Journal of Mathematical Research with Applications Jul., 2017, Vol. 37, No. 4, pp. 391–403 DOI:10.3770/j.issn:2095-2651.2017.04.002 Http://jmre.dlut.edu.cn

The Second Largest Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

Wei FANG^{1,*}, Yubin GAO², Kai FAN³, Zhongshan LI⁴

- 1. School of Instrument and Electronics, North University of China, Shanxi 030051, P. R. China;
- 2. Department of Mathematics, North University of China, Shanxi 030051, P. R. China;
- 3. Department of Mathematics, Southeast University, Jiangsu 211189, P. R. China;
- 4. Department of Mathematics & Statistics, Georgia State University, Atlanta 30302, USA

Abstract Balaban index and Sum-Balaban index were used in various quantitative structure-property relationship and quantitative structure activity relationship studies. In this paper, the unicyclic graphs with the second largest Balaban index and the second largest Sum-Balaban index among all unicyclic graphs on n vertices are characterized, respectively.

Keywords Balaban index; Sum-Balaban index; unicyclic graph

MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Let G be a simple and connected graph with |V(G)| = n and |E(G)| = m. Then $\mu = |E(G)| - |V(G)| + 1 = m - n + 1$ is the cyclomatic number. As usual, let $N_G(u)$ be the neighbor vertex set of vertex u, and $d_G(u, v)$ be the distance between vertices u and v in G. Then $d_G(u) = |N_G(u)|$ is called the degree of u, and $D_G(u) = \sum_{v \in V(G)} d_G(u, v)$ (or D(u) for short) is the distance sum of vertex u in G.

Balaban index was proposed by Balaban [1,2] which is also called the average distance-sum connectivity or J index. The Balaban index of a simple connected graph G is defined as

$$J(G) = \frac{m}{\mu + 1} \sum_{uv \in E(G)} \frac{1}{\sqrt{D_G(u)D_G(v)}}.$$

Balaban et al. [3] also proposed the Sum-Balaban index SJ(G) of a connected graph G, which is defined as

$$SJ(G) = \frac{m}{\mu + 1} \sum_{uv \in E(G)} \frac{1}{\sqrt{D_G(u) + D_G(v)}}.$$

For chemical applications, it may be interesting to identify the graph with the maximum and minimum topological indices in given class of graphs. Deng [4] proved that among all trees

Received May 31, 2016; Accepted March 15, 2017

Supported by the Natural Science Foundation of Anhui Province (Grant No. 1508085MC55) and the Natural Science Foundation of Educational Government of Anhui Province (Grant No. KJ2013A076).

E-mail address: fangweinuc@gmail.com (Wei FANG); ybgao@nuc.edu.cn (Yubin GAO); det.conan@foxmail.com (Kai FAN); zli@gsu.edu (Zhongshan LI)

^{*} Corresponding author

with n vertices, the star S_n and the path P_n have the maximal and the minimal Balaban index. Fang and Gao et al. [5] gave the sharp upper bounds of Balaban index and Sum-Balaban index for bicyclic graphs, and characterize the bicyclic graphs which attain the upper bounds. You and Dong [6] gave the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n vertices. More mathematical propertices of Balaban index can be found in [7–10]. More mathematical propertices of Sum-Balaban index can be found in [8,9,11,12].

Although in [6], Lihua YOU has characterized unicyclic graphs with the maximum Balaban index (Sum-Balaban index) and calculated the corresponding value of the maximum index, in order to find unicyclic graphs with the second largest Balaban index (Sum-Balaban index) we shall first use a new method to find unicyclic graphs with the maximum Balaban index (Sum-Balaban index).

2. The maximum Balaban index (Sum-Balaban index) of unicyclic graphs

We first introduce some useful graph transformations.

2.1. The edge-lifting transformation

The edge-lifting transformation ([4,12]) Let G_1 and G_2 be two graphs with $n_1 \geq 2$ and $n_2 \geq 2$ vertices, respectively. If G is the graph obtained from G_1 and G_2 by adding an edge between a vertex u_0 of G_1 and a vertex v_0 of G_2 , G' is the graph obtained by identifying u_0 of G_1 to v_0 of G_2 and adding a pendent edge to $u_0(v_0)$, then G' is called the edge-lifting transformation of G (see Figure 2.1).

Figure 2.1 The edge-lifting transformation

Lemma 2.1 ([4,12]) Let G' be the edge-lifting transformation of G. Then J(G) < J(G'), and SJ(G) < SJ(G').

A rooted graph has one of its vertices, called the root, distinguished from the others. If T is a rooted star, then the root is its center.

Let T_1, T_2, \ldots, T_k be k rooted trees with $|V(T_i)| \ge 2$ $(1 \le i \le k)$ and roots u_1, u_2, \ldots, u_k , respectively. Let C_r be a cycle with length r $(r \ge 3)$.

Let \mathbb{U}_n be the set of all unicyclic graphs on n vertices, G(n, r, k) be a unicyclic graph on n vertices obtained from $C_r, T_1, T_2, \ldots, T_k$ by attaching k rooted trees T_1, T_2, \ldots, T_k to k distinct vertices of the cycle C_r . Let $\mathbb{G}^*(n, r, k)$ be the set of all unicyclic graphs on n vertices obtained

from C_r by attaching k rooted stars to k distinct vertices of C_r (see Figure 2.2).

For any $G(n,r,k) \in \mathbb{U}_n$, by repeating edge-lifting transformations on G(n,r,k), we will get a unicyclic graph $G^*(n,r,k) \in \mathbb{G}^*(n,r,k)$ from G(n,r,k). By Lemma 2.1, we have $J(G(n,r,k)) < J(G^*(n,r,k))$ and $SJ(G(n,r,k)) < SJ(G^*(n,r,k))$.

Figure 2.2 $\mathbb{G}^*(n,r,k)$

2.2. Branch transformation

Branch transformation ([6]) Let $G = G^*(n, r, k) \in \mathbb{G}^*(n, r, k)$ and $m = \lfloor \frac{r}{2} \rfloor$. Define $C_r = v_1v_2 \cdots v_m u_m \cdots u_2 u_1 v_1$ for even r and $C_r = v_1v_2 \cdots v_m v_{m+1} u_m \cdots u_2 u_1 v_1$ for odd r. Then G' is obtained from G by deleting the pendent edge $u_i w$ and adding the pendent edge $v_i w$ for any $i \in \{1, 2, \ldots, m\}$ (if there exists the pendent edge $u_i w$), where $w \in V(G) \setminus V(C_r)$. We say G' is obtained from G by branch transformation (see Figure 2.3, where $p_i \geq 0$, $q_i \geq 0$ for any $i \in \{1, 2, \ldots, m\}$).

Figure 2.3 The branch transformation

Lemma 2.2 ([6]) Let n, r, k be positive integers with $2 \le k \le r, 3 \le r \le n-k, G = G^*(n, r, k) \in \mathbb{G}^*(n, r, k), G'$ be the graph obtained from G by branch transformation. Then J(G) < J(G'), SJ(G) < SJ(G').

Lemma 2.3 ([6]) Let n, r, k be positive integers with $2 \le k \le r, 3 \le r \le n-k, G = G^*(n, r, k) \in \mathbb{G}^*(n, r, k), G'$ be the graph obtained from G by repeating the branch transformation, and we cannot get other graph from G' by repeating branch transformation. Then

- (i) $G' \in \mathbb{G}^*(n, r, 1)$ (see Figure 2.4).
- (ii) $J(G) \leq J(G')$, the equality holds if and only if $G \cong G'$.
- (iii) $J(G) \leq SJ(G')$, the equality holds if and only if $G \cong G'$.

2.3. The cycle transformation

The cycle transformation Let $G = G^*(n, r, 1) \in \mathbb{G}^*(n, r, 1)$ be defined as in Figure 2.4, where $V(C_r) = u_1, u_2, \dots, u_r$, and n, r be positive integers with $3 \le r \le n$.

Figure 2.4 Graph $G^*(n,r,1) \in \mathbb{G}^*(n,r,1)$

- (i) If $r \geq 4$ is even, then G' is the graph obtained from G by deleting the edge u_2u_3 and adding the edge u_1u_3 .
- (ii) If $r \geq 5$ is odd, then G' is the graph obtained from G by deleting the edges u_2u_3 and u_3u_4 , and adding the edges u_1u_3 and u_1u_4 .

We say G' is obtained from G by the cycle transformation (see Figure 2.5).

Figure 2.5 The cycle transformation

Lemma 2.4 ([7]) Let $x, y, a \in R^+$ such that $x \geq y + a$. Then $\frac{1}{\sqrt{xy}} \geq \frac{1}{\sqrt{(x-a)(y+a)}}$, and the equality holds if and only if x = y + a.

Lemma 2.5 ([6]) Let $x_1, x_2, y_1, y_2 \in R^+$ such that $x_1 > y_1$ and $x_2 - x_1 = y_2 - y_1 > 0$. Then $\frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{y_2}} < \frac{1}{\sqrt{x_2}} + \frac{1}{\sqrt{y_1}}$.

Lemma 2.6 ([7]) Let $a, a', b, b', w, x, y, z \in R^+$ such that $\frac{b}{x} \ge \frac{a}{w}, \frac{b'}{y} \ge \frac{a'}{z}, w \ge x$ and $z \ge y$. Then $\frac{1}{\sqrt{(w+a)(z+a')}} + \frac{1}{\sqrt{xy}} \ge \frac{1}{\sqrt{wz}} + \frac{1}{\sqrt{(x+b)(y+b')}}$, and the equality holds if and only if b = a, b' = a', w = x and z = y.

Lemma 2.7 Let $G = G^*(n,r,1) \in \mathbb{G}^*(n,r,1)$, G' be the graph obtained from G by cycle

transformation (see Figure 2.5). Then J(G) < J(G') and SJ(G) < SJ(G').

Proof Let
$$V(C_r) = \{u_1, u_2, \dots, u_r\}$$
 and $W_{u_1} = \{w | wu_1 \in G \text{ and } d_G(w) = 1\}.$

Case 1 r is even.

We first consider the vertex $u_x \in V(C_r) \setminus \{u_2\}$. It is easy to see that

$$D_G(u_x) = D_G(u_x, C_r) + D_G(u_x, W_{u_1}) = \left[2(1 + 2 + \dots + \frac{r-2}{2}) + \frac{r}{2}\right] + (n-r)(D_G(u_x, u_1) + 1),$$

$$D_{G'}(u_x) = D_{G'}(u_x, C_r) + D_{G'}(u_x, W_{u_1}) = 2(1 + 2 + \dots + \frac{r-2}{2}) + (n-r+1)(D_{G'}(u_x, u_1) + 1).$$

Since $D_G(u_x, u_1) \ge D_{G'}(u_x, u_1)$ and $D_{G'}(u_x, u_1) + 1 < \frac{r}{2}$, where $u_x \in V(C_r) \setminus \{u_2\}$, we have

$$D_G(u_x) - D_{G'}(u_x) = \frac{r}{2} + (n - r)[D_G(u_x, u_1) - D_{G'}(u_x, u_1)] - [D_{G'}(u_x, u_1) + 1] > 0.$$
 (1)

Next we consider u_2 and the vertices in W_{u_1} . Clearly

$$D_G(w) > D_{G'}(w)$$
, where $w \in W_{u_1}$, (2)

and

$$D_G(u_2) = 2(1+2+\cdots+\frac{r-2}{2}) + \frac{r}{2} + 2(n-r),$$

$$D_{G'}(u_2) = 2(1+2+\cdots+\frac{r-2}{2}) + (r-1) + 2(n-r),$$

$$D_G(u_1) = 2(1+2+\cdots+\frac{r-2}{2}) + \frac{r}{2} + (n-r),$$

$$D_{G'}(u_1) = 2(1+2+\cdots+\frac{r-2}{2}) + 1 + (n-r).$$

As such, we have

$$D_{G'}(u_2) - D_G(u_2) = \frac{r}{2} - 1,$$

$$D_G(u_1) - D_{G'}(u_1) = \frac{r}{2} - 1,$$

$$D_{G'}(u_2) - D_{G'}(u_1) = n - 2.$$

Let $x = D_{G'}(u_2), y = D_{G'}(u_1), a = \frac{r}{2} - 1$. Then x - y = n - 2 > a. By Lemma 2.4, we have

$$\frac{1}{\sqrt{D_{G'}(u_2)D_{G'}(u_1)}} > \frac{1}{\sqrt{[D_{G'}(u_2) - a][D_{G'}(u_1) + a]}} = \frac{1}{\sqrt{D_G(u_2)D_G(u_1)}},$$
(3)

$$\frac{1}{\sqrt{D_{G'}(u_2) + D_{G'}(u_1)}} = \frac{1}{\sqrt{D_G(u_2) + D_G(u_1)}}.$$
(4)

Since $D_{G'}(u_3) < D_G(u_3)$ and $D_{G'}(u_1) < D_G(u_2)$, we have

$$\frac{1}{\sqrt{D_{G'}(u_3)D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_3)D_G(u_2)}},\tag{5}$$

$$\frac{1}{\sqrt{D_{G'}(u_3) + D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_3) + D_G(u_2)}}.$$
(6)

From (1) and (2), we have

$$\frac{1}{\sqrt{D_{G'}(u_x)D_{G'}(u_y)}} > \frac{1}{\sqrt{D_G(u_x)D_G(u_y)}},\tag{7}$$

$$\frac{1}{\sqrt{D_{G'}(u_x) + D_{G'}(u_y)}} > \frac{1}{\sqrt{D_G(u_x) + D_G(u_y)}},\tag{8}$$

$$\frac{1}{\sqrt{D_{G'}(u_1)D_{G'}(w)}} > \frac{1}{\sqrt{D_G(u_1)D_G(w)}},\tag{9}$$

$$\frac{1}{\sqrt{D_{G'}(u_1) + D_{G'}(w)}} > \frac{1}{\sqrt{D_G(u_1) + D_G(w)}},\tag{10}$$

where $u_x, u_y \in V(C_r) \setminus \{u_2\}$ and $w \in W_{u_1}$.

By (3),(5), (7), (9) and the definition of Balaban index, if r is even we have J(G) < J(G'). By (4), (6), (8), (10) and the definition of Sum-Balaban index, if r is even we have SJ(G) < SJ(G').

Case 2 r is odd.

We first consider the vertex $u_x \in V(C_r) \setminus \{u_2, u_3\}$. It is easy to see that

$$D_G(u_x) = D_G(u_x, C_r) + D_G(u_x, W_{u_1}) = 2(1 + 2 + \dots + \frac{r-1}{2}) + (n-r)(D_G(u_x, u_1) + 1)$$

$$D_{G'}(u_x) = D_{G'}(u_x, C_r) + D_{G'}(u_x, W_{u_1}) = 2(1 + 2 + \dots + \frac{r-3}{2}) + (n-r+2)(D_{G'}(u_x, u_1) + 1).$$
Since $D_G(u_x, u_1) \ge D_{G'}(u_x, u_1)$ and $D_{G'}(u_x, u_1) + 1 \le \frac{r-1}{2}$, we have
$$D_G(u_x) - D_{G'}(u_x) = (r-1) + (n-r)[D_G(u_x, u_1) - D_{G'}(u_x, u_1)] - 2[D_{G'}(u_x, u_1) + 1] \ge 0, (11)$$
where $u_x \in V(C_r) \setminus \{u_2, u_3\}.$

Next we consider u_2, u_3 and the vertices in W_{u_1} . Clearly

$$D_G(w) > D_{G'}(w)$$
, where $w \in W_{u_1}$, (12)

and

$$D_{G}(u_{1}) = 2(1+2+\cdots+\frac{r-1}{2}) + (n-r),$$

$$D_{G'}(u_{1}) = 2(1+2+\cdots+\frac{r-3}{2}) + 2 + (n-r),$$

$$D_{G}(u_{2}) = 2(1+2+\cdots+\frac{r-1}{2}) + 2(n-r),$$

$$D_{G'}(u_{2}) = D_{G'}(u_{1}) + (n-2) = 2(1+2+\cdots+\frac{r-3}{2}) + 2n-r,$$

$$D_{G}(u_{3}) = 2(1+2+\cdots+\frac{r-1}{2}) + 3(n-r),$$

$$D_{G'}(u_{3}) = D_{G'}(u_{2}) = 2(1+2+\cdots+\frac{r-3}{2}) + 2n-r.$$

Thus we have

$$D_{G'}(u_2) - D_G(u_2) = 1$$
, $D_G(u_1) - D_{G'}(u_1) = r - 3 \ge 2$.

Let $x = D_{G'}(u_2), y = D_{G'}(u_1), a = 1$. Then x - y = n - 2 > a. By Lemma 2.4, we have

$$\frac{1}{\sqrt{D_{G'}(u_2)D_{G'}(u_1)}} \ge \frac{1}{\sqrt{[D_{G'}(u_2) - 1][D_{G'}(u_1) + 1]}} > \frac{1}{\sqrt{D_{G}(u_2)D_{G}(u_1)}},\tag{13}$$

$$\frac{1}{\sqrt{D_{G'}(u_2) + D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_2) + D_G(u_1)}}.$$
(14)

Note that $D_G(u_3) - D_{G'}(u_3) = (r-1) + (3n-3r) - (2n-r) = n-r-1$. If n > r, then $D_G(u_3) - D_{G'}(u_3) \ge 0$ and we have

$$\frac{1}{\sqrt{D_{G'}(u_3)D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_3)D_G(u_2)}},\tag{15}$$

$$\frac{1}{\sqrt{D_{G'}(u_3) + D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_3) + D_G(u_2)}}.$$
(16)

If n = r, then $D_{G'}(u_3) - D_G(u_3) = 1$ and $D_G(u_2) - D_{G'}(u_1) = n - 3 \ge 2$. Let $x = D_{G'}(u_3), y = D_{G'}(u_1), a = 1$. Then x - y > n - 2 > a. By Lemma 2.4, we have

$$\frac{1}{\sqrt{D_{G'}(u_3)D_{G'}(u_1)}} \ge \frac{1}{\sqrt{[D_{G'}(u_2) - 1][D_{G'}(u_1) + 1]}} > \frac{1}{\sqrt{D_G(u_3)D_G(u_2)}},\tag{17}$$

$$\frac{1}{\sqrt{D_{G'}(u_3) + D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_3) + D_G(u_2)}}.$$
(18)

Since $D_G(u_3) - D_{G'}(u_1) > 0$, by (11) we have

$$\frac{1}{\sqrt{D_{G'}(u_4)D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_4)D_G(u_3)}},\tag{19}$$

$$\frac{1}{\sqrt{D_{G'}(u_4) + D_{G'}(u_1)}} > \frac{1}{\sqrt{D_G(u_4) + D_G(u_3)}},\tag{20}$$

$$\frac{1}{\sqrt{D_{G'}(u_x)D_{G'}(u_y)}} \ge \frac{1}{\sqrt{D_G(u_x)D_G(u_y)}},\tag{21}$$

$$\frac{1}{\sqrt{D_{G'}(u_x) + D_{G'}(u_y)}} \ge \frac{1}{\sqrt{D_G(u_x) + D_G(u_y)}},\tag{22}$$

where $u_x, u_y \in V(C_r) \setminus \{u_2, u_3\}$. By (11) and (12) we have

$$\frac{1}{\sqrt{D_{G'}(u_1)D_{G'}(w)}} > \frac{1}{\sqrt{D_G(u_1)D_G(w)}},\tag{23}$$

$$\frac{1}{\sqrt{D_{G'}(u_1) + D_{G'}(w)}} > \frac{1}{\sqrt{D_G(u_1) + D_G(w)}}, \text{ where } w \in W_{u_1}.$$
 (24)

By (13), (15), (17), (19), (21), (23) and the definition of Balaban index, if r is odd, we have J(G) < J(G').

By (14), (16), (18), (20), (22), (24) and the definition of Sam-Balaban index, if r is odd, we have SJ(G) < SJ(G'). \square

From the above discussions, for any unicyclic graph $G \in \mathbb{U}_n$, we finally get the graph G_1 from G by the edge-lifting transformation, branch transformation, cycle transformation, or any combination of these, where G_1 is defined in Figure 2.6. By Lemmas 2.1, 2.2 and Theorem 2.7, we have

$$J(G) \leq J(G_1)$$
 and $SJ(G) \leq SJ(G_1)$.

Figure 2.6 Graph G_1

Theorem 2.8 Let G_1 be defined in Figure 2.6. Then G_1 is the unique unicyclic graph in \mathbb{U}_n , which attains the maximum Balaban index and Sum-Balaban index, and

$$J(G_1) = \frac{n}{\sqrt{2n^2 - 6n + 4}} + \frac{n}{4n - 8} + \frac{n^2 - 3n}{2\sqrt{2n^2 - 5n + 3}},$$

$$SJ(G_1) = \frac{n}{\sqrt{3n - 5}} + \frac{n}{4\sqrt{n - 2}} + \frac{n^2 - 3n}{2\sqrt{3n - 4}}.$$

Proof It can be checked directly that

$$D_{G_1}(u_1) = n - 1$$
, $D_{G_1}(u_2) = D_{G_1}(u_3) = 2n - 4$, $D_{G_1}(w) = 2n - 3$, where $w \in W_{u_1}$.

Thus

$$J(G_1) = \frac{n}{2} \left[\frac{1}{\sqrt{D_{G_1}(u_1)D_{G_1}(u_2)}} + \frac{1}{\sqrt{D_{G_1}(u_1)D_{G_1}(u_3)}} + \frac{1}{\sqrt{D_{G_1}(u_2)D_{G_1}(u_3)}} + \frac{n-3}{\sqrt{D_{G_1}(u_1)D_{G_1}(w)}} \right]$$

$$= \frac{n}{\sqrt{2n^2 - 6n + 4}} + \frac{n}{4n - 8} + \frac{n^2 - 3n}{2\sqrt{2n^2 - 5n + 3}},$$

and

$$SJ(G_1) = \frac{n}{2} \left[\frac{1}{\sqrt{D_{G_1}(u_1) + D_{G_1}(u_2)}} + \frac{1}{\sqrt{D_{G_1}(u_1) + D_{G_1}(u_3)}} + \frac{1}{\sqrt{D_{G_1}(u_2) + D_{G_1}(u_3)}} + \frac{n-3}{\sqrt{D_{G_1}(u_1) + D_{G_1}(w)}} \right] = \frac{n}{\sqrt{3n-5}} + \frac{n}{4\sqrt{n-2}} + \frac{n^2 - 3n}{2\sqrt{3n-4}}. \quad \Box$$

3. The second largest Balaban index (Sum-Balaban index) of unicyclic graphs

Let \tilde{G} be the set of graphs which attains the second largest Balaban index (Sum-Balaban index) of unicyclic graphs, obviously, we can obtain G_1 from G_i ($2 \le i \le 6$) by one single transformation (that is, no combination is allowed), then

$$J(\tilde{G}) = \max_{2 \le i \le 6} J(G_i), \quad SJ(\tilde{G}) = \max_{2 \le i \le 6} SJ(G_i),$$

where G_i ($2 \le i \le 6$) is defined as in Figure 3.1.

Figure 3.1 Graphs $G_i(2 \le i \le 6)$

The pendent edge transformation Let $G = G_6 \in \mathbb{U}_n$, $V(C_3) = \{u_1, u_2, u_3\}$ and $W_{u_1} = \{w|wu_1 \in E(G) \text{ and } \deg(w) = 1\}$, $|W_{u_1}| = k_1$, $W_{u_2} = \{w|wu_2 \in E(G) \text{ and } \deg(w) = 1\}$, $|W_{u_2}| = k_2$, where $k_1 > 0$, $k_2 > 0$ and $k_1 + k_2 + 3 = n$. Without loss of generality, let $k_1 \geq k_2 > 0$. G' is the graph obtained from G by deleting the edge u_2u_4 and adding the edge u_1u_4 . We say that G' is obtained from G by the pendent edge transformation (see Figure 3.2).

Figure 3.2 The pendent edge transformation on G_6

Theorem 3.1 Let $G = G_6$ be defined as in Figure 3.2, where $k_1 \ge k_2 > 0$, $k_1 + k_2 = n - 3$ and $n \ge 5$. Let G' be obtained from G by the pendent edge transformation. Then J(G) < J(G') and SJ(G) < SJ(G').

Proof It is easy to see that

$$\begin{split} D_G(u_1) &= D_{G'}(u_1) + 1 = k_1 + 2k_2 + 2, \\ D_G(u_2) &= D_{G'}(u_2) - 1 = 2k_1 + k_2 + 2 \ge D_G(u_1) \ \ (\text{since } k_1 \ge k_2), \end{split}$$

$$D_G(u_3) = D_{G'}(u_3) = 2k_1 + 2k_2 + 2,$$

$$D_G(u_x) = D_{G'}(u_x) + 1 = 2k_1 + 3k_2 + 3, \quad u_x \in W_{u_1},$$

$$D_G(u_y) = D_{G'}(u_y) - 1 = 3k_1 + 2k_2 + 3, \quad u_y \in W_{u_2}.$$

(i) For the edge $u_1u_2 \in E(G)$.

Let $x = D_{G'}(u_2)$, $y = D_{G'}(u_1)$ and a = 1. Then $x - y = k_1 - k_2 + 2 > a$ (since $k_1 \ge k_2$). By Lemma 2.4 we have

$$\frac{1}{\sqrt{D_{G'}(u_2)D_{G'}(u_1)}} \ge \frac{1}{\sqrt{[D_{G'}(u_2) - 1][D_{G'}(u_1) + 1]}} = \frac{1}{\sqrt{D_{G}(u_2)D_{G}(u_1)}}$$
(25)

$$\frac{1}{\sqrt{D_{G'}(u_2) + D_{G'}(u_1)}} = \frac{1}{\sqrt{D_G(u_2) + D_G(u_1)}}.$$
 (26)

(ii) For the edges $u_1u_3, u_2u_3 \in E(G)$.

Let $x_2 = D_{G'}(u_2)$, $x_1 = D_G(u_2)$, $y_2 = D_G(u_1)$, and $y_1 = D_{G'}(u_1)$. Then $x_2 - x_1 = y_2 - y_1 = 1$. By Lemma 2.5 we have

$$\frac{1}{\sqrt{D_G(u_2)}} + \frac{1}{\sqrt{D_G(u_1)}} < \frac{1}{\sqrt{D_{G'}(u_2)}} + \frac{1}{\sqrt{D_{G'}(u_1)}}.$$

From $D_G(u_3) = D_{G'}(u_3)$, it follows

$$\frac{1}{\sqrt{D_G(u_2)D_G(u_3)}} + \frac{1}{\sqrt{D_G(u_1)D_G(u_3)}} < \frac{1}{\sqrt{D_{G'}(u_2)D_{G'}(u_3)}} + \frac{1}{\sqrt{D_{G'}(u_1)D_{G'}(u_3)}}.$$
 (27)

Let $x_2 = D_{G'}(u_2) + D_{G'}(u_3)$, $x_1 = D_G(u_2) + D_G(u_3)$, $y_2 = D_G(u_1) + D_G(u_3)$, and $y_1 = D_{G'}(u_1) + D_{G'}(u_3)$. Then $x_2 - x_1 = y_2 - y_1 = 1 > 0$. By Lemma 2.5 we have

$$\frac{1}{\sqrt{D_G(u_2) + D_G(u_3)}} + \frac{1}{\sqrt{D_G(u_1) + D_G(u_3)}} < \frac{1}{\sqrt{D_{G'}(u_2) + D_{G'}(u_3)}} + \frac{1}{\sqrt{D_{G'}(u_1) + D_{G'}(u_3)}}.$$
(28)

(iii) For the edges $u_1u_x, u_2u_y \in E(G)$, where $u_x \in W_{u_1}$ and $u_y \in W_{u_2}$.

Let $w = D_G(u_y)$, $x = D_{G'}(u_x)$, $z = D_G(u_2)$, $y = D_{G'}(u_1)$ and a = a' = b = b' = 1. Then $w \ge x$, $z \ge y$. By Lemma 2.6 we have

$$\frac{1}{\sqrt{D_G(u_y)D_G(u_2)}} + \frac{1}{\sqrt{(D_{G'}(u_x) + 1)(D_{G'}(u_1) + 1)}}$$

$$\leq \frac{1}{\sqrt{(D_G(u_y) + 1)(D_G(u_2) + 1)}} + \frac{1}{\sqrt{D_{G'}(u_x)D_{G'}(u_1)}}$$

and thus

$$\frac{1}{\sqrt{D_G(u_y)D_G(u_2)}} + \frac{1}{\sqrt{D_G(u_x)D_G(u_1)}} \le \frac{1}{\sqrt{D_{G'}(u_y)D_{G'}(u_2)}} + \frac{1}{\sqrt{D_{G'}(u_x)D_{G'}(u_1)}}.$$
 (29)

Let $x_2 = D_{G'}(u_y) + D_{G'}(u_2)$, $x_1 = D_G(u_y) + D_G(u_2)$, $y_2 = D_G(u_1) + D_G(u_x)$, and $y_1 = D_{G'}(u_1) + D_{G'}(u_x)$. Then $x_2 - x_1 = y_2 - y_1 = 2 > 0$. By Lemma 2.5 we have

$$\frac{1}{\sqrt{D_G(u_y) + D_G(u_2)}} + \frac{1}{\sqrt{D_G(u_1) + D_G(u_x)}}$$

$$<\frac{1}{\sqrt{D_{G'}(u_y) + D_{G'}(u_2)}} + \frac{1}{\sqrt{D_{G'}(u_1) + D_{G'}(u_x)}}.$$
 (30)

(iv) For the edge $u_2u_4 \in E(G)$.

Since $D_G(u_2) - D'_G(u_1) = k_1 - k_2 + 1 > 0$ and $D_G(u_4) - D'_G(u_4) = k_1 + k_2 + 1 > 0$, we have

$$\frac{1}{\sqrt{D_G(u_2)D_G(u_4)}} < \frac{1}{\sqrt{D_{G'}(u_1)D_{G'}(u_4)}},\tag{31}$$

$$\frac{1}{\sqrt{D_G(u_2) + D_G(u_4)}} < \frac{1}{\sqrt{D_{G'}(u_1) + D_{G'}(u_4)}}.$$
(32)

(v) For the edges $u_1u_x \in E(G)$, where $u_x \in W_{u_1}$.

Since $D_G(u_1) > D_{G'}(u_1)$ and $D_G(u_x) > D_{G'}(u_x)$, we have

$$\frac{1}{\sqrt{D_G(u_1)D_G(u_x)}} < \frac{1}{\sqrt{D_{G'}(u_1)D_{G'}(u_x)}},\tag{33}$$

$$\frac{1}{\sqrt{D_G(u_1) + D_G(u_x)}} < \frac{1}{\sqrt{D_{G'}(u_1) + D_{G'}(u_x)}}.$$
(34)

By (25), (27), (29), (31), (33) and the definition of Balaban index, we have J(G) < J(G').

By (26), (28), (30), (32), (34) and the definition of Sum-Balaban index, we have SJ(G) < SJ(G'). \square

We will get G_7 from G_6 by repeating pendent edge transformations. From Theorem 3.1 we have $J(G_6) \leq J(G_7)$ and $SJ(G_6) \leq SJ(G_7)$, where G_7 is defined as in Figure 3.3.

Figure 3.3 Graph G_7

Theorem 3.2 Let G_i $(2 \le i \le 7)$ be defined as in Figures 3.2 and 3.3.

- (i) If n=4, then G_2 is the unique graph in \mathbb{U}_n which attains the second largest Balaban index and Sum-Balaban index, and $J(G_2)=2$, $SJ(G_2)=2\sqrt{2}$.
- (ii) If $n \geq 5$, then G_7 is the unique graph in \mathbb{U}_n which attains the second largest Balaban index and Sum-Balaban index, and

$$J(G_7) = \frac{n}{2} \left[\frac{1}{\sqrt{n(2n-5)}} + \frac{1}{\sqrt{n(2n-4)}} + \frac{1}{\sqrt{(2n-5)(2n-4)}} + \frac{1}{\sqrt{(2n-5)(3n-7)}} + \frac{n-4}{\sqrt{n(2n-2)}} \right],$$

$$SJ(G_7) = \frac{n}{2} \left(\frac{1}{\sqrt{3n-5}} + \frac{1}{\sqrt{3n-4}} + \frac{1}{\sqrt{4n-9}} + \frac{1}{\sqrt{5n-12}} + \frac{n-4}{\sqrt{3n-2}} \right).$$

Proof It can be directly checked that

$$J(G_2) = \frac{n}{2}(\frac{4}{\sqrt{4\cdot 4}}) = \frac{n}{2},$$

$$\begin{split} SJ(G_2) &= \frac{n}{2} \big(\frac{4}{\sqrt{4+4}} \big) = \frac{\sqrt{2}}{2} n, \\ J(G_3) &= \frac{n}{2} \Big[\frac{2}{\sqrt{(3n-8)(2n-4)}} + \frac{2}{\sqrt{n(2n-4)}} + \frac{n-4}{\sqrt{n(2n-2)}} \Big], \\ SJ(G_3) &= \frac{n}{2} \Big(\frac{2}{\sqrt{5n-12}} + \frac{2}{\sqrt{3n-4}} + \frac{n-4}{\sqrt{3n-2}} \Big), \\ J(G_4) &= \frac{n}{2} \Big[\frac{2}{\sqrt{(2n-4)(n+1)}} + \frac{2}{\sqrt{(2n-4)(3n-9)}} + \frac{1}{3n-9} + \frac{n-5}{\sqrt{(2n-1)(n+1)}} \Big], \\ SJ(G_4) &= \frac{n}{2} \Big(\frac{2}{\sqrt{3n-3}} + \frac{2}{\sqrt{5n-13}} + \frac{1}{\sqrt{6n-18}} + \frac{n-5}{\sqrt{3n}} \Big), \\ J(G_5) &= \frac{n}{2} \Big[\frac{2}{\sqrt{n(2n-3)}} + \frac{1}{2n-3} + \frac{1}{\sqrt{n(2n-4)}} + \frac{1}{\sqrt{(2n-4)(3n-6)}} + \frac{n-5}{\sqrt{n(2n-2)}} \Big], \\ SJ(G_5) &= \frac{n}{2} \Big(\frac{2}{\sqrt{3n-3}} + \frac{1}{\sqrt{4n-6}} + \frac{1}{\sqrt{3n-4}} + \frac{1}{\sqrt{5n-10}} + \frac{n-5}{\sqrt{3n-2}} \Big), \\ J(G_7) &= \frac{n}{2} \Big[\frac{1}{\sqrt{n(2n-5)}} + \frac{1}{\sqrt{n(2n-4)}} + \frac{1}{\sqrt{(2n-5)(2n-4)}} + \frac{1}{\sqrt{(2n-5)(3n-7)}} + \frac{n-4}{\sqrt{n(2n-2)}} \Big], \\ SJ(G_7) &= \frac{n}{2} \Big(\frac{1}{\sqrt{3n-5}} + \frac{1}{\sqrt{3n-4}} + \frac{1}{\sqrt{4n-9}} + \frac{1}{\sqrt{5n-12}} + \frac{n-4}{\sqrt{3n-2}} \Big). \end{split}$$

So the case n = 4 is clear.

If n > 5, we have

$$J(G_7) - J(G_3) = \frac{n}{2} \left[\left(\frac{1}{\sqrt{n(2n-5)}} - \frac{1}{\sqrt{n(2n-4)}} \right) + \left(\frac{1}{\sqrt{(2n-5)(2n-4)}} - \frac{1}{\sqrt{(3n-8)(2n-4)}} \right) \right]$$

$$\left(\frac{1}{\sqrt{(3n-7)(2n-5)}} - \frac{1}{\sqrt{(3n-8)(2n-4)}} \right) \right]$$

$$> \frac{n}{2} \left(\frac{1}{\sqrt{(3n-7)(2n-5)}} - \frac{1}{\sqrt{(3n-8)(2n-4)}} \right) > 0 \text{ (by Lemma 2.2)}$$

and

$$SJ(G_7) - SJ(G_3) = \frac{n}{2} \left[\left(\frac{1}{\sqrt{3n-5}} - \frac{1}{\sqrt{3n-4}} \right) + \left(\frac{1}{\sqrt{4n-9}} - \frac{1}{\sqrt{5n-12}} \right) \right] > 0.$$

Therefore $J(G_7) > J(G_3)$ and $SJ(G_7) > SJ(G_3)$. It can be proved in a similar way that if $n \ge 5$, $J(G_7) > J(G_i)$ and $SJ(G_7) > SJ(G_i)$ for all $3 \le i \le 6$. Hence

$$\begin{split} \max_{3 \leq i \leq 7} J(G_i) &= J(G_7) = \frac{n}{2} \Big[\frac{1}{\sqrt{n(2n-5)}} + \frac{1}{\sqrt{n(2n-4)}} + \frac{1}{\sqrt{(2n-5)(2n-4)}} + \\ & \frac{1}{\sqrt{(2n-5)(3n-7)}} + \frac{n-4}{\sqrt{n(2n-2)}} \Big], \\ \max_{3 \leq i \leq 7} SJ(G_i) &= SJ(G_7) = \frac{n}{2} \Big(\frac{1}{\sqrt{3n-5}} + \frac{1}{\sqrt{3n-4}} + \frac{1}{\sqrt{4n-9}} + \frac{1}{\sqrt{5n-12}} + \frac{n-4}{\sqrt{3n-2}} \Big). \end{split}$$

The theorem now holds. \Box

Acknowledgements The authors would like to thank the referees for their valuable comments, corrections, and suggestions, which lead to an improvement of the original paper.

References

- A. T. BALABAN. Highly discriminating distance-based topological index. Chem. Phys. Lett., 1982, 89: 399-404.
- [2] A. T. BALABAN. Topological indices based on topological distances in molecular graphs. Pure Appl. Chem., 1983, 55: 199–206.
- [3] A. T. BALABAN, N. IONESCU-PALLAS, T. S. BALABAN. Asymptotic values of topological indices J and J' (average distance sum connectivities) for infinite acyclic and cyclic graphs. MATCH Commun. Math. Comput. Chem., 1985, 17: 121–146.
- [4] Hanyuan DENG. On the Balaban index of trees. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 253–260.
- [5] Wei FANG, Yubin GAO, Yanling SHAO, et al. Maximum Balaban index and Sum-Balaban index of bicyclic graphs. MATCH Commun. Math. Comput. Chem., 2016, 75(1): 129–156.
- [6] Lihua YOU, Xing DONG. The maximum Balaban index (Sum-Balaban index) of unicyclic graphs. J. Math. Res. Appl., 2014, **34**(4): 392–402.
- [7] Hawei DONG, Xiaofeng GUO. Character of trees with extreme Balaban index. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 261–272.
- [8] Rundang XING, Bo ZHOU, A. GROVAC. On Sum-Balaban index. Ars Combin., 2012, 104: 211-223.
- [9] Lihua YOU, Han HAN. On Sum-Balaban index. Ars Combin., 2012, 104: 211-223.
- [10] Bo ZHOU, N. TRINAJSTIĆ. Bounds on the Balaban index. Croat. Chem. Acta., 2008, 81: 319–323.
- [11] Bo ZHOU, N. TRINAJSTIĆ. Comparison of topological indices based on iterated 'sum' versus 'product' operations. Iranian J. Math. Chem., 2010, 1: 43–67.
- [12] Hanyuan DENG. On the Sum-Balaban index. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 273–284.