and X €
C"*# is the matrix to be solved. Define the matrices by applying the hierarchical identification

principle. Let

F,=F—CXD, (3)
and
F,=F — AXB. (4)
So
F,=CXD.

By introducing a relaxation parameter, we can define the following respective relaxed recursive
forms,
X, (k) = Xy (k — 1) + wpA?(F, — AX,(k—1)B)BY, (5)

Xo(k) = Xa(k — 1)+ (1 — w)puC" (Fy — CXo(k —1)D)D", (6)



354 Hailong SHEN, Cheng PENG, Xinhui SHAO and et al.

where w is a relaxation parameter satisfying 0 < w < 1, it controls the relative importance of

the two residual matrices. Substituting (3) and (4) into (5) and (6), respectively, we have
Xi1(k) = X1(k — 1) + wpA™ (F — CXD — AX:(k — 1)B)B", (7)

Xy(k) = Xo(k — 1) + (1 — w)uC" (F — AXB - CXy(k —1)D)D" . (8)

The exact solution on the right-hand sides is unknown. So the variable X is replaced with its
estimate X (k — 1) in (7) and (8), we can follow that

Xi(k) = X1(k — 1) + wpA" (F — CX(k — 1)D — AX,(k — 1)B)B", (9)

H

Xo(k) = Xo(k — 1) + (1 — w)uC" (F — AX,(k — 1)B — CXa(k — 1)D)D" . (10)

As the approximate solution X (k) is wanted rather than X; (k) and X5 (k), so we propose the

following balanced strategy to form the k-th approximate solution.

Xi1(k) = X(k—1) + wpA™(F - CX(k—1)D — AX (k — 1)B) B, (11)
Xy(k) = X(k—1)+ (1 —w)uC" (F— AX(k—1)B— CX(k—1)D)D", (12)
X (k) = (1 — w) X1 (k) + wXa(k). (13)

The iterative algorithm can be written as

X(k) =X(k —1) + (1 — w)wuC" (F -~ AX(k—1)B — CX(k— 1)D)D" +

(1 — w)wpAH(F — CX(k —1)D — AX(k — 1)B)B". (14)
Theorem 3.1 If the equation in (2) has a unique solution X, then for any initial value X (0),
the iterative solution X (k) given in (14) converges to X, i.e., limy_,oc X (k) = X, if
2

J— 2 M

(1~ )| (Bl ® (AH), + (D Pr) @ (CT)y P

Proof Define error matrices

O<pu<

X (k) = X (k) — X, (15)
X, (k) = Xi(k) — X,. (16)

Let
Z(k—1)=AX(k—1)B+CX(k—1)D. (17)

Using (11), (12), (15), (16), we have
X(k) =X(k—1)+ (1 - wwuC" (AX(k—1)B+CX(k—1)D)D" -
(1 - w)wpA" (AX (k—1)B — CX(k — 1)D)B". (18)
Using (17), (18), it is easy to get
X(k)=X(k—1)— (1 —wwpC ZxE—1D" — (1 - w)wpA? Z(k — 1)BH .
Considering the fact
IX[? = tr(X7X), tr(AB) = tr(BA),
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we have
X ()2 = e [X (R) X (B)],
IX(R)IP =11 X (k= DII* + (1 - qu(C Z( k—l)D + A" Z(k —1)B")||*~
(1—w)w,utr[X( )(C Z(k—1) —1)D —|—AHZ( )BH) }
(1~ whopte[X7 (k1) (€2~ D" + 4" 2(k — 1)B")).
Considering Lemmas 2.2 and 2.3, one has
Zk—1)D" + A" z(k — 1)B")|”
= @ Z&k-1)D" + A" z(k - 1)BY) |*

= (@) Pu FE= D)0 Pu (D™ + (AT T (7)), |

<
(
(
[(Pa(D")s)" @ (@ )a P+ (B™))" @ (AT),]vee((Z(k - 1),) |
[(D2Pa) ® (CT)oPon + (B)o @ (A )o]vec((Z(k — 1),)||”
<slio.r)e <CT> Po +< Jo ® (AM)] [ Ivee((Z(R=1),)[
Z(k ~ || Jo + (Do Pa) ® (C7)o P

Denote )
|B)o @ (47)5 + (Do P) & (CT)o P |, = .

By using Lemma 2.4, we have

tr[ DX (k= 1)CZ (k- 0"+ o' X (k- 1D 20— D)

— tr [D)?(k TN)CZH (k- 1)+ CHR (k= 1) D Z(k - 1)} .

Then
e[ X (k- 1)(C"Z—1)D" + AT 7k~ 1)BT) |+
w[X (k- 1) (0" Z0—1D" + A" 20k 1)BH)H}
= tr[DX (k= 1)CZ(k - D7+ AX (k- 128 (k — 1B+
tr :6H)?H( —1)D"Zk— 1) + AHXH(k —1)B Z(k — 1)}
— DX (k- )CZH (k- 1)+ CHX (k—1) D" Z(k— b+
tr :Af((k: “D)BZH(k— 1)+ AFXH(k — 1)BH Z(k — 1)]
= ote| ZH (k — 1) Z(k — 1)] =2 Z(k — 1)|%.
Obviously,

IXR)P <X (k=D = 1Z(k = D]Ppw(l - w)[2 = 7w(l - w)y]

355
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k—1
<| X (0)]* - Z 1Z@)]he(1 = w)[2 = mw(l - w)p].
Thus,
Z 1Z(@)1 (1 = w)[2 = mew(1 = w)p] < [IX(0)]|* < oo.
If the convergence factor is chosen to satisfy the following inequality

O<p<

2
w(l—w)r’

we have
k—1
N2 (ki)|? < oo.
=0
Hence, || Z(k)||> — 0. And,
Z(k) -0, AX(k—1)B+CX(k—1)D — 0,

X(k) =0, as k — oo.

This completes the proof of Theorem 3.1. [J

Corollary 3.2 ([2]) If the equation in (2) has a unique solution X,, then for any initial value
X (0), the iterative solution X (k) given in (14) converges to X,, i.e., limy_,oo X (k) = X, if
1
w(l —w)(IBIEIAlZ + IDIZCI3)
Proof For two arbitrary matrices, |A ® B| = ||A||||B]|. Then

O<pu<

|®), o <AH>U + (Do) ® (C7), P

® (AH) H +H D,P,) ® (CT) PmH )2

\AH o+ @or

Jezeal,)

B, |A||2+||D|| Icl,)”

|
<2(|IBI3l1415 + 121 lc1)

1 < 2 .
w( =) (B4 +IPEICT)  wa-w)|(B), @ (48), + (D) @ (€7)  Pul

This completes the proof of Corollary 3.2. [J

<(|
(I
(

4. A general case

In this section, we consider a more general Sylvester matrix equation. Such a class of
equations are in the form of

i A;XBj + zn: C;XD; =F,

j=1 i=1
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which can be written as

P P
ZAjXBj + ZC’Z-YDi =F, p=max(m,n), (19)
j=1 i=1

where A;,C; € C™*" B;, D; € C°*",j € I[1,p],i € I[1,p], F € C™*™ are the given constant

matrices, and X € C"** is the matrix to be solved. The equation (19) can be written as

Fi+p = ézXE“ 1€ I[l,p},

Fy = A;XB;, jelll,pl

Let
p P
Fj=F— Z A XB, — Z O/ XD, + A;XBj, jelll,pl, (20)
=1 =1
and
Fiyp=F— Z A XB, — Z O/ XD+ Ci XDy, ielll,p. (21)
=1 =1

By introducing a relaxation parameter, we can define the following respective relaxed recursive
forms,
X;(k) = X;(k— 1)+ (1 —w)pAl (F; — A;X;(k - 1)B;)B), jeI[L,p], (22)

_ — \—H .
X’iJrP(k) = Xi+17(k - 1) + w:U/C ( i+p CiXi+P(k - 1)D’L)Dz , 1E I[l,p], (23)

where w is a relaxation parameter satisfying 0 < w < 1, it controls the relative importance of
the two residual matrices. Substitute (20) and (21) into (22) and (23). For i € I[1,p], j € I[1,p]

we have

p p
X;(k) = X;(k = 1)+ (1 —w)pA (F =" A XB ~ > O XDi+ A;XB; — A;X;(k—1)B; ) BY,
=1 =1

P P
Xisp(k) = Xipp(k—1) +wpCy (F ~Y AXB, -y CXD;+CiXD;—CiXiyp(k— 1)505{’ .
1=1 1=1
The exact solution X on the right-hand sides is unknown, so the variable X is replaced with

X (k —1) in above two matrices. Hence, for ¢ € I[1,p], j € I[1,p], we can get

X;(k) = X;(k—1)+ (1fquH( ZAZX k—1)B, — ch k—1) Dl)B :
p
Xivp(k) = Xigp(k —1) + wpC; ( ZAle+p - 1)B, — Z Xitp(k — 1)bl)ﬁfi~
=1 =1

As the approximate solution X (k) is wanted rather than X,(k) and X;(k), so we propose the
following balanced strategy to form the k-th approximate solution. For ¢ € I[1,p], j € I[1,p],

Xisp(k) = X (k — 1) + wuCy' (F - zp:AlX(k “1)B, - zp:aX(k - 1)El)ﬁf. (24)
=1 =1
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Xj(k;):X(k;—l)+(1—quH( ZAZX —1)B, - ch —1D1) . (25)
X(1) = 2 [(1 =) 30 Xig +wZX )] (26)

=1

For i € I[1,p], j € I[1,p], the iterative algorithm can be written as

M A (F ZAlX ~ 1B - ZCZ XE=D)D:) B+

p

“Mlpw)zp:cf’( S AX(k- 1B - ZClX fl)Dl)D.
1=1 =1 =1

Theorem 4.1 If the equation in (19) has a unique solution X, then for any initial value X (0),

M’ﬁ

X(k) =X(k—1) +

<.
Il
s e

the iterative solution X (k) given in (26) converges to X, i.e., limy_, oo X (k) = X,, if
2p

|55 (D), P @ (€1, Pu) + 55 (B), © (4, 50 e

O<p<

X(k) = X(k) - X., (27)

Using (24), (25), (27), (28), we get

X;(k) =X (k— 1)+ (1 —w)pA (F - ZP:AZX(k —1)B, - zp: O X (k — 1)DI)B]H

(

=X (k1) — (1 - w)uAll Xp: AX(k—1)B; + Xp: Ci X (k — 1)Dl)B;f,
=1

Xisp(k) =X (k — 1) + wuC' (F - Xp: AX( N OX (k- 1)@)5?
)
).

H
i

)

gl

k—1)B Xp:é
=1
=X(k—1)— wuéf’(zp:Alf((k —1)B, + ZP:GX(k 1 DZ)D
=1
Xk == 0) D0 Kirpk) 030 X

=1

Denote

p p
=F-> AX(k-1)B-Y CX(k—-1)D
=1 =1
p p
:(ZAZX(]C — ].)Bl + Z Clj(:(k — 1)Dl)
=1 =1
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Then

X(k) =X (k1) - P = zpj (ZAIX —1Bl+ch

MXP: f(zﬁ+zw -1)D,)D;
=1 =1

p =1
P

=X(k-1) - wu(lp_w)(iCHZ(k— 0D, +>_ AfZ(k - 1)BH).

? J
j=1

Consider the fact || X||> = tr(X# X), tr(AB) = tr(BA). We have
X[ =t [ (1) X 1)

%k -+ (2L

Mtr[if%k - 1)(Zéﬁmﬁﬂ + Zp:AHZ(k - 1)35)} -

Then, consider Lemma 2.4,

w2 (ﬁ ZE-DD! + 3" a2 1))+

i=1 j=1
P — H _ H\" yv(1. _
[(; Z(k— 1D’ +J21A Z(k —1)B! ) X(k-1)]
:tr[z(k )i@ X (k —1)551+Z(k—1)iAf)?H(k—1)Bﬂ+
i=1 J=1

tr[iﬁi)}(k ~)CiZ(k-1) + zp:Aj)?(k —1)B; ZH (k — 1)}

= tr [Z(k -1) zp:Af)?H(k —1)BI + Zp:Aj)?(k —1)B; 7" (k - 1)} -
tr[zp:Di)N((k—l)CiZH(k—l + Z(k ZP:CHX 1 HDﬂ

:tr[é_ (k—1)Z(k—1)+ Z(k—1)Z" (k ]_

—2||Z(k - 1)|°.

And considering the formula vec (MXN) = (NT ® M)vec (X)7 we get

H(i Z— 1D, +ZAHZ ~1)B! )H2

Jj=1
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o

1 2
)3 >
=% [_Xp:(Pn(DZH) )T®((Of])gpm)+zp:((3f) )" @ ((A]),)]vee((Z=1)),) ’

One has

X <)% 200 D+ [F=22 ) 20— )

k—1
<R - (2R (B 520
=0

So

2(1 — w)pw }2

(1—w)pwz | =2 >
- llzol < |1X©O
=0

or,

o< (o (Codiepiny 5 ) < RO
=0

If the parameter p is chosen to satisfy the following

2p
O<n< (1l — w)w’
One has -
S 1z < .
i=0
Then
12| = 0, Z(i) — 0,
P _ p —
> AX(k)B + Y CX(k)Dy — 0.
=1 =1
Thus

X(k) >0 as k— oo.
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This completes the proof of Theorem 4.1. [J

Corollary 4.2 If the equation in (19) has a unique solution X, then for any initial value X (0),
the iterative solution X (k) given in (26) converges to X, i.e., limy_,oc X (k) = X, if

1

. 2 2 . 2 2 -

w(l —w)( 2 G20 Dillz + 2 1B;1131145113)
iz iz

O<pu<

Proof For two arbitrary matrices,

lA® Bl = [[AllB]-

Then,
|3 (@) m) e (@), pa) + Z B, o (4,
< g«Dz)JPn)@((c?)C,Pm)H | @), o, [,)
= (IS @l | €.l + | @S a])
(éno 211D ||2+;||B lallsle)’
§2(§;IICII 1Dil)’ +2(i||8j||2Aj||2)2
<2 (éncn 1D |\2+;|\B S11314513)-
So
|

w1 =) 3 ICHBIDIR+ X IB,1311413)
2p
w1 =@)]| £ (D)) © ((CF) Pu) +

<

(B)), o (A1), |2

e

j=1

This completes the proof of Corollary 4.2. O
5. Numerical examples

This section gives two examples to testify the iterative algorithm.
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u=0020202 = 0020202

300 400 500 600 0 100 200 300 400 500 600
iterations k iterations k

Figure 1 The convergence performance of Figure 2 The convergence performance of

algorithm (14) for different w when p = 0.02 algorithm (14) for different w when p = 0.02

@=0 =0.005
08 L

ermors &

=0T

= 0013889

0 400 200 300 400 500 600 700 800
iterations k

0 200 400 600 800 1000 1200 1400 1600
iterations k

Figure 3 The convergence performance of Figure 4 The convergence performance of algorithm

algorithm (14) for different g when w = 0.1 (24)—(26) for different w when g = 0.005

1 =0.005 =045

=0.0025
= 0.0016667
=0.00125

0 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500
iterations k iterations k

Figure 5 The convergence performance of Figure 6 The convergence performance of
algorithm (24)—(26) for different w when algorithm (24)—(26) for different p when
n = 0.005 w = 0.45

Example 5.1 Suppose the equation AXB 4+ CXD = F with the matrices
1420 2—14 2—4i i —1—-i =3i
A_[li 2+3i]’ B_{lJrSi 2}’ C_{ 0 1+2i]
D:{_2 1—2}’ F_{Ql—i—llz —9—1—71}

1+¢ —-1-—4 C52—-227 —18+1

and exact solution X = [;t* 7% ]. We apply algorithm in (11)~(13) with the initial matrix
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X(0) = 10751545, and define the relative error o = %

the tables.
. 1 2 _
2Accordlng to The20rem 3.1, we havz 0<pu< A=) (IBIRTATRFIDIEICT) 1||A||2 = 18.0902,
HB||2 = 319309, ||C||2 = 153485, HD||2 = 95826, so we have 0 < n < 72080 (1—w) Through

a large number of experiments, we know when w = 0.1 and p = 0.02 are selected, it can bring

, we have the following figures and

about the faster convergent rate and smaller relative error, which are shown in Figures 1-3. The

matrices used in this example are taken from [10]. For w = 0.1, u = 0.02, we give the following

Tables 1 and 2, where §; denotes the relative error of the algorithm in [10].

k T11 T19 T21 T22

5 1.0950 — 1.7129;  —0.0370 + 1.1602¢ 1.6925 — 1.0521¢ —1.2797 — 0.7333:
15 1.0679 — 1.8095¢  0.0476 + 1.1447¢  1.8243 — 0.8629: —1.2935 — 0.94983
25 1.0822 —1.8852¢  0.0838 + 1.0974¢  1.8865 — 0.9326¢ —1.1638 — 0.9554¢
35 1.0727 —1.9216¢  0.0812 + 1.0680:  1.9264 — 0.9605; —1.0983 — 0.96174
45  1.0582 — 1.9428;  0.0680 4 1.0505¢  1.9514 — 0.9745; —1.0623 — 0.9701%
55 1.0446 — 1.9563¢  0.0537 + 1.0393:  1.9677 — 0.9826: —1.0408 + 0.9777¢
65 1.0335 —1.9656¢  0.0413 + 1.0316¢  1.9787 — 1.9787: —1.0270 — 0.9837¢
75 1.0248 —1.9724¢  0.0313 + 1.0259;  1.9862 — 0.9913: —1.0178 4 0.9883:¢
85  1.0182 —1.9774i  0.0237 4+ 1.02177  1.9914 — 0.9937¢: —1.0114 + 0.9917¢
95 1.0134 —1.9812¢ 0.0179+ 1.0183¢  1.9951 — 0.9955; —1.0070 4 0.9942;
105 1.0098 —1.9842¢  0.0136 + 1.0157¢  1.9976 — 0.9968: —1.0040 + 0.99601

Table 1 The numerical solution of algorithm (14)

k ) 01

5 0.2673 0.2645
15 0.1306 0.1388
25 0.0841 0.0907
35 0.0592 0.0682
45 0.0432 0.0512
55 0.0320 0.0391
65 0.0239 0.0301
75 0.0180 0.0233
85 0.0138 0.0182
95 0.0107 0.0143
105 0.0084 0.0114

Table 2 The comparison of relative error of algorithm (14) and algorithm of Wu in [10]

The unique solution of this equation is X = [ 2 14il

1427 —i :I

Through comparison, we find

though we do not determine the optimal value of w and p, the algorithm (14) is better than the
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algorithm of Wu in [10].

Example 5.2 Suppose the equation 41X By + C1XD; + Co XD, = F with the exact solution

X = [Ifg_f 1;], and the matrices
Lo [1-i 2 C[1-2i i o _[23i 1
L= g2 B i Siasi O aga |
_| 23— B 1 3+ B 2 —243i
Dl_[1+3i 1+2J702_[2+i 2i }’Dz_[1+10i 4i }
o[ 228 21431
T —=22-20i —40—10i|"

According to Theorem 4.1, we have
1

p p !
w(l —w)( 21 IC3 13110513 + Zl 1B;1131145113)
= Jj=

O<pu<

For Example 5.2, we have 0 < p < Through a large number of experiments, we

1
2724 4w (1—w)
know when w = 0.45, i = 0.005 are selected, it can bring about the faster convergent rate and
smaller relative error, which are Shown in Figures 4-6. The matrices used in this example are

taken from [10]. For w = 0.45, ;= 0.005 we give the following Tables 3 and 4, where §; denotes
the relative error of the algorithm in [10]. The unique solution of this equation is X = [ Ifﬂ 1£ J .
Through comparison, we find though we do not determine the optimal value of w and u, the

algorithm (26) is better than the algorithm of Wu in [10].

k

T11

T12

T21

€22

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

—0.6608 — 0.2506¢
—0.7066 — 0.58341
—0.7626 — 0.7237¢
—0.8159 — 0.7880¢
—0.8600 — 0.82303
—0.8948 — 0.8462¢
—0.9217 — 0.8639¢
—0.9424 — 0.8786%
—0.9581 — 0.8912¢
—0.9701 — 0.9023¢
—0.9791 — 0.9121%
—0.9859 — 0.9208:¢
—0.9909 — 0.9286%
—0.9946 — 0.9356¢
—0.9974 — 0.9418:

0.4724 4 0.02201
0.4528 4- 0.0321%
0.4768 + 0.05541
0.5142 4 0.0652¢
0.5541 4 0.0671¢
0.5927 + 0.06551
0.6287 4 0.06241
0.6620 + 0.05874
0.6925 + 0.0548¢
0.7205 + 0.0509¢
0.7460 + 0.04714
0.7692 + 0.0434:
0.7904 + 0.0399¢
0.8097 + 0.03661
0.8272 4 0.0335:

1.0844 — 1.2476¢
1.1682 — 1.58241
1.1564 — 1.7197¢
1.1267 — 1.7915¢
1.0969 — 1.8367:
1.0717 — 1.86861
1.0517 — 1.8927:
1.0363 — 1.9115¢
1.0246 — 1.92641
1.0159 — 1.9384:
1.0094 — 1.9481:
1.0047 — 1.9559:
1.0012 — 1.9624¢
0.9988 — 1.9677¢
0.9971 — 1.9721:

0.7246 + 1.27761
0.8931 4 1.3493:
0.9487 + 1.33601
0.9711 4 1.3045¢
0.9821 4 1.2712¢
0.9884 + 1.24051
0.9926 + 1.2135:
0.9955 + 1.1898:
0.9976 + 1.1691¢
0.9991 4 1.1510¢
1.0001 + 1.1351:
1.0008 + 1.1210z
1.0013 + 1.1087:
1.0016 + 1.0977%
1.0018 + 1.0879:

Table 3 The numerical solution of algorithm (14) and algorithm of Wu in [10]



Gradient based iterative solutions for Sylvester-conjugate matriz equations 365

k 4] 01

10 0.4014 0.446844
20 0.2825 0.326441
30 0.2364 0.273501
40 0.2069 0.239945
50 0.1835 0.213944
60 0.1638 0.192289
70  0.1468 0.173764
80 0.1319 0.157687
90 0.1188 0.143585
100 0.1072 0.131105
110 0.0968 0.119974
120 0.0875 0.109981
130 0.0792 0.100961
140  0.0717 0.092782
150 0.0649 0.085338

Table 4 The comparison of relative error of algorithm (14) and algorithm of Wu in [10]

6. Conclusions

This paper gives an iterative algorithm for solving a class of Sylvester-conjugate matrix

equations by using the hierarchical identification principle and introducing a relaxation param-

eter. The analysis of theorems and numerical examples illustrate the performance of algorithm.

Obviously, the relaxation parameter influences the convergence of the iterative algorithm. It is

a difficult task to give an insightful conclusion about the determination of the optimal value,

which needs further investigation.
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