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Abstract Balaban index and Sum-Balaban index were used in various quantitative structure-

property relationship and quantitative structure activity relationship studies. In this paper,

the unicyclic graphs with the second largest Balaban index and the second largest Sum-

Balaban index among all unicyclic graphs on n vertices are characterized, respectively.
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1. Introduction

Let G be a simple and connected graph with |V (G)| = n and |E(G)| = m. Then µ =

|E(G)| − |V (G)|+ 1 = m−n+ 1 is the cyclomatic number. As usual, let NG(u) be the neighbor

vertex set of vertex u, and dG(u, v) be the distance between vertices u and v in G. Then

dG(u) = |NG(u)| is called the degree of u, and DG(u) =
∑

v∈V (G) dG(u, v) (or D(u) for short) is

the distance sum of vertex u in G.

Balaban index was proposed by Balaban [1,2] which is also called the average distance-sum

connectivity or J index. The Balaban index of a simple connected graph G is defined as

J(G) =
m

µ+ 1

∑
uv∈E(G)

1√
DG(u)DG(v)

.

Balaban et al. [3] also proposed the Sum-Balaban index SJ(G) of a connected graph G, which

is defined as

SJ(G) =
m

µ+ 1

∑
uv∈E(G)

1√
DG(u) +DG(v)

.

For chemical applications, it may be interesting to identify the graph with the maximum

and minimum topological indices in given class of graphs. Deng [4] proved that among all trees
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with n vertices, the star Sn and the path Pn have the maximal and the minimal Balaban index.

Fang and Gao et al. [5] gave the sharp upper bounds of Balaban index and Sum-Balaban index

for bicyclic graphs, and characterize the bicyclic graphs which attain the upper bounds. You

and Dong [6] gave the unicyclic graphs with the maximum Balaban index and the maximum

Sum-Balaban index among all unicyclic graphs on n vertices. More mathematical propertices

of Balaban index can be found in [7–10]. More mathematical propertices of Sum-Balaban index

can be found in [8,9,11,12].

Although in [6], Lihua YOU has characterized unicyclic graphs with the maximum Balaban

index (Sum-Balaban index) and calculated the corresponding value of the maximum index, in

order to find unicyclic graphs with the second largest Balaban index (Sum-Balaban index) we

shall first use a new method to find unicyclic graphs with the maximum Balaban index (Sum-

Balaban index).

2. The maximum Balaban index (Sum-Balaban index) of unicyclic
graphs

We first introduce some useful graph transformations.

2.1. The edge-lifting transformation

The edge-lifting transformation ([4,12]) Let G1 and G2 be two graphs with n1 ≥ 2 and

n2 ≥ 2 vertices, respectively. If G is the graph obtained from G1 and G2 by adding an edge

between a vertex u0 of G1 and a vertex v0 of G2, G′ is the graph obtained by identifying u0 of G1

to v0 of G2 and adding a pendent edge to u0(v0), then G′ is called the edge-lifting transformation

of G (see Figure 2.1).

• •G1 G2u0 v0

G

•

•w0

u0G1 G2

G′

Figure 2.1 The edge-lifting transformation

Lemma 2.1 ([4,12]) Let G′ be the edge-lifting transformation of G. Then J(G) < J(G′), and

SJ(G) < SJ(G′).

A rooted graph has one of its vertices, called the root, distinguished from the others. If T

is a rooted star, then the root is its center.

Let T1, T2, . . . , Tk be k rooted trees with |V (Ti)| ≥ 2 (1 ≤ i ≤ k) and roots u1, u2, . . . , uk,

respectively. Let Cr be a cycle with length r (r ≥ 3).

Let Un be the set of all unicyclic graphs on n vertices, G(n, r, k) be a unicyclic graph on n

vertices obtained from Cr, T1, T2, . . . , Tk by attaching k rooted trees T1, T2, . . . , Tk to k distinct

vertices of the cycle Cr. Let G∗(n, r, k) be the set of all unicyclic graphs on n vertices obtained
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from Cr by attaching k rooted stars to k distinct vertices of Cr (see Figure 2.2).

For any G(n, r, k) ∈ Un, by repeating edge-lifting transformations on G(n, r, k), we will get a

unicyclic graph G∗(n, r, k) ∈ G∗(n, r, k) from G(n, r, k). By Lemma 2.1, we have J(G(n, r, k)) <

J(G∗(n, r, k)) and SJ(G(n, r, k)) < SJ(G∗(n, r, k)).

•�
@
···

•@�
· · ·

···

•
�@· · ·

u1

u2

uk

Cr

Figure 2.2 G∗(n, r, k)

2.2. Branch transformation

Branch transformation ([6]) Let G = G∗(n, r, k) ∈ G∗(n, r, k) and m = b r2c. Define Cr =

v1v2 · · · vmum · · ·u2u1v1 for even r and Cr = v1v2 · · · vmvm+1um · · ·u2u1v1 for odd r. Then G′

is obtained from G by deleting the pendent edge uiw and adding the pendent edge viw for any

i ∈ {1, 2, . . . ,m} (if there exists the pendent edge uiw), where w ∈ V (G)\V (Cr). We say G′

is obtained from G by branch transformation (see Figure 2.3, where pi ≥ 0, qi ≥ 0 for any

i ∈ {1, 2, . . . ,m}).
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G = G∗(n, r, k) for r is even G′

Figure 2.3 The branch transformation

Lemma 2.2 ([6]) Let n, r, k be positive integers with 2 ≤ k ≤ r, 3 ≤ r ≤ n−k, G = G∗(n, r, k) ∈
G∗(n, r, k), G′ be the graph obtained from G by branch transformation. Then J(G) < J(G′),

SJ(G) < SJ(G′).

Lemma 2.3 ([6]) Let n, r, k be positive integers with 2 ≤ k ≤ r, 3 ≤ r ≤ n−k, G = G∗(n, r, k) ∈
G∗(n, r, k), G′ be the graph obtained from G by repeating the branch transformation, and we

cannot get other graph from Gcby repeating branch transformation. Then

(i) G′ ∈ G∗(n, r, 1) (see Figure 2.4).

(ii) J(G) ≤ J(G′), the equality holds if and only if G ∼= G′.

(iii) J(G) ≤ SJ(G′), the equality holds if and only if G ∼= G′.
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2.3. The cycle transformation

The cycle transformation Let G = G∗(n, r, 1) ∈ G∗(n, r, 1) be defined as in Figure 2.4, where

V (Cr) = u1, u2, . . . , ur, and n, r be positive integers with 3 ≤ r ≤ n.

•�
@
···

•

···

•

}
n− ru1

u2

ur

Cr

Figure 2.4 Graph G∗(n, r, 1) ∈ G∗(n, r, 1)

(i) If r ≥ 4 is even, then G′ is the graph obtained from G by deleting the edge u2u3 and

adding the edge u1u3.

(ii) If r ≥ 5 is odd, then G′ is the graph obtained from G by deleting the edges u2u3 and

u3u4, and adding the edges u1u3 and u1u4.

We say G′ is obtained from G by the cycle transformation (see Figure 2.5).
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Cycle transformation−−−−−−−−−−−−−−−−→

G = G∗(n, r, 1) (n is even and n ≥ 4) G′
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Cycle transformation−−−−−−−−−−−−−−−−→

G = G∗(n, r, 1) (n is odd and n ≥ 5) G′

Figure 2.5 The cycle transformation

Lemma 2.4 ([7]) Let x, y, a ∈ R+ such that x ≥ y + a. Then 1√
xy ≥

1√
(x−a)(y+a)

, and the

equality holds if and only if x = y + a.

Lemma 2.5 ([6]) Let x1, x2, y1, y2 ∈ R+ such that x1 > y1 and x2 − x1 = y2 − y1 > 0. Then
1√
x1

+ 1√
y2
< 1√

x2
+ 1√

y1
.

Lemma 2.6 ([7]) Let a, a′, b, b′, w, x, y, z ∈ R+ such that b
x ≥

a
w ,

b′

y ≥
a′

z , w ≥ x and z ≥ y.

Then 1√
(w+a)(z+a′)

+ 1√
xy ≥

1√
wz

+ 1√
(x+b)(y+b′)

, and the equality holds if and only if b = a, b′ =

a′, w = x and z = y.

Lemma 2.7 Let G = G∗(n, r, 1) ∈ G∗(n, r, 1), G′ be the graph obtained from G by cycle
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transformation (see Figure 2.5). Then J(G) < J(G′) and SJ(G) < SJ(G′).

Proof Let V (Cr) = {u1, u2, . . . , ur} and Wu1 = {w|wu1 ∈ G and dG(w) = 1}.

Case 1 r is even.

We first consider the vertex ux ∈ V (Cr)\{u2}. It is easy to see that

DG(ux) = DG(ux, Cr) +DG(ux,Wu1
) = [2(1 + 2 + · · ·+ r − 2

2
) +

r

2
] + (n− r)(DG(ux, u1) + 1),

DG′(ux) = DG′(ux, Cr) +DG′(ux,Wu1
) = 2(1 + 2 + · · ·+ r − 2

2
) + (n− r+ 1)(DG′(ux, u1) + 1).

Since DG(ux, u1) ≥ DG′(ux, u1) and DG′(ux, u1) + 1 < r
2 , where ux ∈ V (Cr)\{u2}, we have

DG(ux)−DG′(ux) =
r

2
+ (n− r)[DG(ux, u1)−DG′(ux, u1)]− [DG′(ux, u1) + 1] > 0. (1)

Next we consider u2 and the vertices in Wu1
. Clearly

DG(w) > DG′(w), where w ∈Wu1
, (2)

and

DG(u2) = 2(1 + 2 + · · ·+ r − 2

2
) +

r

2
+ 2(n− r),

DG′(u2) = 2(1 + 2 + · · ·+ r − 2

2
) + (r − 1) + 2(n− r),

DG(u1) = 2(1 + 2 + · · ·+ r − 2

2
) +

r

2
+ (n− r),

DG′(u1) = 2(1 + 2 + · · ·+ r − 2

2
) + 1 + (n− r).

As such, we have

DG′(u2)−DG(u2) =
r

2
− 1,

DG(u1)−DG′(u1) =
r

2
− 1,

DG′(u2)−DG′(u1) = n− 2.

Let x = DG′(u2), y = DG′(u1), a = r
2 − 1. Then x− y = n− 2 > a. By Lemma 2.4, we have

1√
DG′(u2)DG′(u1)

>
1√

[DG′(u2)− a][DG′(u1) + a]
=

1√
DG(u2)DG(u1)

, (3)

1√
DG′(u2) +DG′(u1)

=
1√

DG(u2) +DG(u1)
. (4)

Since DG′(u3) < DG(u3) and DG′(u1) < DG(u2), we have

1√
DG′(u3)DG′(u1)

>
1√

DG(u3)DG(u2)
, (5)

1√
DG′(u3) +DG′(u1)

>
1√

DG(u3) +DG(u2)
. (6)

From (1) and (2), we have

1√
DG′(ux)DG′(uy)

>
1√

DG(ux)DG(uy)
, (7)



396 Wei FANG, Yubin GAO, Kai FANG and et al.

1√
DG′(ux) +DG′(uy)

>
1√

DG(ux) +DG(uy)
, (8)

1√
DG′(u1)DG′(w)

>
1√

DG(u1)DG(w)
, (9)

1√
DG′(u1) +DG′(w)

>
1√

DG(u1) +DG(w)
, (10)

where ux, uy ∈ V (Cr)\{u2} and w ∈Wu1
.

By (3),(5), (7), (9) and the definition of Balaban index, if r is even we have J(G) < J(G′). By

(4), (6), (8), (10) and the definition of Sum-Balaban index, if r is even we have SJ(G) < SJ(G′).

Case 2 r is odd.

We first consider the vertex ux ∈ V (Cr)\{u2, u3}. It is easy to see that

DG(ux) = DG(ux, Cr) +DG(ux,Wu1
) = 2(1 + 2 + · · ·+ r − 1

2
) + (n− r)(DG(ux, u1) + 1)

DG′(ux) = DG′(ux, Cr) +DG′(ux,Wu1) = 2(1 + 2 + · · ·+ r − 3

2
) + (n− r+ 2)(DG′(ux, u1) + 1).

Since DG(ux, u1) ≥ DG′(ux, u1) and DG′(ux, u1) + 1 ≤ r−1
2 , we have

DG(ux)−DG′(ux) = (r− 1) + (n− r)[DG(ux, u1)−DG′(ux, u1)]− 2[DG′(ux, u1) + 1] ≥ 0, (11)

where ux ∈ V (Cr)\{u2, u3}.
Next we consider u2, u3 and the vertices in Wu1 . Clearly

DG(w) > DG′(w), where w ∈Wu1
, (12)

and

DG(u1) = 2(1 + 2 + · · ·+ r − 1

2
) + (n− r),

DG′(u1) = 2(1 + 2 + · · ·+ r − 3

2
) + 2 + (n− r),

DG(u2) = 2(1 + 2 + · · ·+ r − 1

2
) + 2(n− r),

DG′(u2) = DG′(u1) + (n− 2) = 2(1 + 2 + · · ·+ r − 3

2
) + 2n− r,

DG(u3) = 2(1 + 2 + · · ·+ r − 1

2
) + 3(n− r),

DG′(u3) = DG′(u2) = 2(1 + 2 + · · ·+ r − 3

2
) + 2n− r.

Thus we have

DG′(u2)−DG(u2) = 1, DG(u1)−DG′(u1) = r − 3 ≥ 2.

Let x = DG′(u2), y = DG′(u1), a = 1. Then x− y = n− 2 > a. By Lemma 2.4, we have

1√
DG′(u2)DG′(u1)

≥ 1√
[DG′(u2)− 1][DG′(u1) + 1]

>
1√

DG(u2)DG(u1)
, (13)

1√
DG′(u2) +DG′(u1)

>
1√

DG(u2) +DG(u1)
. (14)
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Note that DG(u3) −DG′(u3) = (r − 1) + (3n − 3r) − (2n − r) = n − r − 1. If n > r, then

DG(u3)−DG′(u3) ≥ 0 and we have

1√
DG′(u3)DG′(u1)

>
1√

DG(u3)DG(u2)
, (15)

1√
DG′(u3) +DG′(u1)

>
1√

DG(u3) +DG(u2)
. (16)

If n = r, then DG′(u3)−DG(u3) = 1 and DG(u2)−DG′(u1) = n− 3 ≥ 2. Let x = DG′(u3), y =

DG′(u1), a = 1. Then x− y > n− 2 > a. By Lemma 2.4, we have

1√
DG′(u3)DG′(u1)

≥ 1√
[DG′(u2)− 1][DG′(u1) + 1]

>
1√

DG(u3)DG(u2)
, (17)

1√
DG′(u3) +DG′(u1)

>
1√

DG(u3) +DG(u2)
. (18)

Since DG(u3)−DG′(u1) > 0, by (11) we have

1√
DG′(u4)DG′(u1)

>
1√

DG(u4)DG(u3)
, (19)

1√
DG′(u4) +DG′(u1)

>
1√

DG(u4) +DG(u3)
, (20)

1√
DG′(ux)DG′(uy)

≥ 1√
DG(ux)DG(uy)

, (21)

1√
DG′(ux) +DG′(uy)

≥ 1√
DG(ux) +DG(uy)

, (22)

where ux, uy ∈ V (Cr)\{u2, u3}. By (11) and (12) we have

1√
DG′(u1)DG′(w)

>
1√

DG(u1)DG(w)
, (23)

1√
DG′(u1) +DG′(w)

>
1√

DG(u1) +DG(w)
, where w ∈Wu1 . (24)

By (13), (15), (17), (19), (21), (23) and the definition of Balaban index, if r is odd, we have

J(G) < J(G′).

By (14), (16), (18), (20), (22), (24) and the definition of Sam-Balaban index, if r is odd, we

have SJ(G) < SJ(G′). 2

From the above discussions, for any unicyclic graph G ∈ Un, we finally get the graph G1

from G by the edge-lifting transformation, branch transformation, cycle transformation, or any

combination of these, where G1 is defined in Figure 2.6. By Lemmas 2.1, 2.2 and Theorem 2.7,

we have

J(G) ≤ J(G1) and SJ(G) ≤ SJ(G1).
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Figure 2.6 Graph G1

Theorem 2.8 Let G1 be defined in Figure 2.6. Then G1 is the unique unicyclic graph in Un,

which attains the maximum Balaban index and Sum-Balaban index, and

J(G1) =
n√

2n2 − 6n+ 4
+

n

4n− 8
+

n2 − 3n

2
√

2n2 − 5n+ 3
,

SJ(G1) =
n√

3n− 5
+

n

4
√
n− 2

+
n2 − 3n

2
√

3n− 4
.

Proof It can be checked directly that

DG1
(u1) = n− 1, DG1

(u2) = DG1
(u3) = 2n− 4,

DG1
(w) = 2n− 3, where w ∈Wu1

.

Thus

J(G1) =
n

2

[ 1√
DG1

(u1)DG1
(u2)

+
1√

DG1
(u1)DG1

(u3)
+

1√
DG1

(u2)DG1
(u3)

+
n− 3√

DG1
(u1)DG1

(w)

]
=

n√
2n2 − 6n+ 4

+
n

4n− 8
+

n2 − 3n

2
√

2n2 − 5n+ 3
,

and

SJ(G1) =
n

2

[ 1√
DG1(u1) +DG1(u2)

+
1√

DG1(u1) +DG1(u3)
+

1√
DG1(u2) +DG1(u3)

+

n− 3√
DG1

(u1) +DG1
(w)

]
=

n√
3n− 5

+
n

4
√
n− 2

+
n2 − 3n

2
√

3n− 4
. 2

3. The second largest Balaban index (Sum-Balaban index) of unicyclic
graphs

Let G̃ be the set of graphs which attains the second largest Balaban index (Sum-Balaban

index) of unicyclic graphs, obviously, we can obtain G1 from Gi (2 ≤ i ≤ 6) by one single

transformation (that is, no combination is allowed), then

J(G̃) = max
2≤i≤6

J(Gi), SJ(G̃) = max
2≤i≤6

SJ(Gi),

where Gi (2 ≤ i ≤ 6) is defined as in Figure 3.1.
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Figure 3.1 Graphs Gi(2 ≤ i ≤ 6)

The pendent edge transformation Let G = G6 ∈ Un, V (C3) = {u1, u2, u3} and Wu1
=

{w|wu1 ∈ E(G) and deg(w) = 1}, |Wu1
| = k1, Wu2

= {w|wu2 ∈ E(G) and deg(w) = 1},
|Wu2

| = k2, where k1 > 0, k2 > 0 and k1 +k2 +3 = n. Without loss of generality, let k1 ≥ k2 > 0.

G′ is the graph obtained from G by deleting the edge u2u4 and adding the edge u1u4. We say

that G′ is obtained from G by the pendent edge transformation (see Figure 3.2).
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G′(k1 + k2 = n− 3, k1 ≥ k2 > 0, n ≥ 5)

Pendent edge transformation−−−−−−−−−−−−−−−−−−−−−→

Figure 3.2 The pendent edge transformation on G6

Theorem 3.1 Let G = G6 be defined as in Figure 3.2, where k1 ≥ k2 > 0, k1 + k2 = n− 3 and

n ≥ 5. Let G′ be obtained from G by the pendent edge transformation. Then J(G) < J(G′) and

SJ(G) < SJ(G′).

Proof It is easy to see that

DG(u1) = DG′(u1) + 1 = k1 + 2k2 + 2,

DG(u2) = DG′(u2)− 1 = 2k1 + k2 + 2 ≥ DG(u1) (since k1 ≥ k2),
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DG(u3) = DG′(u3) = 2k1 + 2k2 + 2,

DG(ux) = DG′(ux) + 1 = 2k1 + 3k2 + 3, ux ∈Wu1
,

DG(uy) = DG′(uy)− 1 = 3k1 + 2k2 + 3, uy ∈Wu2
.

(i) For the edge u1u2 ∈ E(G).

Let x = DG′(u2), y = DG′(u1) and a = 1. Then x − y = k1 − k2 + 2 > a (since k1 ≥ k2).

By Lemma 2.4 we have

1√
DG′(u2)DG′(u1)

≥ 1√
[DG′(u2)− 1][DG′(u1) + 1]

=
1√

DG(u2)DG(u1)
(25)

1√
DG′(u2) +DG′(u1)

=
1√

DG(u2) +DG(u1)
. (26)

(ii) For the edges u1u3, u2u3 ∈ E(G).

Let x2 = DG′(u2), x1 = DG(u2), y2 = DG(u1), and y1 = DG′(u1). Then x2−x1 = y2−y1 =

1. By Lemma 2.5 we have

1√
DG(u2)

+
1√

DG(u1)
<

1√
DG′(u2)

+
1√

DG′(u1)
.

From DG(u3) = DG′(u3), it follows

1√
DG(u2)DG(u3)

+
1√

DG(u1)DG(u3)
<

1√
DG′(u2)DG′(u3)

+
1√

DG′(u1)DG′(u3)
. (27)

Let x2 = DG′(u2) + DG′(u3), x1 = DG(u2) + DG(u3), y2 = DG(u1) + DG(u3), and y1 =

DG′(u1) +DG′(u3). Then x2 − x1 = y2 − y1 = 1 > 0. By Lemma 2.5 we have

1√
DG(u2) +DG(u3)

+
1√

DG(u1) +DG(u3)

<
1√

DG′(u2) +DG′(u3)
+

1√
DG′(u1) +DG′(u3)

. (28)

(iii) For the edges u1ux, u2uy ∈ E(G), where ux ∈Wu1
and uy ∈Wu2

.

Let w = DG(uy), x = DG′(ux), z = DG(u2), y = DG′(u1) and a = a′ = b = b′ = 1. Then

w ≥ x, z ≥ y. By Lemma 2.6 we have

1√
DG(uy)DG(u2)

+
1√

(DG′(ux) + 1)(DG′(u1) + 1)

≤ 1√
(DG(uy) + 1)(DG(u2) + 1)

+
1√

DG′(ux)DG′(u1)

and thus

1√
DG(uy)DG(u2)

+
1√

DG(ux)DG(u1)
≤ 1√

DG′(uy)DG′(u2)
+

1√
DG′(ux)DG′(u1)

. (29)

Let x2 = DG′(uy) + DG′(u2), x1 = DG(uy) + DG(u2), y2 = DG(u1) + DG(ux), and y1 =

DG′(u1) +DG′(ux). Then x2 − x1 = y2 − y1 = 2 > 0. By Lemma 2.5 we have

1√
DG(uy) +DG(u2)

+
1√

DG(u1) +DG(ux)
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<
1√

DG′(uy) +DG′(u2)
+

1√
DG′(u1) +DG′(ux)

. (30)

(iv) For the edge u2u4 ∈ E(G).

Since DG(u2)−D′G(u1) = k1−k2 + 1 > 0 and DG(u4)−D′G(u4) = k1 +k2 + 1 > 0, we have

1√
DG(u2)DG(u4)

<
1√

DG′(u1)DG′(u4)
, (31)

1√
DG(u2) +DG(u4)

<
1√

DG′(u1) +DG′(u4)
. (32)

(v) For the edges u1ux ∈ E(G), where ux ∈Wu1 .

Since DG(u1) > DG′(u1) and DG(ux) > DG′(ux), we have

1√
DG(u1)DG(ux)

<
1√

DG′(u1)DG′(ux)
, (33)

1√
DG(u1) +DG(ux)

<
1√

DG′(u1) +DG′(ux)
. (34)

By (25), (27), (29), (31), (33) and the definition of Balaban index, we have J(G) < J(G′).

By (26), (28), (30), (32), (34) and the definition of Sum-Balaban index, we have SJ(G) <

SJ(G′). 2

We will get G7 from G6 by repeating pendent edge transformations. From Theorem 3.1 we

have J(G6) ≤ J(G7) and SJ(G6) ≤ SJ(G7), where G7 is defined as in Figure 3.3.

•

•

•

•

@
@
@

�
�
�

�
@
···
}
n− 4

u1

u2

u3

u4

Figure 3.3 Graph G7

Theorem 3.2 Let Gi (2 ≤ i ≤ 7) be defined as in Figures 3.2 and 3.3.

(i) If n = 4, then G2 is the unique graph in Un which attains the second largest Balaban

index and Sum-Balaban index, and J(G2) = 2, SJ(G2) = 2
√

2.

(ii) If n ≥ 5, then G7 is the unique graph in Un which attains the second largest Balaban

index and Sum-Balaban index, and

J(G7) =
n

2

[ 1√
n(2n− 5)

+
1√

n(2n− 4)
+

1√
(2n− 5)(2n− 4)

+

1√
(2n− 5)(3n− 7)

+
n− 4√
n(2n− 2)

]
,

SJ(G7) =
n

2

( 1√
3n− 5

+
1√

3n− 4
+

1√
4n− 9

+
1√

5n− 12
+

n− 4√
3n− 2

)
.

Proof It can be directly checked that

J(G2) =
n

2
(

4√
4 · 4

) =
n

2
,
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SJ(G2) =
n

2
(

4√
4 + 4

) =

√
2

2
n,

J(G3) =
n

2

[ 2√
(3n− 8)(2n− 4)

+
2√

n(2n− 4)
+

n− 4√
n(2n− 2)

]
,

SJ(G3) =
n

2

( 2√
5n− 12

+
2√

3n− 4
+

n− 4√
3n− 2

)
,

J(G4) =
n

2

[ 2√
(2n− 4)(n+ 1)

+
2√

(2n− 4)(3n− 9)
+

1

3n− 9
+

n− 5√
(2n− 1)(n+ 1)

]
,

SJ(G4) =
n

2

( 2√
3n− 3

+
2√

5n− 13
+

1√
6n− 18

+
n− 5√

3n

)
,

J(G5) =
n

2

[ 2√
n(2n− 3)

+
1

2n− 3
+

1√
n(2n− 4)

+
1√

(2n− 4)(3n− 6)
+

n− 5√
n(2n− 2)

]
,

SJ(G5) =
n

2

( 2√
3n− 3

+
1√

4n− 6
+

1√
3n− 4

+
1√

5n− 10
+

n− 5√
3n− 2

)
,

J(G7) =
n

2

[ 1√
n(2n− 5)

+
1√

n(2n− 4)
+

1√
(2n− 5)(2n− 4)

+

1√
(2n− 5)(3n− 7)

+
n− 4√
n(2n− 2)

]
,

SJ(G7) =
n

2

( 1√
3n− 5

+
1√

3n− 4
+

1√
4n− 9

+
1√

5n− 12
+

n− 4√
3n− 2

)
.

So the case n = 4 is clear.

If n ≥ 5, we have

J(G7)− J(G3) =
n

2

[
(

1√
n(2n− 5)

− 1√
n(2n− 4)

) + (
1√

(2n− 5)(2n− 4)
− 1√

(3n− 8)(2n− 4)
)

(
1√

(3n− 7)(2n− 5)
− 1√

(3n− 8)(2n− 4)
)]

>
n

2
(

1√
(3n− 7)(2n− 5)

− 1√
(3n− 8)(2n− 4)

) > 0 (by Lemma 2.2)

and

SJ(G7)− SJ(G3) =
n

2
[(

1√
3n− 5

− 1√
3n− 4

) + (
1√

4n− 9
− 1√

5n− 12
)] > 0.

Therefore J(G7) > J(G3) and SJ(G7) > SJ(G3). It can be proved in a similar way that if

n ≥ 5, J(G7) > J(Gi) and SJ(G7) > SJ(Gi) for all 3 ≤ i ≤ 6. Hence

max
3≤i≤7

J(Gi) = J(G7) =
n

2

[ 1√
n(2n− 5)

+
1√

n(2n− 4)
+

1√
(2n− 5)(2n− 4)

+

1√
(2n− 5)(3n− 7)

+
n− 4√
n(2n− 2)

]
,

max
3≤i≤7

SJ(Gi) = SJ(G7) =
n

2

( 1√
3n− 5

+
1√

3n− 4
+

1√
4n− 9

+
1√

5n− 12
+

n− 4√
3n− 2

)
.

The theorem now holds. 2
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