
Journal of Mathematical Research with Applications

May, 2017, Vol. 37, No. 3, pp. 367–378

DOI:10.3770/j.issn:2095-2651.2017.03.014

Http://jmre.dlut.edu.cn

Augmented Lagrangian Alternating Direction Method for
Tensor RPCA

Ruru HAO, Zhixun SU∗

Department of Mathematics, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Tensor robust principal component analysis (TRPCA) problem aims to separate

a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted

considerable research attention due to its wide range of potential applications in computer

vision and pattern recognition. In this paper, we propose a new model to deal with the

TRPCA problem by an alternation minimization algorithm along with two adaptive rank-

adjusting strategies. For the underlying low-rank tensor, we simultaneously perform low-rank

matrix factorizations to its all-mode matricizations; while for the underlying sparse tensor,

a soft-threshold shrinkage scheme is applied. Our method can be used to deal with the

separation between either an exact or an approximate low-rank tensor and a sparse one. We

established the subsequence convergence of our algorithm in the sense that any limit point

of the iterates satisfies the KKT conditions. When the iteration stops, the output will be

modified by applying a high-order SVD approach to achieve an exactly low-rank final result

as the accurate rank has been calculated. The numerical experiments demonstrate that our

method could achieve better results than the compared methods.

Keywords tensor RPCA; alternating direction method; augmented Lagrangian function;

high-order SVD
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1. Introduction

A tensor is a multidimensional array. It is the higher order generalization of vector and

matrix, which has many applications in information sciences, computer vision, graph analysis,

and traffic data analysis. In the real world, as the size and the amount of redundancy of the

data increase fast and nearly all of the existing high-dimensional real world data either have the

natural form of tensor (e.g., multichannel images) or can be grouped into the form of tensor.

Challenges come up in many scientific areas when someone confronts with the high-dimensional

real world data.

1.1. Notation and preliminary knowledge

Following [1,2], we use the notations as follows. For vectors we use low-case letters x,y, . . .,

for matrices we use bold upper-case letters X,Y, . . ., while for tensors we use bold calligraphic
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letters X ,Y , . . .. We denote the (i1, . . . , iN )-th component of an N -way tensor X as xi1...iN .

Like the situation of vector and matrix, the inner product of X ,Y ∈ RI1×···×IN is defined as

〈X ,Y〉 =

I1∑
i1=1

· · ·
IN∑
iN=1

xi1...iN yi1...iN .

The Frobenius norm of X is defined as ‖X‖F =
√
〈X ,X 〉.

A fiber of X is a vector obtained by fixing all indices of X except one, and a slice of X is a

matrix by fixing all indices of X except two. The mode-n matricization (also called unfolding)

of X ∈ RI1×···×IN is denoted as X(n) ∈ RIn×Πj 6=nIj , which is a matrix with columns being the

mode-n fibers of X in the lexicographical order. Relating to the matricization process, we define

unfoldn(X ) = X(n) and foldn to reverse the process, i.e., foldn(unfoldn(X )) = X .

The n-rank of an N -way tensor X , denoted as rankn(X ), is the rank of X(n), and we define

the rank of X as an array: rank(X ) = (rank(X(1)), . . . , rank(X(N))). Out definition is related

to the Tucker decomposition [3]. In this paper, we say X is (approximately) low-rank if X(n) is

(approximately) low-rank for all n.

1.2. Related work

The recent proposed Robust Principal Component Analysis (RPCA) [4] is an algorithm to

decompose a data matrix X ∈ Rn1∗n2 into two components such that X = L + S, where L is

a low-rank matrix and S is a sparse matrix. The RPCA has strong performance guarantees.

It is shown that if the singular vectors of L satisfy some incoherent conditions, L and S can

be recovered with high probability. RPCA and its extensions have been successfully applied for

background modeling [4], image alignment [5], video restoration [6] et al. One major shortcoming

of RPCA is that it can only handle 2-way data.

Tensor can be viewed as the extension of matrix. It is a more proper way to express the

real world data compared with matrix, for the real world data are generally in multi-dimensional

way. In recent years, plenty works based on tensor recovery have been proposed, such as sparsity

measure [7], recovery models [8–10], completion [11–15], denoising [16–19]. [20] studied the

Tensor Robust Principal Component Analysis (TRPCA) which aims to exactly recover a three-

way low-rank tensor corrupted by sparse errors via convex optimization. [21] designed a tensor

RPCA model for the task of background subtraction from compressive measurements (BSCM)

over the video frames.

1.3. Organization

The rest of the paper is organized as follows. Section 2 shows our tensor robust principal

component analysis (TRPCA) model and the alternating minimization algorithm with two dif-

ferent rank-adjusting strategies; the convergence analysis and a novel high-order SVD trick are

also included in this section. In Section 3, we compare the experimental results of the proposed

method with those of some state-of-the-art methods for image and video separation. Section 4

concludes this paper.



Augmented Lagrangian alternating direction method for tensor RPCA 369

2. Model and algorithm

We introduce a low-rank matrix factorization based model and an augmented Lagrangian al-

ternating direction method to solve the Tensor-RPCA problem with two rank-adjusting schemes.

For the convergence analysis part, we claim that any limit point of the iteration is the KKT point

of the problem. A high order SVD trick is provided to modify the final result.

2.1. Tensor-RPCA model

We develop an iterative approach to solve the Tensor-RPCA problem. The problem is to

separate a low rank tensor L ∈ RI1×···×IN and a sparse tensor S ∈ RI1×···×IN from their given

sum T ∈ RI1×···×IN , i.e., to recover a low-rank L and a sprase S simultaneously such that

T = L + S. (1)

As is now well known, l1-norm minimization has been used to recover sparse signals in

compressive sensing, it is very reasonable for us to propose our tensor approximation model

using the following l1-norm data fidelity form. Assuming that the n-rank of L does not exceed

a prescribed estimate γ ∈ RN , we first consider the model:

min
L

‖T −L‖1

s.t. rankn(L) < γ
(2)

where γ represents an upper bound of the rankn(L).

We apply low-rank matrix factorization to each mode unfolding of Ln by finding matrices

Xn ∈ RIn×rn ,Yn ∈ Rrn×Πj 6=nIj such that L(n) ≈ XnYn for n = 1, . . . , N , where rn is the

estimated rank, either fixed or adaptively updated.

min
Xn,Yn,L

‖T −L‖1

s.t. L(n) −XnYn = 0, n = 1, . . . , N.
(3)

2.2. Alternating minimization

We present an augmented Lagrangian alternating direction method for solving (3). The

augmented Lagrangian function of (3) is defined as follows:

Lβ(X,Y,L,Λ) = ‖T −L‖1 +

N∑
n=1

〈Λn,L(n) −XnYn〉+
βn
2
‖L(n) −XnYn‖2F (4)

where each βn > 0 is the penalty parameter and Λ1, . . . ,Λn are the Lagrange multipliers corre-

sponding to the constraints L(n)−XnYn = 0, n = 1, . . . , N , and 〈U,V〉 denotes the usual inner

product between matrices U and V of equal sizes. We denote (X1, . . . ,XN ), (Y1, . . . ,XN ),

(Λ1, . . . ,ΛN ) and β1, . . . , βN by X, Y, Λ and β, respectively.

We know that l1-norm of a tensor is the sum of the absolute values of all its entries, and

the matricization of a tensor in any mode can be viewed as a new arrangement of all the entries.

So the l1-norm of the matricization of a certain tensor in any mode is exactly the same as the
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l1-norm of the tensor. So the (4) can be rewritten as follows:

Lβ(X,Y,L,Λ) =

N∑
n=1

αn‖T(n) − L(n)‖1 + 〈Λn,L(n) −XnYn〉+
βn
2
‖L(n) −XnYn‖2F (5)

where αn, n = 1, . . . , N , are weights of the n-th matricization and satisfy
∑N
n=1 αn = 1.

Since solving (5) for X, Y and L is difficult, following the idea in the alternating direction

method, we choose to minimize the augmented Lagrangian function with respect to each block

variable X, Y and I one at a time while fixing the other two ones at their latest values, and

then update the Lagrange multiplier. We can update the multiplier Λ by the formula:

Λk+1 = Λk + β(Xk+1Yk+1 − Ik+1).

So we can perform the k-th update as:

Xk+1 = argmin
X

Lβ(X,Yk,Lk,Λk), (6a)

Yk+1 = argmin
Y

Lβ(Xk+1,Y,Lk,Λk), (6b)

Lk+1 = argmin
L

Lβ(Xk+1,Yk+1,L,Λk), (6c)

Λk+1 = Λk + γβ(Xk+1Yk+1 −Lk+1). (6d)

Note that both (6a) and (6b) can be decomposed into N independent least square problems,

which can be solved in parallel. The updates in (6) can be explicitly written as

Xk+1
n = (Lk(n) −

Λkn
βn

)(Yk
n)>

(
Yk
n(Yk

n)>
)†
, n = 1, . . . , N, (7a)

Yk+1
n =

(
(Xk+1

n )>Xk+1
n

)†
(Xk+1

n )>
(
Lk(n) −

Λkn
βn

), n = 1, . . . , N, (7b)

Lk+1 =

N∑
n=1

foldnS
(
(Xk+1

n Yk+1
n − Λkn

βn
−T(n)),

αn
βn

)
+ Tn, (7c)

Λk+1
n = Λkn + γβn(Xk+1Yk+1 −Lk+1), n = 1, . . . , N. (7d)

In the above equations (7a) and (7b), A† denotes the Moore-Penrose pseudo-inverse of A.

No matter how Xn is computed, only the products XnYn, n = 1, . . . , N , affect L and thus the

final recovery result. Hence, we shall update X in the following more efficient way

Xk+1
n = (Lk(n) −

Λkn
βn

)(Yk
n)>, n = 1, . . . , N. (8)

In (7c), S(x, τ) is the soft-threshold operator, and S(x, τ) = sign(x) max(|x| − τ, 0).

2.3. Rank adjusting schemes

In the iterations mentioned above (6), the rank of the underlying tensor L is generally

unknown, which can be bounded by the size of Xn and Yn. A good estimation for the rank of

L, denoted by (rank(L(1)), . . . , rank(L(N))) is essential to the final results given by the algorithm.

A smaller rank estimation can cause underfitting and a large recovery error, while a larger rank

estimation can cause overfitting and large deviation to the underlying tensor L. Since we do
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not have the priori knowledge of rank(L), we provide two schemes to dynamically adjust the

rank estimation r1, . . . , rN . In our algorithm, we use parameter ξn to decide which scheme we

adopt. If ξn = −1, the rank-decreasing scheme is applied to rn in each iteration; if ξn = 1, the

rank-increasing scheme is applied to rn; otherwise, rn is fixed to the initial input.

2.3.1. Rank-decreasing scheme

In this scheme, the initial rank input is an overestimated value, i.e., rn > rankn(L). Fol-

lowing [15,22], we calculate the eigenvalues of X>nXn after each iteration, which are assumed to

be sorted in a descent order as λn1 ≥ λn2 ≥ · · · ≥ λnrn . Then we compute the quotients between

the two eigenvalues sequentially λ̄ni = λni /λ
n
i+1, i = 1, . . . , rn − 1. Suppose

r̂n = argmax
1≤i≤rn−1

λ̄i.

If

gapn =
(rn − 1)λ̄r̂n∑

i6=r̂n λ̄i
≥ 10, (9)

which implies there exists a gap “big” enough between λr̂n and λr̂n+1, we thus reduce rn to r̂n.

Assume that the SVD of XnYn is UΣV>. Then we update Xn to Ur̂nΣr̂n and Yn to V>r̂n ,

where Ur̂n is a submatrix of U containing r̂n columns corresponding to the largest r̂n singular

values, and Σr̂n and Vr̂n are obtained in a similar way.

In our numerical experiments, we can find that this scheme generally works well when the

underlying tensor is exactly a low-rank one. For this kind of tensors, there is a large “gap”

which is easy to be identified, the true rank can be typically obtained after just one step of

rank decreasing. While for approximately low-rank tensors, a large gap may or may not exist.

When a large gap cannot be found by the rule introduced before, the overestimated rank will

not decrease. For these tensors, the rank-increasing scheme below has a better performance.

2.3.2. Rank-increasing scheme

Different from the rank-decreasing scheme introduced in the last subsection, this rank-

increasing scheme starts with an underestimated rank, i.e., rn ≤ rankn(L). Following [14,21],

we increase rn to min(rn + ∆rn, r
max
n ) at iteration k + 1 if∣∣∣1− ∥∥T − foldn(Xk+1

n Yk+1
n )

∥∥
F∥∥T − foldn(Xk

nYk
n)
∥∥
F

∣∣∣ ≤ 10−2, (10)

which means the progress of the iteration is very limited in the rn dimensional space along the

n-th mode, so we should increase the rank estimation by ∆rn if the new estimation is smaller

than rmax
n . Here, ∆rn is a positive integer, and rmax

n is the maximal rank estimate. We adopt

the economy QR factorization of (Yk+1
n )> to decide how to increase the rank estimation.

Let the economy QR factorization of (Yk+1
n )> be QR. We augment Q ← [Q, Q̂] where Q̂

has ∆rn randomly generated columns and then orthonormalize Q. Next, we update Yk+1
n to

Q> and Xk+1
n ← [Xk+1

n ,0], where 0 is an In ×∆rn zero matrix. Since we update the variables

in the order of X,Y,L, appending any matrix of appropriate size after Xn does not make any

difference. Small ∆rn usually gives better solution while needs more time.
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In general, if we concern the solution quality, we can choose the rank-increasing scheme,

because it works no worse than the rank-decreasing scheme in this term no matter the underlying

tensor is exactly low-rank or approximately low-rank. If the convergence rate is a priority, and the

underlying tensor is an exactly low-rank one, the rank-increasing scheme usually gives acceptable

solutions at the cost of less running time for it takes only one decreasing adjustment.

2.4. Dynamic weights and stopping rules

If we have no prior knowledge about the low-rankness of each mode of the underlying low-

rank tensor, we can set the parameters α1, . . . , αN in (3) uniformly to 1
N at the beginning. During

the iterations, we either fix them or dynamically update them according to the fitting error

fitn(XnYn) =
∥∥∥ N∑
n=1

αnfoldn(XnYn)− T
)∥∥∥
F
.

Suppose in some mode, the low-rankness is more significant, weight of the objective in that mode

should be increased. It means the smaller fitn(XnYn) is, the larger αn should be. Specifically,

if the current iterate is (Xk,Yk,Zk), we set

αkn =

[
fitn(Xk

nYk
n)
]−1∑N

i=1

[
fiti(Xk

iY
k
i )
]−1 , n = 1, . . . , N. (11)

As demonstrated below, dynamic updating αn’s can improve the recovery quality for tensors

that have better low-rankness in one mode than others.

The iteration should be terminated if one of the following conditions was satisfied for some

k, where k demonstrates the k-th way,∣∣∑N
n=1 fitn(Xk

nYk
n)−

∑N
n=1 fitn(Xk+1

n Yk+1
n )

∣∣
1 +

∑N
n=1 fitn(Xk

nYk
n)

≤ tol, (12)

and ∑N
n=1 α

k
n · fitn(Xk+1

n Yk+1
n )

‖T ‖F
≤ tol, (13)

where tol is a small positive value specified below. The relative change of the overall fitting is

denoted by the left side of (12) while the weighted fitting is denoted by the left side of (13).

When both of them are satisfied, we hold that the performance is good enough.

2.5. Pseudocode

The above discussions are summarized in Algorithm 1. After the algorithm terminates

with output (X,Y,L,Λ), we adopt
∑N
n=1 αnfoldn(XnYn) to estimate the underlying tensor

L. During the iterations, we can have different rank-adjusting schemes for different modes by

setting different ξn. For simplicity we set ξn uniformly for all modes in our experiments.

2.6. Convergence analysis

There is no established convergence theory, to the best of our knowledge, for ALADM

algorithms applied to non-convex problems or even to convex problems with more than two

blocks of variables as we have in Algorithm 1. On the other hand, empirical evidence suggests



Augmented Lagrangian alternating direction method for tensor RPCA 373

Input: Tensor T , and αn ≥ 0, n = 1, . . . , N with
∑N

n=1 αn = 1.

Parameters: rn,∆rn, r
max
n , ξn, n = 1, . . . , N .

Initialization: (X0,Y0,L0,Λ0) .

for k = 0, 1, . . . do

Xk+1 ← (8), Yk+1 ← (7b), Lk+1 ← (7c),and Λk+1 ←(7d).

if stopping criterion is satisfied then

Output (Xk+1,Yk+1,Lk+1).

end

for n = 1, . . . , N do

if ξn = −1 then

Apply rank-decreasing scheme to Xk+1
n and Yk+1

n in Section 1

end

else if ξn = 1 then

Apply rank-increasing scheme to Xk+1
n and Yk+1

n in Section 2

end

end

end

Algorithm 1 Low-rank Tensor Approximation

that Algorithm 1 has very strong convergence behavior. In this subsection, we give a weak

convergence result for Algorithm 1 that under mild conditions any limit point of the iteration

sequence generated by Algorithm 1 is a KKT point. Although far from being satisfactory, this

result nevertheless provides an assurance for the behavior of the algorithm. The proof of the

theorem is inspired by [23]. Further theoretical studies in this direction are certainly desirable.

It is straightforward to derive the KKT conditions for (3):

ΛnYn = 0, X>nΛn = 0, L(n) −XnYn = 0, Λn ∈ ∂L(n)
(L(n) −T(n)), n = 1, . . . , N

where, for any βn > 0, the last group relation is equivalent to

L(n) −T(n) −
Λn
βn
∈ ∂L(n)

(‖T(n) − L(n)‖1) + T(n) − L(n) , Qβn
(T(n) − L(n)) (14)

with the scalar functionQβ(t) , 1
β∂|t|+ t applied element-wise to T(n)−L(n). It is easy to verify

that Qβ is monotone so that Q−1
β , S(t, 1

β ). Applying Q−1
β (·) to both sides of (14) and invoking

the equation L(n) = XnYn, we arrive at:

T(n) − L(n) = Q−1
βn

(L(n) −T(n) −
Λn
βn

) ≡ S(T(n) − L(n) +
Λ

β
,

1

β
) ≡ S(T(n) −XnYn +

Λ

β
,

1

β
).

Therefore, the KKT conditions for (3) can be written as: for βn > 0, n = 1, . . . , N ,

ΛnYn = 0, X>nΛn = 0, L(n) −XnYn = 0, (15a)

and

T(n) − L(n) = S(T(n) −XnYn +
Λn
βn
,

1

βn
). (15b)

Theorem 2.1 Let {(Xk,Yk,Lk)} be a sequence generated by Algorithm 1 with fixed rn’s

and fixed positive αn’s. Let Λk = T −
(∑

n αn · foldn(Xk
nYk

n)
)
. Then any limit point of

{(Xk,Yk,Lk,Λk)} satisfies the KKT conditions in (3).
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Proof It follows from (7), (8), and the identities

(Xk+1
n −Xk

n)Yk
n(Yk

n)> =
(
L(n) −

Λkn
βn
−Xk

nYk
n

)
(Yk

n)>, (16a)

(Xk+1
n )>Yk+1

n (Yk+1
n −Yk

n) = (Xk+1)>
(
L(n) −

Λkn
βn
−Xk+1

n Yk
n

)
, (16b)

Lk+1
(n) − Lk(n) = S

(
Xk+1
n Yk+1

n −T(n) +
Λkn
βn
,

1

βn

)
(16c)

Λ(k+1)
n − Λkn = βn(Xk+1

n Yk+1
n − Lk+1

(n) ). (16d)

Hence a limited point of {(Xk,Yk,Lk,Λk)} implies that the both sides of (16) all tend to

zero as k goes to infinity. Consequently,

ΛknYk
n → 0, (Xk

n)>Λkn → 0,Lk(n) −Xk
nYk

n → 0, (17a)

and

T(n) − Lk(n) − S(T(n) −Xk
nYk

n +
Λkn
βn
,

1

βn
)→ 0 (17b)

where the the first limit in (17a) is used to derive other limits. That is, the sequence {(Xk, Yk,

Lk, Λk)} asymptotically satisfies the KKT conditions (15), from which the conclusions of the

proposition follow readily. This completes the proof. �

2.7. High-order SVD

After the algorithm terminates with output (X,Y,L,Λ), we adopt

L =

N∑
n=1

αnfoldn(XnYn)

to estimate the underlying tensor L. However, the rank of the output tensor is often full-rank

although it is close to the exact underlying tensor. The reason is that the low-rankness of the

matricization of the tensor in one mode cannot guarantee the low-rankness of the matricizations

in other modes, and the weighted summation cannot even guarantee the low-rankness in any

mode.

Fortunately, we have already got the n-rank of the underlying tensor when the algorithm

terminates. With this knowledge of rankn(L̂) = (r1, . . . , rN ), we can modify the output by the

following high-order SVD approach to achieve an exactly low-rank final result. There are three

steps in this approach.

Firstly, we can perform the SVD decomposition for each matricization Ln, n = 1, . . . , N , of

the tensor L
Ln = UnSnV>n , n = 1, . . . , N. (18)

Then we can get a series of orthogonal square matrices Ûn, n = 1, . . . , N by the following formula:

Ûn = ŨnŨ>n (19)

where Ũn denotes the first rn columns of Un, and the rank of Ûn, n = 1, . . . , N is rn. At

last, the exactly low-rank final result can be calculated by the production of tensor L and the
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matrices Ûn, n = 1, . . . , N :

Lnew = L×1 Û1 · · · ×N ÛN . (20)

This approach can be summarized by the Algorithm 2.
Input: Approximated Low-rank Tensor L, and the n-rank of the underlying exactly low rank

tensor L̂, rankn(L̂) = (r1, . . . , rN ).

for n = 1, . . . , N do

Un ← (18),

Ûn ← (19),

end

Lnew ←(20).

Algorithm 2 High Order SVD

3. Numerical experiments

In this section, we conduct numerical experiments to support our main results. We first

investigate the ability of our algorithm for recovering tensors of various n-rank from noises

of various sparsity with two rank adjustment schemes. Then we test our algorithm for the

background subtraction for surveillance video.

3.1. Exact recovery for synthetic data

For simplicity, we consider the tensors of size n×n×n with varying dimension n = 100, 200

and 300. We generate the low-rank tensor by multiplying a random core tensor of size r × r × r
with three random matrices of size n× r, where r = 0.1 ∗n, L = C×1 A1×2 A2×3 A3. The core

tensor is generated by MATLAB command randn(r, r, r) and the random matrices are generated

by MATLAB command randn(n, r). The support set Ω (with size m) of S is chosen uniformly

at random.

rank-decreasing, r = 0.1 ∗ n, m = ‖S‖0 = 0.2 ∗ n3

n r m n-rank(L̃) ‖S̃‖0 ‖L− L̃‖F /‖L‖F ‖S − S̃‖F /‖S‖F
100 10 2e5 10× 10× 10 175,594 4.1e-7 1.6e-9

200 10 16e5 20× 20× 20 1,525,616 4.4e-7 1.9e-9

300 10 54e5 30× 30× 30 5,424,047 1.3e-6 1.4e-9

Table 1 Recovery results for rank-decreasing scheme

rank-increasing, r = 0.1 ∗ n, m = ‖S‖0 = 0.2 ∗ n3

n r m n-rank(L̃) ‖S̃‖0 ‖L− L̃‖F /‖L‖F ‖S − S̃‖F /‖S‖F
100 10 2e5 10× 10× 10 174,455 4.1e-7 1.6e-9

200 10 16e5 20× 20× 20 1,539,744 4.5e-7 1.9e-9

300 10 54e5 30× 30× 30 5,347,546 1.6e-6 1.5e-9

Table 2 Recovery results for rank-increasing scheme
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We test the two rank adjustment schemes on the synthetic data set, similarly as [20]. Table

1 gives the results of the first situation with setting r = 0.1∗n and m = ‖S‖0 = 0.2∗n3, equipped

with the rank-decreasing scheme. Table 2 gives the results of the second situation with setting

r = 0.1 ∗ n and m = ‖S‖0 = 0.2 ∗ n3, equipped with the rank-increasing scheme.

It can been seen that our algorithm gives the correct rank estimation r of ‖L‖ in all cases

and the relative errors, ‖L − L̃‖F /‖L‖F are less than 10−5. Although the sparsity estimation

is not so exact as the rank estimation, we can see that ‖S‖0 is much larger than m, the relative

errors‖S−S̃‖F /‖S‖F are all small, even smaller than the relative errors of the recovered low-rank

tensor. These results imply the accuracy of our algorithm.

The two tables show that both of the two rank adjusting schemes perform well in our

algorithm. The results of rank-decreasing scheme is a little better than that of the rank-increasing

scheme, for the “gap” mentioned in Subsection 2.3.

3.2. Background subtraction of surveillance video

We choose a set of real world surveillance video from I2R data set. It is natural to model

the background variations as approximately low-rank. We compared our algorithms of two rank

adjusting schemes with the two models proposed in [21] which can be regarded as the state-of-art

tensor RPCA method. We extract the fourth slice of each recovered low-rank tensor respectively

to demonstrate the final results. Of course, the fourth frame of the video “hall” is the input

frame, and the ninetieth frame is regarded as the ground truth of the background because there

is no people appearing at that moment. Here is the comparison:

(a) Frame 4 (b) Frame 90 (c) H-TenRPCA

(d) PG-TenRPCA (e) TRPCADec (f) TRPCAInc

Figure 1 (a) The fourth frame of the video; (b) The 90th frame of the video; (c) The fourth slice

of the result achieved by H-TenRPCA [20]; (d) The fourth slice of the result achieved by PG-TenRPCA

[20]; (e) The fourth slice of the result achieved by rank decreasing Scheme 2.3.1; (f) The fourth slice of

the result achieved by rank increasing Scheme 2.3.2.



Augmented Lagrangian alternating direction method for tensor RPCA 377

From the figure above we can find a shallow shadow in the middle of the background frame

subtracted by the H-TenRPCA and PG-TenRPCA. While in our results (including both of the

situation related to the two different schemes), the shadow in the same position is more close to

the ground truth. It means that the low-rank tensor recovered by our algorithm is reliable.

4. Conclusion

We have proposed a new algorithm for tensor robust principal component analysis (TR-

PCA). Our algorithm utilizes low-rank matrix factorizations to all-mode matricizations of the

underlying low-rank tensor, and describe the sparsity of the sparse tensor via l1 norm. Two rank

adjust strategies are provided. We also give the convex analysis of the iterative algorithm in the

paper. An HOSVD method is applied to modify the final result. The numerical experiments

show that our method consistently generates the best solutions among all compared methods.

However, how to adjust the parameters in the model is not studied in this paper. These

problems will be explored in future work.
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