The Second Largest Balaban Index (Sum-Balaban Index) of Unicyclic Graphs

Wei FANG ${ }^{1, *}$, Yubin GAO ${ }^{2}$, Kai FAN ${ }^{3}$, Zhongshan LI 4
1. School of Instrument and Electronics, North University of China, Shanxi 030051, P. R. China;
2. Department of Mathematics, North University of China, Shanxi 030051, P. R. China;
3. Department of Mathematics, Southeast University, Jiangsu 211189, P. R. China;
4. Department of Mathematics \& Statistics, Georgia State University, Atlanta 30302, USA

Abstract

Balaban index and Sum-Balaban index were used in various quantitative structureproperty relationship and quantitative structure activity relationship studies. In this paper, the unicyclic graphs with the second largest Balaban index and the second largest SumBalaban index among all unicyclic graphs on n vertices are characterized, respectively.

Keywords Balaban index; Sum-Balaban index; unicyclic graph
MR(2010) Subject Classification 05C35; 05C50

1. Introduction

Let G be a simple and connected graph with $|V(G)|=n$ and $|E(G)|=m$. Then $\mu=$ $|E(G)|-|V(G)|+1=m-n+1$ is the cyclomatic number. As usual, let $N_{G}(u)$ be the neighbor vertex set of vertex u, and $d_{G}(u, v)$ be the distance between vertices u and v in G. Then $d_{G}(u)=\left|N_{G}(u)\right|$ is called the degree of u, and $D_{G}(u)=\sum_{v \in V(G)} d_{G}(u, v)$ (or $D(u)$ for short) is the distance sum of vertex u in G.

Balaban index was proposed by Balaban $[1,2]$ which is also called the average distance-sum connectivity or J index. The Balaban index of a simple connected graph G is defined as

$$
J(G)=\frac{m}{\mu+1} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u) D_{G}(v)}}
$$

Balaban et al. [3] also proposed the Sum-Balaban index $S J(G)$ of a connected graph G, which is defined as

$$
S J(G)=\frac{m}{\mu+1} \sum_{u v \in E(G)} \frac{1}{\sqrt{D_{G}(u)+D_{G}(v)}}
$$

For chemical applications, it may be interesting to identify the graph with the maximum and minimum topological indices in given class of graphs. Deng [4] proved that among all trees

[^0]with n vertices, the star S_{n} and the path P_{n} have the maximal and the minimal Balaban index. Fang and Gao et al. [5] gave the sharp upper bounds of Balaban index and Sum-Balaban index for bicyclic graphs, and characterize the bicyclic graphs which attain the upper bounds. You and Dong [6] gave the unicyclic graphs with the maximum Balaban index and the maximum Sum-Balaban index among all unicyclic graphs on n vertices. More mathematical propertices of Balaban index can be found in [7-10]. More mathematical propertices of Sum-Balaban index can be found in $[8,9,11,12]$.

Although in [6], Lihua YOU has characterized unicyclic graphs with the maximum Balaban index (Sum-Balaban index) and calculated the corresponding value of the maximum index, in order to find unicyclic graphs with the second largest Balaban index (Sum-Balaban index) we shall first use a new method to find unicyclic graphs with the maximum Balaban index (SumBalaban index).

2. The maximum Balaban index (Sum-Balaban index) of unicyclic graphs

We first introduce some useful graph transformations.

2.1. The edge-lifting transformation

The edge-lifting transformation ([4,12]) Let G_{1} and G_{2} be two graphs with $n_{1} \geq 2$ and $n_{2} \geq 2$ vertices, respectively. If G is the graph obtained from G_{1} and G_{2} by adding an edge between a vertex u_{0} of G_{1} and a vertex v_{0} of G_{2}, G^{\prime} is the graph obtained by identifying u_{0} of G_{1} to v_{0} of G_{2} and adding a pendent edge to $u_{0}\left(v_{0}\right)$, then G^{\prime} is called the edge-lifting transformation of G (see Figure 2.1).

G

G^{\prime}

Figure 2.1 The edge-lifting transformation
Lemma 2.1 ([4,12]) Let G^{\prime} be the edge-lifting transformation of G. Then $J(G)<J\left(G^{\prime}\right)$, and $S J(G)<S J\left(G^{\prime}\right)$.

A rooted graph has one of its vertices, called the root, distinguished from the others. If T is a rooted star, then the root is its center.

Let $T_{1}, T_{2}, \ldots, T_{k}$ be k rooted trees with $\left|V\left(T_{i}\right)\right| \geq 2(1 \leq i \leq k)$ and roots $u_{1}, u_{2}, \ldots, u_{k}$, respectively. Let C_{r} be a cycle with length $r(r \geq 3)$.

Let \mathbb{U}_{n} be the set of all unicyclic graphs on n vertices, $G(n, r, k)$ be a unicyclic graph on n vertices obtained from $C_{r}, T_{1}, T_{2}, \ldots, T_{k}$ by attaching k rooted trees $T_{1}, T_{2}, \ldots, T_{k}$ to k distinct vertices of the cycle C_{r}. Let $\mathbb{G}^{*}(n, r, k)$ be the set of all unicyclic graphs on n vertices obtained
from C_{r} by attaching k rooted stars to k distinct vertices of C_{r} (see Figure 2.2).
For any $G(n, r, k) \in \mathbb{U}_{n}$, by repeating edge-lifting transformations on $G(n, r, k)$, we will get a unicyclic graph $G^{*}(n, r, k) \in \mathbb{G}^{*}(n, r, k)$ from $G(n, r, k)$. By Lemma 2.1, we have $J(G(n, r, k))<$ $J\left(G^{*}(n, r, k)\right)$ and $S J(G(n, r, k))<S J\left(G^{*}(n, r, k)\right)$.

Figure $2.2 \mathbb{G}^{*}(n, r, k)$

2.2. Branch transformation

Branch transformation ([6]) Let $G=G^{*}(n, r, k) \in \mathbb{G}^{*}(n, r, k)$ and $m=\left\lfloor\frac{r}{2}\right\rfloor$. Define $C_{r}=$ $v_{1} v_{2} \cdots v_{m} u_{m} \cdots u_{2} u_{1} v_{1}$ for even r and $C_{r}=v_{1} v_{2} \cdots v_{m} v_{m+1} u_{m} \cdots u_{2} u_{1} v_{1}$ for odd r. Then G^{\prime} is obtained from G by deleting the pendent edge $u_{i} w$ and adding the pendent edge $v_{i} w$ for any $i \in\{1,2, \ldots, m\}$ (if there exists the pendent edge $u_{i} w$), where $w \in V(G) \backslash V\left(C_{r}\right)$. We say G^{\prime} is obtained from G by branch transformation (see Figure 2.3, where $p_{i} \geq 0, q_{i} \geq 0$ for any $i \in\{1,2, \ldots, m\})$.

Figure 2.3 The branch transformation
Lemma 2.2 ([6]) Let n, r, k be positive integers with $2 \leq k \leq r, 3 \leq r \leq n-k, G=G^{*}(n, r, k) \in$ $\mathbb{G}^{*}(n, r, k), G^{\prime}$ be the graph obtained from G by branch transformation. Then $J(G)<J\left(G^{\prime}\right)$, $S J(G)<S J\left(G^{\prime}\right)$.

Lemma 2.3 ([6]) Let n, r, k be positive integers with $2 \leq k \leq r, 3 \leq r \leq n-k, G=G^{*}(n, r, k) \in$ $\mathbb{G}^{*}(n, r, k), G^{\prime}$ be the graph obtained from G by repeating the branch transformation, and we cannot get other graph from G^{\prime} by repeating branch transformation. Then
(i) $G^{\prime} \in \mathbb{G}^{*}(n, r, 1)$ (see Figure 2.4).
(ii) $J(G) \leq J\left(G^{\prime}\right)$, the equality holds if and only if $G \cong G^{\prime}$.
(iii) $J(G) \leq S J\left(G^{\prime}\right)$, the equality holds if and only if $G \cong G^{\prime}$.

2.3. The cycle transformation

The cycle transformation Let $G=G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$ be defined as in Figure 2.4, where $V\left(C_{r}\right)=u_{1}, u_{2}, \ldots, u_{r}$, and n, r be positive integers with $3 \leq r \leq n$.

Figure 2.4 Graph $G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1)$
(i) If $r \geq 4$ is even, then G^{\prime} is the graph obtained from G by deleting the edge $u_{2} u_{3}$ and adding the edge $u_{1} u_{3}$.
(ii) If $r \geq 5$ is odd, then G^{\prime} is the graph obtained from G by deleting the edges $u_{2} u_{3}$ and $u_{3} u_{4}$, and adding the edges $u_{1} u_{3}$ and $u_{1} u_{4}$.

We say G^{\prime} is obtained from G by the cycle transformation (see Figure 2.5).

$G=G^{*}(n, r, 1)(n$ is even and $n \geq 4)$
$\xrightarrow{\text { Cycle transformation }}$

G^{\prime}

$G=G^{*}(n, r, 1)(n$ is odd and $n \geq 5)$

Figure 2.5 The cycle transformation
Lemma 2.4 ([7]) Let $x, y, a \in R^{+}$such that $x \geq y+a$. Then $\frac{1}{\sqrt{x y}} \geq \frac{1}{\sqrt{(x-a)(y+a)}}$, and the equality holds if and only if $x=y+a$.

Lemma 2.5 ([6]) Let $x_{1}, x_{2}, y_{1}, y_{2} \in R^{+}$such that $x_{1}>y_{1}$ and $x_{2}-x_{1}=y_{2}-y_{1}>0$. Then $\frac{1}{\sqrt{x_{1}}}+\frac{1}{\sqrt{y_{2}}}<\frac{1}{\sqrt{x_{2}}}+\frac{1}{\sqrt{y_{1}}}$.

Lemma 2.6 ([7]) Let $a, a^{\prime}, b, b^{\prime}, w, x, y, z \in R^{+}$such that $\frac{b}{x} \geq \frac{a}{w}, \frac{b^{\prime}}{y} \geq \frac{a^{\prime}}{z}, w \geq x$ and $z \geq y$. Then $\frac{1}{\sqrt{(w+a)\left(z+a^{\prime}\right)}}+\frac{1}{\sqrt{x y}} \geq \frac{1}{\sqrt{w z}}+\frac{1}{\sqrt{(x+b)\left(y+b^{\prime}\right)}}$, and the equality holds if and only if $b=a, b^{\prime}=$ $a^{\prime}, w=x$ and $z=y$.

Lemma 2.7 Let $G=G^{*}(n, r, 1) \in \mathbb{G}^{*}(n, r, 1), G^{\prime}$ be the graph obtained from G by cycle
transformation (see Figure 2.5). Then $J(G)<J\left(G^{\prime}\right)$ and $S J(G)<S J\left(G^{\prime}\right)$.
Proof Let $V\left(C_{r}\right)=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $W_{u_{1}}=\left\{w \mid w u_{1} \in G\right.$ and $\left.d_{G}(w)=1\right\}$.
Case $1 r$ is even.
We first consider the vertex $u_{x} \in V\left(C_{r}\right) \backslash\left\{u_{2}\right\}$. It is easy to see that
$D_{G}\left(u_{x}\right)=D_{G}\left(u_{x}, C_{r}\right)+D_{G}\left(u_{x}, W_{u_{1}}\right)=\left[2\left(1+2+\cdots+\frac{r-2}{2}\right)+\frac{r}{2}\right]+(n-r)\left(D_{G}\left(u_{x}, u_{1}\right)+1\right)$,
$D_{G^{\prime}}\left(u_{x}\right)=D_{G^{\prime}}\left(u_{x}, C_{r}\right)+D_{G^{\prime}}\left(u_{x}, W_{u_{1}}\right)=2\left(1+2+\cdots+\frac{r-2}{2}\right)+(n-r+1)\left(D_{G^{\prime}}\left(u_{x}, u_{1}\right)+1\right)$.
Since $D_{G}\left(u_{x}, u_{1}\right) \geq D_{G^{\prime}}\left(u_{x}, u_{1}\right)$ and $D_{G^{\prime}}\left(u_{x}, u_{1}\right)+1<\frac{r}{2}$, where $u_{x} \in V\left(C_{r}\right) \backslash\left\{u_{2}\right\}$, we have

$$
\begin{equation*}
D_{G}\left(u_{x}\right)-D_{G^{\prime}}\left(u_{x}\right)=\frac{r}{2}+(n-r)\left[D_{G}\left(u_{x}, u_{1}\right)-D_{G^{\prime}}\left(u_{x}, u_{1}\right)\right]-\left[D_{G^{\prime}}\left(u_{x}, u_{1}\right)+1\right]>0 \tag{1}
\end{equation*}
$$

Next we consider u_{2} and the vertices in $W_{u_{1}}$. Clearly

$$
\begin{equation*}
D_{G}(w)>D_{G^{\prime}}(w), \text { where } w \in W_{u_{1}} \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
& D_{G}\left(u_{2}\right)=2\left(1+2+\cdots+\frac{r-2}{2}\right)+\frac{r}{2}+2(n-r), \\
& D_{G^{\prime}}\left(u_{2}\right)=2\left(1+2+\cdots+\frac{r-2}{2}\right)+(r-1)+2(n-r), \\
& D_{G}\left(u_{1}\right)=2\left(1+2+\cdots+\frac{r-2}{2}\right)+\frac{r}{2}+(n-r), \\
& D_{G^{\prime}}\left(u_{1}\right)=2\left(1+2+\cdots+\frac{r-2}{2}\right)+1+(n-r) .
\end{aligned}
$$

As such, we have

$$
\begin{aligned}
& D_{G^{\prime}}\left(u_{2}\right)-D_{G}\left(u_{2}\right)=\frac{r}{2}-1, \\
& D_{G}\left(u_{1}\right)-D_{G^{\prime}}\left(u_{1}\right)=\frac{r}{2}-1, \\
& D_{G^{\prime}}\left(u_{2}\right)-D_{G^{\prime}}\left(u_{1}\right)=n-2 .
\end{aligned}
$$

Let $x=D_{G^{\prime}}\left(u_{2}\right), y=D_{G^{\prime}}\left(u_{1}\right), a=\frac{r}{2}-1$. Then $x-y=n-2>a$. By Lemma 2.4, we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right) D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{\left[D_{G^{\prime}}\left(u_{2}\right)-a\right]\left[D_{G^{\prime}}\left(u_{1}\right)+a\right]}}=\frac{1}{\sqrt{D_{G}\left(u_{2}\right) D_{G}\left(u_{1}\right)}} \tag{3}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right)+D_{G^{\prime}}\left(u_{1}\right)}}=\frac{1}{\sqrt{D_{G}\left(u_{2}\right)+D_{G}\left(u_{1}\right)}} \tag{4}
\end{gather*}
$$

Since $D_{G^{\prime}}\left(u_{3}\right)<D_{G}\left(u_{3}\right)$ and $D_{G^{\prime}}\left(u_{1}\right)<D_{G}\left(u_{2}\right)$, we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{3}\right) D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{3}\right) D_{G}\left(u_{2}\right)}}, \tag{5}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{3}\right)+D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{3}\right)+D_{G}\left(u_{2}\right)}} . \tag{6}
\end{gather*}
$$

From (1) and (2), we have

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{x}\right) D_{G^{\prime}}\left(u_{y}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{x}\right) D_{G}\left(u_{y}\right)}}, \tag{7}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{\sqrt{D_{G^{\prime}}\left(u_{x}\right)+D_{G^{\prime}}\left(u_{y}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{x}\right)+D_{G}\left(u_{y}\right)}} \tag{8}\\
& \frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right) D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(u_{1}\right) D_{G}(w)}} \tag{9}\\
& \frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(u_{1}\right)+D_{G}(w)}} \tag{10}
\end{align*}
$$

where $u_{x}, u_{y} \in V\left(C_{r}\right) \backslash\left\{u_{2}\right\}$ and $w \in W_{u_{1}}$.
By (3),(5), (7), (9) and the definition of Balaban index, if r is even we have $J(G)<J\left(G^{\prime}\right)$. By (4), (6), (8), (10) and the definition of Sum-Balaban index, if r is even we have $S J(G)<S J\left(G^{\prime}\right)$.

Case $2 r$ is odd.
We first consider the vertex $u_{x} \in V\left(C_{r}\right) \backslash\left\{u_{2}, u_{3}\right\}$. It is easy to see that

$$
D_{G}\left(u_{x}\right)=D_{G}\left(u_{x}, C_{r}\right)+D_{G}\left(u_{x}, W_{u_{1}}\right)=2\left(1+2+\cdots+\frac{r-1}{2}\right)+(n-r)\left(D_{G}\left(u_{x}, u_{1}\right)+1\right)
$$

$D_{G^{\prime}}\left(u_{x}\right)=D_{G^{\prime}}\left(u_{x}, C_{r}\right)+D_{G^{\prime}}\left(u_{x}, W_{u_{1}}\right)=2\left(1+2+\cdots+\frac{r-3}{2}\right)+(n-r+2)\left(D_{G^{\prime}}\left(u_{x}, u_{1}\right)+1\right)$.
Since $D_{G}\left(u_{x}, u_{1}\right) \geq D_{G^{\prime}}\left(u_{x}, u_{1}\right)$ and $D_{G^{\prime}}\left(u_{x}, u_{1}\right)+1 \leq \frac{r-1}{2}$, we have

$$
\begin{equation*}
D_{G}\left(u_{x}\right)-D_{G^{\prime}}\left(u_{x}\right)=(r-1)+(n-r)\left[D_{G}\left(u_{x}, u_{1}\right)-D_{G^{\prime}}\left(u_{x}, u_{1}\right)\right]-2\left[D_{G^{\prime}}\left(u_{x}, u_{1}\right)+1\right] \geq 0, \tag{11}
\end{equation*}
$$

where $u_{x} \in V\left(C_{r}\right) \backslash\left\{u_{2}, u_{3}\right\}$.
Next we consider u_{2}, u_{3} and the vertices in $W_{u_{1}}$. Clearly

$$
\begin{equation*}
D_{G}(w)>D_{G^{\prime}}(w), \text { where } w \in W_{u_{1}}, \tag{12}
\end{equation*}
$$

and

$$
\begin{aligned}
& D_{G}\left(u_{1}\right)=2\left(1+2+\cdots+\frac{r-1}{2}\right)+(n-r), \\
& D_{G^{\prime}}\left(u_{1}\right)=2\left(1+2+\cdots+\frac{r-3}{2}\right)+2+(n-r), \\
& D_{G}\left(u_{2}\right)=2\left(1+2+\cdots+\frac{r-1}{2}\right)+2(n-r), \\
& D_{G^{\prime}}\left(u_{2}\right)=D_{G^{\prime}}\left(u_{1}\right)+(n-2)=2\left(1+2+\cdots+\frac{r-3}{2}\right)+2 n-r, \\
& D_{G}\left(u_{3}\right)=2\left(1+2+\cdots+\frac{r-1}{2}\right)+3(n-r), \\
& D_{G^{\prime}}\left(u_{3}\right)=D_{G^{\prime}}\left(u_{2}\right)=2\left(1+2+\cdots+\frac{r-3}{2}\right)+2 n-r .
\end{aligned}
$$

Thus we have

$$
D_{G^{\prime}}\left(u_{2}\right)-D_{G}\left(u_{2}\right)=1, \quad D_{G}\left(u_{1}\right)-D_{G^{\prime}}\left(u_{1}\right)=r-3 \geq 2 .
$$

Let $x=D_{G^{\prime}}\left(u_{2}\right), y=D_{G^{\prime}}\left(u_{1}\right), a=1$. Then $x-y=n-2>a$. By Lemma 2.4, we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right) D_{G^{\prime}}\left(u_{1}\right)}} \geq \frac{1}{\sqrt{\left[D_{G^{\prime}}\left(u_{2}\right)-1\right]\left[D_{G^{\prime}}\left(u_{1}\right)+1\right]}}>\frac{1}{\sqrt{D_{G}\left(u_{2}\right) D_{G}\left(u_{1}\right)}} \tag{13}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right)+D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{2}\right)+D_{G}\left(u_{1}\right)}} . \tag{14}
\end{gather*}
$$

Note that $D_{G}\left(u_{3}\right)-D_{G^{\prime}}\left(u_{3}\right)=(r-1)+(3 n-3 r)-(2 n-r)=n-r-1$. If $n>r$, then $D_{G}\left(u_{3}\right)-D_{G^{\prime}}\left(u_{3}\right) \geq 0$ and we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{3}\right) D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{3}\right) D_{G}\left(u_{2}\right)}}, \tag{15}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{3}\right)+D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{3}\right)+D_{G}\left(u_{2}\right)}} . \tag{16}
\end{gather*}
$$

If $n=r$, then $D_{G^{\prime}}\left(u_{3}\right)-D_{G}\left(u_{3}\right)=1$ and $D_{G}\left(u_{2}\right)-D_{G^{\prime}}\left(u_{1}\right)=n-3 \geq 2$. Let $x=D_{G^{\prime}}\left(u_{3}\right), y=$ $D_{G^{\prime}}\left(u_{1}\right), a=1$. Then $x-y>n-2>a$. By Lemma 2.4, we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{3}\right) D_{G^{\prime}}\left(u_{1}\right)}} \geq \frac{1}{\sqrt{\left[D_{G^{\prime}}\left(u_{2}\right)-1\right]\left[D_{G^{\prime}}\left(u_{1}\right)+1\right]}}>\frac{1}{\sqrt{D_{G}\left(u_{3}\right) D_{G}\left(u_{2}\right)}} \tag{17}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{3}\right)+D_{G^{\prime}}\left(u_{1}\right)}}>\frac{1}{\sqrt{D_{G}\left(u_{3}\right)+D_{G}\left(u_{2}\right)}} \tag{18}
\end{gather*}
$$

Since $D_{G}\left(u_{3}\right)-D_{G^{\prime}}\left(u_{1}\right)>0$, by (11) we have

$$
\begin{align*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{4}\right) D_{G^{\prime}}\left(u_{1}\right)}} & >\frac{1}{\sqrt{D_{G}\left(u_{4}\right) D_{G}\left(u_{3}\right)}}, \tag{19}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{4}\right)+D_{G^{\prime}}\left(u_{1}\right)}} & >\frac{1}{\sqrt{D_{G}\left(u_{4}\right)+D_{G}\left(u_{3}\right)}}, \tag{20}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{x}\right) D_{G^{\prime}}\left(u_{y}\right)}} & \geq \frac{1}{\sqrt{D_{G}\left(u_{x}\right) D_{G}\left(u_{y}\right)}} \tag{21}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{x}\right)+D_{G^{\prime}}\left(u_{y}\right)}} & \geq \frac{1}{\sqrt{D_{G}\left(u_{x}\right)+D_{G}\left(u_{y}\right)}} \tag{22}
\end{align*}
$$

where $u_{x}, u_{y} \in V\left(C_{r}\right) \backslash\left\{u_{2}, u_{3}\right\}$. By (11) and (12) we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right) D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(u_{1}\right) D_{G}(w)}}, \tag{23}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}(w)}}>\frac{1}{\sqrt{D_{G}\left(u_{1}\right)+D_{G}(w)}}, \text { where } w \in W_{u_{1}} . \tag{24}
\end{gather*}
$$

By (13), (15), (17), (19), (21), (23) and the definition of Balaban index, if r is odd, we have $J(G)<J\left(G^{\prime}\right)$.

By (14), (16), (18), (20), (22), (24) and the definition of Sam-Balaban index, if r is odd, we have $S J(G)<S J\left(G^{\prime}\right)$.

From the above discussions, for any unicyclic graph $G \in \mathbb{U}_{n}$, we finally get the graph G_{1} from G by the edge-lifting transformation, branch transformation, cycle transformation, or any combination of these, where G_{1} is defined in Figure 2.6. By Lemmas 2.1, 2.2 and Theorem 2.7, we have

$$
J(G) \leq J\left(G_{1}\right) \text { and } S J(G) \leq S J\left(G_{1}\right)
$$

Figure 2.6 Graph G_{1}
Theorem 2.8 Let G_{1} be defined in Figure 2.6. Then G_{1} is the unique unicyclic graph in \mathbb{U}_{n}, which attains the maximum Balaban index and Sum-Balaban index, and

$$
\begin{aligned}
J\left(G_{1}\right) & =\frac{n}{\sqrt{2 n^{2}-6 n+4}}+\frac{n}{4 n-8}+\frac{n^{2}-3 n}{2 \sqrt{2 n^{2}-5 n+3}}, \\
S J\left(G_{1}\right) & =\frac{n}{\sqrt{3 n-5}}+\frac{n}{4 \sqrt{n-2}}+\frac{n^{2}-3 n}{2 \sqrt{3 n-4}} .
\end{aligned}
$$

Proof It can be checked directly that

$$
\begin{aligned}
& D_{G_{1}}\left(u_{1}\right)=n-1, \quad D_{G_{1}}\left(u_{2}\right)=D_{G_{1}}\left(u_{3}\right)=2 n-4, \\
& D_{G_{1}}(w)=2 n-3, \text { where } w \in W_{u_{1}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
J\left(G_{1}\right) & =\frac{n}{2}\left[\frac{1}{\sqrt{D_{G_{1}}\left(u_{1}\right) D_{G_{1}}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G_{1}}\left(u_{1}\right) D_{G_{1}}\left(u_{3}\right)}}+\frac{1}{\sqrt{D_{G_{1}}\left(u_{2}\right) D_{G_{1}}\left(u_{3}\right)}}+\frac{n-3}{\sqrt{D_{G_{1}}\left(u_{1}\right) D_{G_{1}}(w)}}\right] \\
& =\frac{n}{\sqrt{2 n^{2}-6 n+4}}+\frac{n}{4 n-8}+\frac{n^{2}-3 n}{2 \sqrt{2 n^{2}-5 n+3}}
\end{aligned}
$$

and

$$
\begin{aligned}
S J\left(G_{1}\right)= & \frac{n}{2}\left[\frac{1}{\sqrt{D_{G_{1}}\left(u_{1}\right)+D_{G_{1}}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G_{1}}\left(u_{1}\right)+D_{G_{1}}\left(u_{3}\right)}}+\frac{1}{\sqrt{D_{G_{1}}\left(u_{2}\right)+D_{G_{1}}\left(u_{3}\right)}}+\right. \\
& \left.\frac{n-3}{\sqrt{D_{G_{1}}\left(u_{1}\right)+D_{G_{1}}(w)}}\right]=\frac{n}{\sqrt{3 n-5}}+\frac{n}{4 \sqrt{n-2}}+\frac{n^{2}-3 n}{2 \sqrt{3 n-4}} .
\end{aligned}
$$

3. The second largest Balaban index (Sum-Balaban index) of unicyclic graphs

Let \tilde{G} be the set of graphs which attains the second largest Balaban index (Sum-Balaban index) of unicyclic graphs, obviously, we can obtain G_{1} from $G_{i}(2 \leq i \leq 6)$ by one single transformation (that is, no combination is allowed), then

$$
J(\tilde{G})=\max _{2 \leq i \leq 6} J\left(G_{i}\right), \quad S J(\tilde{G})=\max _{2 \leq i \leq 6} S J\left(G_{i}\right)
$$

where $G_{i}(2 \leq i \leq 6)$ is defined as in Figure 3.1.

G_{2}

$G_{3}(n \geq 5)$

$G_{4}(n \geq 5)$

$$
G_{5}(n \geq 5)
$$

$$
G_{6}\left(k_{1}+k_{2}=n-3, k_{1}>0, k_{2}>0, n \geq 5\right)
$$

Figure 3.1 Graphs $G_{i}(2 \leq i \leq 6)$
The pendent edge transformation Let $G=G_{6} \in \mathbb{U}_{n}, V\left(C_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $W_{u_{1}}=$ $\left\{w \mid w u_{1} \in E(G)\right.$ and $\left.\operatorname{deg}(w)=1\right\},\left|W_{u_{1}}\right|=k_{1}, W_{u_{2}}=\left\{w \mid w u_{2} \in E(G)\right.$ and $\left.\operatorname{deg}(w)=1\right\}$, $\left|W_{u_{2}}\right|=k_{2}$, where $k_{1}>0, k_{2}>0$ and $k_{1}+k_{2}+3=n$. Without loss of generality, let $k_{1} \geq k_{2}>0$. G^{\prime} is the graph obtained from G by deleting the edge $u_{2} u_{4}$ and adding the edge $u_{1} u_{4}$. We say that G^{\prime} is obtained from G by the pendent edge transformation (see Figure 3.2).

Figure 3.2 The pendent edge transformation on G_{6}
Theorem 3.1 Let $G=G_{6}$ be defined as in Figure 3.2, where $k_{1} \geq k_{2}>0, k_{1}+k_{2}=n-3$ and $n \geq 5$. Let G^{\prime} be obtained from G by the pendent edge transformation. Then $J(G)<J\left(G^{\prime}\right)$ and $S J(G)<S J\left(G^{\prime}\right)$.

Proof It is easy to see that

$$
\begin{aligned}
& D_{G}\left(u_{1}\right)=D_{G^{\prime}}\left(u_{1}\right)+1=k_{1}+2 k_{2}+2, \\
& \left.D_{G}\left(u_{2}\right)=D_{G^{\prime}}\left(u_{2}\right)-1=2 k_{1}+k_{2}+2 \geq D_{G}\left(u_{1}\right) \quad \text { (since } k_{1} \geq k_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& D_{G}\left(u_{3}\right)=D_{G^{\prime}}\left(u_{3}\right)=2 k_{1}+2 k_{2}+2 \\
& D_{G}\left(u_{x}\right)=D_{G^{\prime}}\left(u_{x}\right)+1=2 k_{1}+3 k_{2}+3, \quad u_{x} \in W_{u_{1}} \\
& D_{G}\left(u_{y}\right)=D_{G^{\prime}}\left(u_{y}\right)-1=3 k_{1}+2 k_{2}+3, \quad u_{y} \in W_{u_{2}}
\end{aligned}
$$

(i) For the edge $u_{1} u_{2} \in E(G)$.

Let $x=D_{G^{\prime}}\left(u_{2}\right), y=D_{G^{\prime}}\left(u_{1}\right)$ and $a=1$. Then $x-y=k_{1}-k_{2}+2>a\left(\right.$ since $\left.k_{1} \geq k_{2}\right)$. By Lemma 2.4 we have

$$
\begin{gather*}
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right) D_{G^{\prime}}\left(u_{1}\right)}} \geq \frac{1}{\sqrt{\left[D_{G^{\prime}}\left(u_{2}\right)-1\right]\left[D_{G^{\prime}}\left(u_{1}\right)+1\right]}}=\frac{1}{\sqrt{D_{G}\left(u_{2}\right) D_{G}\left(u_{1}\right)}} \tag{25}\\
\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right)+D_{G^{\prime}}\left(u_{1}\right)}}=\frac{1}{\sqrt{D_{G}\left(u_{2}\right)+D_{G}\left(u_{1}\right)}} . \tag{26}
\end{gather*}
$$

(ii) For the edges $u_{1} u_{3}, u_{2} u_{3} \in E(G)$.

Let $x_{2}=D_{G^{\prime}}\left(u_{2}\right), x_{1}=D_{G}\left(u_{2}\right), y_{2}=D_{G}\left(u_{1}\right)$, and $y_{1}=D_{G^{\prime}}\left(u_{1}\right)$. Then $x_{2}-x_{1}=y_{2}-y_{1}=$ 1. By Lemma 2.5 we have

$$
\frac{1}{\sqrt{D_{G}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G}\left(u_{1}\right)}}<\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)}} .
$$

From $D_{G}\left(u_{3}\right)=D_{G^{\prime}}\left(u_{3}\right)$, it follows

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G}\left(u_{2}\right) D_{G}\left(u_{3}\right)}}+\frac{1}{\sqrt{D_{G}\left(u_{1}\right) D_{G}\left(u_{3}\right)}}<\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right) D_{G^{\prime}}\left(u_{3}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right) D_{G^{\prime}}\left(u_{3}\right)}} . \tag{27}
\end{equation*}
$$

Let $x_{2}=D_{G^{\prime}}\left(u_{2}\right)+D_{G^{\prime}}\left(u_{3}\right), x_{1}=D_{G}\left(u_{2}\right)+D_{G}\left(u_{3}\right), y_{2}=D_{G}\left(u_{1}\right)+D_{G}\left(u_{3}\right)$, and $y_{1}=$ $D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(u_{3}\right)$. Then $x_{2}-x_{1}=y_{2}-y_{1}=1>0$. By Lemma 2.5 we have

$$
\begin{align*}
& \frac{1}{\sqrt{D_{G}\left(u_{2}\right)+D_{G}\left(u_{3}\right)}}+\frac{1}{\sqrt{D_{G}\left(u_{1}\right)+D_{G}\left(u_{3}\right)}} \\
& \quad<\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{2}\right)+D_{G^{\prime}}\left(u_{3}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(u_{3}\right)}} \tag{28}
\end{align*}
$$

(iii) For the edges $u_{1} u_{x}, u_{2} u_{y} \in E(G)$, where $u_{x} \in W_{u_{1}}$ and $u_{y} \in W_{u_{2}}$.

Let $w=D_{G}\left(u_{y}\right), x=D_{G^{\prime}}\left(u_{x}\right), z=D_{G}\left(u_{2}\right), y=D_{G^{\prime}}\left(u_{1}\right)$ and $a=a^{\prime}=b=b^{\prime}=1$. Then $w \geq x, z \geq y$. By Lemma 2.6 we have

$$
\begin{aligned}
& \frac{1}{\sqrt{D_{G}\left(u_{y}\right) D_{G}\left(u_{2}\right)}}+\frac{1}{\sqrt{\left(D_{G^{\prime}}\left(u_{x}\right)+1\right)\left(D_{G^{\prime}}\left(u_{1}\right)+1\right)}} \\
& \leq \frac{1}{\sqrt{\left(D_{G}\left(u_{y}\right)+1\right)\left(D_{G}\left(u_{2}\right)+1\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{x}\right) D_{G^{\prime}}\left(u_{1}\right)}}
\end{aligned}
$$

and thus

$$
\begin{equation*}
\frac{1}{\sqrt{D_{G}\left(u_{y}\right) D_{G}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G}\left(u_{x}\right) D_{G}\left(u_{1}\right)}} \leq \frac{1}{\sqrt{D_{G^{\prime}}\left(u_{y}\right) D_{G^{\prime}}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{x}\right) D_{G^{\prime}}\left(u_{1}\right)}} . \tag{29}
\end{equation*}
$$

Let $x_{2}=D_{G^{\prime}}\left(u_{y}\right)+D_{G^{\prime}}\left(u_{2}\right), x_{1}=D_{G}\left(u_{y}\right)+D_{G}\left(u_{2}\right), y_{2}=D_{G}\left(u_{1}\right)+D_{G}\left(u_{x}\right)$, and $y_{1}=$ $D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(u_{x}\right)$. Then $x_{2}-x_{1}=y_{2}-y_{1}=2>0$. By Lemma 2.5 we have

$$
\frac{1}{\sqrt{D_{G}\left(u_{y}\right)+D_{G}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G}\left(u_{1}\right)+D_{G}\left(u_{x}\right)}}
$$

$$
\begin{equation*}
<\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{y}\right)+D_{G^{\prime}}\left(u_{2}\right)}}+\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(u_{x}\right)}} . \tag{30}
\end{equation*}
$$

(iv) For the edge $u_{2} u_{4} \in E(G)$.

Since $D_{G}\left(u_{2}\right)-D_{G}^{\prime}\left(u_{1}\right)=k_{1}-k_{2}+1>0$ and $D_{G}\left(u_{4}\right)-D_{G}^{\prime}\left(u_{4}\right)=k_{1}+k_{2}+1>0$, we have

$$
\begin{align*}
\frac{1}{\sqrt{D_{G}\left(u_{2}\right) D_{G}\left(u_{4}\right)}} & <\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right) D_{G^{\prime}}\left(u_{4}\right)}} \tag{31}\\
\frac{1}{\sqrt{D_{G}\left(u_{2}\right)+D_{G}\left(u_{4}\right)}} & <\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(u_{4}\right)}} . \tag{32}
\end{align*}
$$

(v) For the edges $u_{1} u_{x} \in E(G)$, where $u_{x} \in W_{u_{1}}$.

Since $D_{G}\left(u_{1}\right)>D_{G^{\prime}}\left(u_{1}\right)$ and $D_{G}\left(u_{x}\right)>D_{G^{\prime}}\left(u_{x}\right)$, we have

$$
\begin{align*}
\frac{1}{\sqrt{D_{G}\left(u_{1}\right) D_{G}\left(u_{x}\right)}} & <\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right) D_{G^{\prime}}\left(u_{x}\right)}} \tag{33}\\
\frac{1}{\sqrt{D_{G}\left(u_{1}\right)+D_{G}\left(u_{x}\right)}} & <\frac{1}{\sqrt{D_{G^{\prime}}\left(u_{1}\right)+D_{G^{\prime}}\left(u_{x}\right)}} \tag{34}
\end{align*} .
$$

By (25), (27), (29), (31), (33) and the definition of Balaban index, we have $J(G)<J\left(G^{\prime}\right)$.
By (26), (28), (30), (32), (34) and the definition of Sum-Balaban index, we have $S J(G)<$ $S J\left(G^{\prime}\right)$.

We will get G_{7} from G_{6} by repeating pendent edge transformations. From Theorem 3.1 we have $J\left(G_{6}\right) \leq J\left(G_{7}\right)$ and $S J\left(G_{6}\right) \leq S J\left(G_{7}\right)$, where G_{7} is defined as in Figure 3.3.

Figure 3.3 Graph G_{7}
Theorem 3.2 Let $G_{i}(2 \leq i \leq 7)$ be defined as in Figures 3.2 and 3.3.
(i) If $n=4$, then G_{2} is the unique graph in \mathbb{U}_{n} which attains the second largest Balaban index and Sum-Balaban index, and $J\left(G_{2}\right)=2, S J\left(G_{2}\right)=2 \sqrt{2}$.
(ii) If $n \geq 5$, then G_{7} is the unique graph in \mathbb{U}_{n} which attains the second largest Balaban index and Sum-Balaban index, and

$$
\begin{aligned}
J\left(G_{7}\right)= & \frac{n}{2}\left[\frac{1}{\sqrt{n(2 n-5)}}+\frac{1}{\sqrt{n(2 n-4)}}+\frac{1}{\sqrt{(2 n-5)(2 n-4)}}+\right. \\
& \left.\frac{1}{\sqrt{(2 n-5)(3 n-7)}}+\frac{n-4}{\sqrt{n(2 n-2)}}\right] \\
S J\left(G_{7}\right)= & \frac{n}{2}\left(\frac{1}{\sqrt{3 n-5}}+\frac{1}{\sqrt{3 n-4}}+\frac{1}{\sqrt{4 n-9}}+\frac{1}{\sqrt{5 n-12}}+\frac{n-4}{\sqrt{3 n-2}}\right) .
\end{aligned}
$$

Proof It can be directly checked that

$$
J\left(G_{2}\right)=\frac{n}{2}\left(\frac{4}{\sqrt{4 \cdot 4}}\right)=\frac{n}{2},
$$

$$
\begin{aligned}
& S J\left(G_{2}\right)=\frac{n}{2}\left(\frac{4}{\sqrt{4+4}}\right)=\frac{\sqrt{2}}{2} n, \\
& J\left(G_{3}\right)=\frac{n}{2}\left[\frac{2}{\sqrt{(3 n-8)(2 n-4)}}+\frac{2}{\sqrt{n(2 n-4)}}+\frac{n-4}{\sqrt{n(2 n-2)}}\right] \\
& S J\left(G_{3}\right)=\frac{n}{2}\left(\frac{2}{\sqrt{5 n-12}}+\frac{2}{\sqrt{3 n-4}}+\frac{n-4}{\sqrt{3 n-2}}\right), \\
& J\left(G_{4}\right)=\frac{n}{2}\left[\frac{2}{\sqrt{(2 n-4)(n+1)}}+\frac{2}{\sqrt{(2 n-4)(3 n-9)}}+\frac{1}{3 n-9}+\frac{n-5}{\sqrt{(2 n-1)(n+1)}}\right] \\
& S J\left(G_{4}\right)=\frac{n}{2}\left(\frac{2}{\sqrt{3 n-3}}+\frac{2}{\sqrt{5 n-13}}+\frac{1}{\sqrt{6 n-18}}+\frac{n-5}{\sqrt{3 n}}\right), \\
& J\left(G_{5}\right)=\frac{n}{2}\left[\frac{2}{\sqrt{n(2 n-3)}}+\frac{1}{2 n-3}+\frac{1}{\sqrt{n(2 n-4)}}+\frac{1}{\sqrt{(2 n-4)(3 n-6)}}+\frac{n-5}{\sqrt{n(2 n-2)}}\right] \\
& S J\left(G_{5}\right)= \\
& \frac{n}{2}\left(\frac{2}{\sqrt{3 n-3}}+\frac{1}{\sqrt{4 n-6}}+\frac{1}{\sqrt{3 n-4}}+\frac{1}{\sqrt{5 n-10}}+\frac{n-5}{\sqrt{3 n-2}}\right), \\
& J\left(G_{7}\right)= \\
& \frac{n}{2}\left[\frac{1}{\sqrt{n(2 n-5)}}+\frac{1}{\sqrt{n(2 n-4)}}+\frac{1}{\sqrt{(2 n-5)(2 n-4)}}+\right. \\
& \quad \frac{1}{\left.\sqrt{(2 n-5)(3 n-7)}+\frac{n-4}{\sqrt{n(2 n-2)}}\right],} \\
& S J\left(G_{7}\right)= \\
& \frac{n}{2}\left(\frac{1}{\sqrt{3 n-5}}+\frac{1}{\sqrt{3 n-4}}+\frac{1}{\sqrt{4 n-9}}+\frac{1}{\sqrt{5 n-12}}+\frac{n-4}{\sqrt{3 n-2}}\right) .
\end{aligned}
$$

So the case $n=4$ is clear.
If $n \geq 5$, we have

$$
\begin{aligned}
J\left(G_{7}\right)-J\left(G_{3}\right)= & \frac{n}{2}\left[\left(\frac{1}{\sqrt{n(2 n-5)}}-\frac{1}{\sqrt{n(2 n-4)}}\right)+\left(\frac{1}{\sqrt{(2 n-5)(2 n-4)}}-\frac{1}{\sqrt{(3 n-8)(2 n-4)}}\right)\right. \\
& \left(\frac{1}{\sqrt{(3 n-7)(2 n-5)}}-\frac{1}{\sqrt{(3 n-8)(2 n-4)}}\right] \\
& >\frac{n}{2}\left(\frac{1}{\sqrt{(3 n-7)(2 n-5)}}-\frac{1}{\sqrt{(3 n-8)(2 n-4)}}\right)>0 \quad(\text { by Lemma } 2.2)
\end{aligned}
$$

and

$$
S J\left(G_{7}\right)-S J\left(G_{3}\right)=\frac{n}{2}\left[\left(\frac{1}{\sqrt{3 n-5}}-\frac{1}{\sqrt{3 n-4}}\right)+\left(\frac{1}{\sqrt{4 n-9}}-\frac{1}{\sqrt{5 n-12}}\right)\right]>0
$$

Therefore $J\left(G_{7}\right)>J\left(G_{3}\right)$ and $S J\left(G_{7}\right)>S J\left(G_{3}\right)$. It can be proved in a similar way that if $n \geq 5, J\left(G_{7}\right)>J\left(G_{i}\right)$ and $S J\left(G_{7}\right)>S J\left(G_{i}\right)$ for all $3 \leq i \leq 6$. Hence

$$
\begin{aligned}
\max _{3 \leq i \leq 7} J\left(G_{i}\right)=J\left(G_{7}\right)= & \frac{n}{2}\left[\frac{1}{\sqrt{n(2 n-5)}}+\frac{1}{\sqrt{n(2 n-4)}}+\frac{1}{\sqrt{(2 n-5)(2 n-4)}}+\right. \\
& \left.\frac{1}{\sqrt{(2 n-5)(3 n-7)}}+\frac{n-4}{\sqrt{n(2 n-2)}}\right] \\
\max _{3 \leq i \leq 7} S J\left(G_{i}\right)=S J\left(G_{7}\right)= & \frac{n}{2}\left(\frac{1}{\sqrt{3 n-5}}+\frac{1}{\sqrt{3 n-4}}+\frac{1}{\sqrt{4 n-9}}+\frac{1}{\sqrt{5 n-12}}+\frac{n-4}{\sqrt{3 n-2}}\right) .
\end{aligned}
$$

The theorem now holds.
Acknowledgements The authors would like to thank the referees for their valuable comments, corrections, and suggestions, which lead to an improvement of the original paper.

References

[1] A. T. BALABAN. Highly discriminating distance-based topological index. Chem. Phys. Lett., 1982, 89: 399-404.
[2] A. T. BALABAN. Topological indices based on topological distances in molecular graphs. Pure Appl. Chem., 1983, 55: 199-206.
[3] A. T. BALABAN, N. IONESCU-PALLAS, T. S. BALABAN. Asymptotic values of topological indices J and J^{\prime} (average distance sum connectivities) for infinite acyclic and cyclic graphs. MATCH Commun. Math. Comput. Chem., 1985, 17: 121-146.
[4] Hanyuan DENG. On the Balaban index of trees. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 253-260.
[5] Wei FANG, Yubin GAO, Yanling SHAO, et al. Maximum Balaban index and Sum-Balaban index of bicyclic graphs. MATCH Commun. Math. Comput. Chem., 2016, 75(1): 129-156.
[6] Lihua YOU, Xing DONG. The maximum Balaban index (Sum-Balaban index) of unicyclic graphs. J. Math. Res. Appl., 2014, 34(4): 392-402.
[7] Hawei DONG, Xiaofeng GUO. Character of trees with extreme Balaban index. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 261-272.
[8] Rundang XING, Bo ZHOU, A. GROVAC. On Sum-Balaban index. Ars Combin., 2012, 104: 211-223.
[9] Lihua YOU, Han HAN. On Sum-Balaban index. Ars Combin., 2012, 104: 211-223.
[10] Bo ZHOU, N. TRINAJSTIĆ. Bounds on the Balaban index. Croat. Chem. Acta., 2008, 81: 319-323.
[11] Bo ZHOU, N. TRINAJSTIĆ. Comparison of topological indices based on iterated 'sum' versus 'product' operations. Iranian J. Math. Chem., 2010, 1: 43-67.
[12] Hanyuan DENG. On the Sum-Balaban index. MATCH Commun. Math. Comput. Chem., 2011, 66(1): 273-284.

[^0]: Received May 31, 2016; Accepted March 15, 2017
 Supported by the Natural Science Foundation of Anhui Province (Grant No. 1508085MC55) and the Natural Science Foundation of Educational Government of Anhui Province (Grant No. KJ2013A076).

 * Corresponding author

 E-mail address: fangweinuc@gmail.com (Wei FANG); ybgao@nuc.edu.cn (Yubin GAO); det.conan@foxmail.com (Kai FAN); zli@gsu.edu (Zhongshan LI)

