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Abstract We establish the existence of positive periodic solutions of the second-order singular

coupled systems {
x′′ + p1(t)x

′ + q1(t)x = f1(t, y(t)) + c1(t),

y′′ + p2(t)y
′ + q2(t)y = f2(t, x(t)) + c2(t),

where pi, qi, ci ∈ C(R/TZ;R), i = 1, 2; f1, f2 ∈ C(R/TZ× (0,∞),R) and may be singular

near the zero. The proof relies on Schauder’s fixed point theorem and anti-maximum principle.

Our main results generalize and improve those available in the literature.

Keywords positive periodic solutions; singular coupled systems; Schauder’s fixed point

theorem; weak singularities
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1. Introduction

This paper studies the existence of positive periodic solutions of the second-order non-

autonomous singular coupled systems{
x′′ + p1(t)x

′ + q1(t)x = f1(t, y(t)) + c1(t),

y′′ + p2(t)y
′ + q2(t)y = f2(t, x(t)) + c2(t),

(1.1)

where pi, qi, ci ∈ C(R/TZ;R), i = 1, 2; f1, f2 ∈ C(R/TZ × (0,∞),R) and may be singular

near the zero.

In the past few decades, the periodic problem for the semilinear singular equation

x′′ + a(t)x =
b(t)

xα
+ c(t), (1.2)

where a, b, c ∈ L1[0, T ] and α > 0, has deserved the attention of many specialists in differential

equations. The interest in scalar equations with singularity began with some works of Forbat and

Huaux [1,2], where the singular nonlinearity models the restoring force caused by a compressed

perfect gas (see [3] for a more complete list of references). Later, the interest in this problem

increased with the paper of Lazer and Solimini [4]. They obtained for (1.2) with a(t) ≡ 0,

b(t) ≡ 1, α ≥ 1 (called strong force condition in a terminology first introduced by Gordon [5,6]),
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a necessary and sufficient condition to ensure the existence of positive periodic solutions that

the mean value of c is negative, i.e., c := 1
T

∫ T

0
c(t)dt < 0. Moreover, if 0 < α < 1 (weak force

condition), they found examples of c with negative mean value such that periodic solutions do

not exist. This work is a hallmark for the problem, since its publication many researches have

focused their attention on the study of singular equations.

Since then, the strong force condition became standard in the related works, see for example

[7–22] and the references therein. Here we must mention the results in [15]. It is proved

x′′ + µx =
b

xα
+ p(t) (1.3)

possesses a T -periodic solution for α ≥ 1, b > 0, p ∈ L1[0, T ] and µ ̸= (kπT )2 for all k ∈ Z.
Moreover, the open problem of finding additional conditions to ensure the existence of periodic

solutions in the resonant case µ = (kπT )2, is explicitly quoted. From this point of view, the results

of [4] correspond to some conditions on p to deal with the resonant case µ = 0 in (1.3). In [16],

for the first time, the authors proved if µ = 0, (1.3) has at least one positive periodic solution,

provided that the mean value of p is negative and has a uniform lower bound; if µ = ( πT )
2, (1.3)

has at least one positive periodic solution when p is positive, which does not require the strong

force condition α ≥ 1. These conclusions had been improved in [7].

Compared with the literature available for strong singularities, the study of the existence

of periodic solutions under the presence of a weak singularity (0 < α < 1) is much more recent

and the number of references is considerably smaller. The likely reason may be that with a weak

singularity, the energy near the origin becomes finite, and this fact is not helpful for obtaining

a priori bound needed for a classical application of the degree theory, and also not helpful

for the fast rotation needed in recent versions of the Poincaré-Birkhoff theorem. Fortunately,

some results in the literature show in some situations weak singularities may help to create

periodic solutions [10,16,23–25]. In addition, many researchers have focused on the existence of

positive periodic solutions of singular systems composed of the first and second-order differential

equations, see for instance, [10,25–27] and the references therein. It has been shown that many

results of nonsingular systems are still valid for singular cases.

For convenience, we denote by ξ∗ and ξ∗ the essential supremum and infimum of a given

function ξ ∈ L1[0, T ], if they exist. We write ξ ≻ 0 if ξ ≥ 0 for a.e., t ∈ [0, T ] and it is positive

in a set of positive measure. Very recently, Cao and Jiang [25] studied the coupled system{
x′′ + a1(t)x = f1(t, y(t)) + c1(t),

y′′ + a2(t)y = f2(t, x(t)) + c2(t),
(1.4)

where a1, a2, c1, c2 ∈ C[0, T ], f1, f2 ∈ C([0, T ] × (0,+∞), (0,+∞)) and may be singular near

the zero. Under the basic assumption

(H1) The Green’s function Gi(t, s), associated with

x′′ + ai(t)x = 0, x(0) = x(T ), x′(0) = x′(T ),

is nonnegative for every (t, s) ∈ [0, T ]× [0, T ], i = 1, 2.

They proved a series of excellent results as below.
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Theorem 1.1 ([25]) Let (H1) hold and define

γi(t) =

∫ T

0

Gi(t, s)ci(s)ds, i = 1, 2. (1.5)

Assume that

(H2) There exist bi, b̂i ∈ L1(0, T ) with bi ≻ 0, b̂i ≻ 0 and 0 < αi < 1 such that

0 ≤ b̂i(t)

xαi
≤ fi(t, x) ≤

bi(t)

xαi
, for all x > 0, a.e. t ∈ [0, T ], i = 1, 2.

If γ1∗ ≥ 0, γ2∗ ≥ 0, then (1.4) has a positive T -periodic solution.

Theorem 1.2 ([25]) Let (H1) and (H2) hold. Set

β̂i =

∫ T

0

Gi(t, s)b̂i(s)ds, βi =

∫ T

0

Gi(t, s)bi(s)ds, i = 1, 2.

If γ∗
1 ≤ 0, γ∗

2 ≤ 0 and

γ1∗ ≥
[
α1α2 ·

β̂1∗

(β∗
2)

α1

] 1
1−α1α2 ·

(
1− 1

α1α2

)
, (1.6)

γ2∗ ≥
[
α1α2 ·

β̂2∗

(β∗
1)

α2

] 1
1−α1α2 ·

(
1− 1

α1α2

)
, (1.7)

then (1.4) has a positive T -periodic solution.

Theorem 1.3 ([25]) Let (H1) and (H2) hold. If γ1∗ ≥ 0, γ∗
2 ≤ 0 and

γ2∗ ≥ r21 − β̂2∗ ·
rα1α2
21

(β∗
1 + γ∗

1r
α1
21 )

α2
, (1.8)

where r21 is the unique positive solution of the equation

r1−α1α2
2 (β∗

1 + γ∗
1r

α1
2 )1+α2 = α1α2β

∗
1 β̂2∗, (1.9)

then (1.4) has a positive T -periodic solution.

Theorem 1.4 ([25]) Let (H1) and (H2) hold. If γ∗
1 ≤ 0, γ2∗ ≥ 0 and

γ1∗ ≥ r11 − β̂1∗ ·
rα1α2
11

(β∗
2 + γ∗

2r
α2
11 )

α1
, (1.10)

where r11 is the unique positive solution of the equation

r1−α1α2
1 (β∗

2 + γ∗
2r

α2
1 )1+α1 = α1α2β

∗
2 β̂1∗, (1.11)

then (1.4) has a positive T -periodic solution.

Obviously, (H2) extensively used in [25] is so restrictive that above results are only applicable

to (1.1) with nonlinearity fi which is bounded in origin and infinity by functions of the form 1
xλi

.

Of course the natural question is what would happen if we allow the nonlinearity fi is bounded

by two different functions 1
xαi

and 1
xβi

, i = 1, 2.

The purpose of this paper is to study the existence of positive periodic solutions of (1.1)

under more general assumptions
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(A1) pi, qi, ci ∈ C(R/TZ;R), i = 1, 2; f1, f2 ∈ C(R/TZ× (0,∞),R) and may be singular

near the zero.

(A2) There exist b̂i, bi, ei ∈ L1(0, T ) with b̂i, bi, ei ≻ 0 and positive constants αi, βi, µi, νi ∈
(0, 1), such that

0 ≤ b̂i(t)

xαi
≤ fi(t, x) ≤

bi(t)

xβi
, x ∈ [1,∞), a.e. t ∈ [0, T ], i = 1, 2,

0 ≤ b̂i(t)

xµi
≤ fi(t, x) ≤

ei(t)

xνi
, x ∈ (0, 1), a.e. t ∈ [0, T ], i = 1, 2.

(A3) There exist b̂i, bi, ei ∈ L1(0, T ) with b̂i, bi, ei ≻ 0 and constants α1, β1, β2, µ1, µ2, ν2 ∈
(0, 1), such that

0 ≤ b̂1(t)

xα1
≤ f1(t, x) ≤

b1(t)

xβ1
, x ∈ [1,∞), a.e. t ∈ [0, T ],

0 ≤ b̂1(t)

xµ1
≤ f1(t, x) ≤

e1(t)

xβ1
, x ∈ (0, 1), a.e. t ∈ [0, T ];

Moreover,

0 ≤ b̂2(t)

xµ2
≤ f2(t, x) ≤

b2(t)

xβ2
, x ∈ [1,∞), a.e. t ∈ [0, T ],

0 ≤ b̂2(t)

xµ2
≤ f2(t, x) ≤

e2(t)

xν2
, x ∈ (0, 1), a.e. t ∈ [0, T ].

Remark 1.5 It is worth remarking that the singular coupled system (1.1) with damping terms,

has not attracted much attention in the literature. To the best of our knowledge, the existence

results are relatively little even for the single second-order damped differential equations. We

refer the readers to [27–30] for several existence results.

Remark 1.6 Let us consider the function

fi(t, u) =


1

uεi
, u ∈ [1,∞),

1

uηi
, u ∈ (0, 1),

(1.6)

where εi, ηi ∈ (0, 1). Clearly, fi is continuous and satisfies (A2) with

αi = βi = εi, µi = νi = ηi; b̂i(t) = bi(t) = ei(t) ≡ 1, i = 1, 2.

However, it does not satisfy (H2) since it cannot be bounded by a single function hi(t)
uγi

for any

γi ∈ (0, 1) and any hi ≻ 0. Similarly, our condition (A3) is also more general than (H2).

2. Preliminaries

We say that the linear equation

x′′ + p(t)x′ + q(t)x = 0, (2.1)

associated to periodic boundary conditions

x(0) = x(T ), x′(0) = x′(T ) (2.2)
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is non-resonant if its unique T -periodic solution is the trivial one. When (2.1), (2.2) is non-

resonant, as a consequence of Fredholm’s alternative, the nonhomogeneous equation

x′′ + p(t)x′ + q(t)x = l(t) (2.3)

admits a unique T -periodic solution, which can be written as x(t) =
∫ T

0
G(t, s)l(s)ds, where

G(t, s) is Green’s function of (2.1), (2.2). Moreover, (2.1) admits the anti-maximum principle if

(2.3) has a unique T -periodic solution xl for all l ∈ C(R/TZ), and xl(t) > 0 for all t if l ≻ 0.

Recently, an explicit criterion, which guarantees (2.1) admits the anti-maximum principle, had

been proved in [28]. For simplicity of statement, define

σ(p)(t) := e
∫ t
0
p(s)ds, σ1(p)(t) := σ(p)(T )

∫ t

0

σ(p)(s)ds+

∫ T

t

σ(p)(s)ds.

Lemma 2.1 ([28]) Assume q ̸≡ 0 and∫ T

0

q(s)σ(p)(s)σ1(−p)(s) ≥ 0, (2.4)

sup
0≤t≤T

{∫ t+T

t

σ(−p)(s)ds ·
∫ t+T

t

[q(s)]+σ(p)(s)ds
}
≤ 4, (2.5)

where [q(s)]+ = max{q(s), 0}. Then the anti-maximum principle for (2.1) holds.

In the recent paper [29], the authors proved if (2.1) admits the anti-maximum principle,

then G(t, s) is nonnegative for all (t, s) ∈ [0, T ]× [0, T ]. Moreover, they obtained

Lemma 2.2 ([29]) Assume q ̸≡ 0 and (2.5) holds. Then the distance between two consecutive

zeroes of a nontrivial solution of (2.1) is always strictly greater than T .

Note that Lemma 2.2 implies Green’s function G(t, s) does not vanish. As a consequence of

two previous Lemmas, Chu et al. [29] proved the following

Lemma 2.3 ([29]) Suppose q ̸≡ 0 and (2.4)-(2.5) are satisfied. Then G(t, s) is positive for all

(t, s) ∈ [0, T ]× [0, T ].

Remark 2.4 In the special case p ≡ 0 (there is no damping terms), the inequalities (2.4) and

(2.5) reduce to
∫ T

0
q(s)ds > 0 and ∥[q(s)]+∥1 < 4

T , respectively, which are conditions used to

ensure the positivity of Green’s function of

x′′ + q(t)x = 0, x(0) = x(T ), x′(0) = x′(T ).

See Cabada and Cid [31] for more details.

In the following, we always assume

(A0) The Green’s function Gi(t, s), associated with the linear problem

x′′ + ai(t)x
′ + bi(t)x = 0, x(0) = x(T ), x′(0) = x′(T ),

is positive for all (t, s) ∈ [0, T ]× [0, T ].

To state and prove our main results, we need some notations as bellow.

B̂i(t) :=

∫ T

0

Gi(t, s)b̂i(s)ds, Ei(t) :=

∫ T

0

Gi(t, s)ei(s)ds, i = 1, 2; (2.6)
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Bi(t) :=

∫ T

0

Gi(t, s)bi(s)ds, i = 1, 2; (2.7)

ρ∗i := E∗
i +B∗

i , σi := max{µi, αi}, δi := max{νi, βi}, i = 1, 2. (2.8)

3. The case γ1∗ ≥ 0, γ2∗ ≥ 0

Theorem 3.1 Let (A0), (A1) and (A2) hold. If γ1∗ ≥ 0, γ2∗ ≥ 0, then (1.1) has a positive

T -periodic solution.

Proof Let us denote the set of continuous T -periodic functions as CT . Then a T -periodic

solution of (1.1) is just a fixed point of the completely continuous map

A(x, y) = (A1x,A2y) : CT × CT → CT × CT

defined as

(A1x)(t) :=

∫ T

0

G1(t, s)[f1(s, y(s)) + c1(s)]ds =

∫ T

0

G1(t, s)f1(s, y(s))ds+ γ1(t),

(A2y)(t) :=

∫ T

0

G2(t, s)[f2(s, x(s)) + c2(s)]ds =

∫ T

0

G2(t, s)f2(s, x(s))ds+ γ2(t).

By a direct application of Schauder’s fixed point theorem, the proof is finished if we prove A

maps the closed convex set

K =
{
(x, y) ∈ CT × CT : r1 ≤ x(t) ≤ R1, r2 ≤ y(t) ≤ R2, for all t ∈ [0, T ], Ri > 1, i = 1, 2

}
into itself, where R1 > r1 > 0, R2 > r2 > 0 are positive constants to be fixed properly.

For given u ∈ K, setting

Ji1 := {t ∈ [0, T ] : ri ≤ u(t) < 1}, Ji2 := {t ∈ [0, T ] : Ri ≥ u(t) ≥ 1}, i = 1, 2.

Then by (A0), (A2) and R2 > 1, we have for given (x, y) ∈ K,

(A1x)(t) =

∫ T

0

G1(t, s)f1(s, y(s))ds+ γ1(t)

≥
∫
J11

G1(t, s)f1(s, y(s))ds+

∫
J12

G1(t, s)f1(s, y(s))ds+ γ1∗

≥
∫
J11

G1(t, s)
b̂1(t)

yµ1
ds+

∫
J12

G1(t, s)
b̂1(t)

yα1
ds

≥
∫ T

0

G1(t, s)
b̂1(t)

Rσ1
2

ds ≥ B̂1∗ ·
1

Rσ1
2

,

where σ1 is given by (2.8). Note that for every (x, y) ∈ K,

(A1x)(t) =

∫
J11

G1(t, s)f1(s, y(s))ds+

∫
J12

G1(t, s)f1(s, y(s))ds+ γ∗
1

≤
∫
J11

G1(t, s)
e1(s)

yν1
ds+

∫
J12

G1(t, s)
b1(s)

yβ1
ds+ γ∗

1

≤
∫ T

0

G1(t, s)
e1(s)

rν1
2

ds+

∫ T

0

G1(t, s)b1(s)ds+ γ∗
1



Positive periodic solutions of second-order singular coupled systems with damping terms 441

≤ 1

rν1
2

· E∗
1 + (B∗

1 + γ∗
1 ).

By the same strategy, we get

(A2y)(t) ≥
∫
J21

G2(t, s)f2(s, x(s))ds+

∫
J22

G2(t, s)f2(s, x(s))ds+ γ2∗

≥
∫
J21

G2(t, s)
b̂2(t)

Rµ2

1

ds+

∫
J22

G2(t, s)
b̂2(t)

Rα2
1

ds

≥
∫ T

0

G2(t, s)
b̂2(t)

Rσ2
1

ds ≥ B̂2∗ ·
1

Rσ2
1

,

where σ2 is defined as in (2.8). Moreover,

(A2y)(t) ≤
∫
J21

G2(t, s)f2(s, x(s))ds+

∫
J22

G2(t, s)f2(s, x(s))ds+ γ∗
2

≤
∫
J21

G2(t, s)
e2(s)

xν2
ds+

∫
J22

G2(t, s)
b2(s)

xβ2
ds+ γ∗

2

≤
∫ T

0

G2(t, s)
e2(s)

rν2
1

ds+

∫ T

0

G2(t, s)b2(s)ds+ γ∗
2

≤ 1

rν2
1

· E∗
2 + (B∗

2 + γ∗
2).

Therefore, (A1x,A2y) ∈ K if r1, r2, R1 and R2 are chosen such that

B̂1∗ ·
1

Rσ1
2

≥ r1,
1

rν1
2

· E∗
1 + (B∗

1 + γ∗
1 ) ≤ R1;

B̂2∗ ·
1

Rσ2
1

≥ r2,
1

rν2
1

· E∗
2 + (B∗

2 + γ∗
2 ) ≤ R2,

and they should satisfy Ri > ri > 0, Ri > 1, i = 1, 2.

Since B̂i∗ > 0, Ei∗ > 0, taking R = R1 = R2, r = r1 = r2, r = 1
R , it is sufficient to find

R > 1 such that

B̂1∗ ·R1−σ1 ≥ 1, Rν1 · E∗
1 + (B∗

1 + γ∗
1) ≤ R;

B̂2∗ ·R1−σ2 ≥ 1, Rν2 · E∗
2 + (B∗

2 + γ∗
2) ≤ R,

and these inequalities hold for R large enough because σi < 1, νi < 1, i = 1, 2. �

Remark 3.2 It is not difficult to see even in the special case αi = βi = µi = νi, our condition

(A2) is more general than (H2). Hence Theorem 3.1 generalizes Theorem 1.1.

4. The case γ∗
1 ≤ 0, γ∗

2 ≤ 0

The aim of this section is to show that the presence of a weak singular nonlinearity makes

it possible to find positive solutions when γ∗
1 ≤ 0, γ∗

2 ≤ 0.

Theorem 4.1 Let (A0), (A1) and (A2) hold. Assume

ρ∗1 > max
{
(δ1σ2B̂2∗)

1
σ2 , (δ1σ2B̂2∗)

δ1
}
, (4.1)
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ρ∗2 > max
{
(δ2σ1B̂1∗)

1
σ1 , (δ2σ1B̂1∗)

δ2
}
. (4.2)

If γ∗
1 ≤ 0, γ∗

2 ≤ 0 and

γ2∗ ≥
(
δ1σ2 ·

B̂2∗

(ρ∗1)
σ2

) 1
1−δ1σ2 ·

(
1− 1

1− δ1σ2

)
, (4.3)

γ1∗ ≥
(
δ2σ1 ·

B̂1∗

(ρ∗2)
σ1

) 1
1−δ2σ1 ·

(
1− 1

1− δ2σ1

)
, (4.4)

then (1.1) has a positive T -periodic solution, where ρ∗i , δi, σi, i = 1, 2 are given by (2.8).

Proof Define a closed convex set K as

K =
{
(x, y) ∈ CT × CT : r1 ≤ x(t) ≤ R1, r2 ≤ y(t) ≤ R2, t ∈ [0, T ], Ri > 1 > ri > 0

}
.

By Schauder’s fixed point theorem, the proof is finished if we prove A maps K into itself. For

given (x, y) ∈ K, it follows from (A0), (A2) and R2 > 1 > r2 that

(A1x)(t) ≥
∫
J11

G1(t, s)f1(s, y(s))ds+

∫
J12

G1(t, s)f1(s, y(s))ds+ γ1∗

≥
∫
J11

G1(t, s)
b̂1(t)

Rµ1

2

ds+

∫
J12

G1(t, s)
b̂1(t)

Rα1
2

ds+ γ1∗

≥
∫ T

0

G1(t, s)
b̂1(t)

Rσ1
2

ds+ γ1∗ ≥ B̂1∗ ·
1

Rσ1
2

+ γ1∗,

(A1x)(t) ≤
∫
J11

G1(t, s)
e1(s)

yν1
ds+

∫
J12

G1(t, s)
b1(s)

yβ1
ds

≤
∫
J11

G1(t, s)
e1(s)

rν1
2

ds+

∫
J12

G1(t, s)
b1(s)

rβ1

2

ds

≤
∫ T

0

G1(t, s)
e1(s)

rδ12
ds+

∫ T

0

G1(t, s)
b1(s)

rδ12
ds ≤ 1

rδ12
· ρ∗1.

By simple estimates, we can also obtain

(A2y)(t) ≥ B̂2∗ ·
1

Rσ2
1

+ γ2∗,

(A2y)(t) ≤
1

rδ21
· ρ∗2.

Clearly, (A1x,A2y) ∈ K if r1, r2, R1 and R2 are chosen such that

B̂1∗ ·
1

Rσ1
2

+ γ1∗ ≥ r1,
1

rδ12
· ρ∗1 ≤ R1; (4.5)

B̂2∗ ·
1

Rσ2
1

+ γ2∗ ≥ r2,
1

rδ21
· ρ∗2 ≤ R2, (4.6)

and they should satisfy that Ri > 1 > ri > 0, i = 1, 2.

If we fix R1 = 1

r
δ1
2

· ρ∗1, R2 = 1

r
δ2
1

· ρ∗2, then the first inequality of (4.6) holds if r2 satisfies

B̂2∗ · rδ1σ2
2 · (ρ∗1)−σ2 + γ2∗ ≥ r2, or equivalently, γ2∗ ≥ g(r2) := r2 − B̂2∗

(ρ∗
1)

σ2
rδ1σ2
2 . The function
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g(r2) possesses a minimum at r20 :=
(
δ1σ2 · B̂2∗

(ρ∗
1)

σ2

) 1
1−δ1σ2

. Taking r2 = r20, then (4.6) holds if

γ2∗ ≥ g(r20) :=
(
δ1σ2 ·

B̂2∗

(ρ∗1)
σ2

) 1
1−δ1σ2 ·

(
1− 1

1− δ1σ2

)
,

which is just (4.3). Similarly, γ1∗ ≥ h(r1) := r1 − B̂1∗
(ρ∗

2)
σ1
rδ2σ1
1 . h(r1) possesses a minimum at

r10 := (δ2σ1 · B̂1∗
(ρ∗

2)
σ1
)

1
1−δ2σ1 . Taking r1 = r10, then

γ1∗ ≥ h(r10) :=
(
δ2σ1 ·

B̂1∗

(ρ∗2)
σ1

) 1
1−δ2σ1 ·

(
1− 1

1− δ2σ1

)
,

which is condition (4.4). The second inequality holds directly from the choice of R1 and R2, so

it remains to prove Ri > 1 > ri > 0, i = 1, 2. This is easily verified by (4.1) and (4.2). �

Remark 4.2 (4.1) and (4.2) are crucial to ensure Ri > 1 > ri > 0. In the proof of Theorem 4.1,

we require Ri > 1 > ri > 0 since the exponents in inequalities of (H2) are different, which makes it

more difficult to estimate some inequalities. However, in the special case λi := αi = βi = µi = νi,

i = 1, 2, if we define

ωi(t) := max{bi(t), ei(t)}, a.e. t ∈ [0, T ], i = 1, 2,

then Theorem 4.1 reduces to Theorem 1.2. Moreover, (4.1) and (4.2) are not needed because

Ri > 1 > ri > 0 can be easily verified by b̂i(t) ≤ ωi(t). Finally, it is worth remarking that

Theorem 4.1 applies to systems which cannot be treated by Theorem 1.2, see Example 4.3 as

below.

Example 4.3 Let us consider the singular coupled system

x′′ +
1

4
x =

4− t

y
1
5

− c1, t ∈ (0, π),

y′′ +
1

9
y =

1 + t

x
1
4

− c2, t ∈ (0, π),

x(0) = x(π), x′(0) = x′(π),

y(0) = y(π), y′(0) = y′(π),

(4.7)

where f1(t, y) =
4−t

y
1
5
, f2(t, x) =

1+t

x
1
4
, q1 ≡ 1

4 , q2 ≡ 1
9 . We choose pi ≡ 0 (i = 1, 2) such that the

calculation of Green’s function is more convenient. c1 and c2 are positive constants with

c1 ∈
(
0,

1

20
·
( 1

3
√
33

) 6
5
]
, c2 ∈

(
0,

1

15
·
( 1

2 3
√
40

) 6
5
]
. (4.8)

It is not difficult to check

(A1x)(t) :=

∫ π

0

G1(t, s)
4− s

y(s)
1
5

ds+

∫ π

0

G1(t, s)(−c1)ds,

(A1y)(t) :=

∫ π

0

G2(t, s)
1 + s

x(s)
1
4

ds+

∫ π

0

G1(t, s)(−c2)ds,
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where

G1(t, s) =


sin

π − t+ s

2
+ sin

t− s

2
, 0 ≤ s ≤ t ≤ π,

sin
π − s+ t

2
+ sin

s− t

2
, 0 ≤ t ≤ s ≤ π,

G2(t, s) =


sin

π − t+ s

3
+ sin

t− s

3
, 0 ≤ s ≤ t ≤ π,

sin
π − s+ t

3
+ sin

s− t

3
, 0 ≤ t ≤ s ≤ π.

Obviously, Gi(t, s) > 0 for (t, s) ∈ [0, π]×[0, π] and fi satisfies (A1). Moreover,
∫ π

0
G1(t, s)ds = 4,∫ π

0
G2(t, s)ds = 3.

Let

b̂1(t) ≡
1

2
, b1(t) ≡ 4, e1(t) ≡ 6;

α1 =
1

2
, β1 =

1

6
, µ1 =

1

7
, ν1 =

1

2
.

Then σ1 = max{µ1, α1} = 1
2 , δ1 = max{β1, ν1} = 1

2 , and

0 <
1
2

y
1
2

≤ 4− t

y
1
5

≤ 4

y
1
6

, y ∈ [1,∞), t ∈ [0, π];

0 <
1
2

y
1
7

≤ 4− t

y
1
5

≤ 6

y
1
2

, u ∈ (0, 1), t ∈ [0, π].

On the other hand, let

b̂2(t) ≡ 1, b2(t) ≡ 5, e2(t) ≡ 6;

α2 =
1

3
, β2 =

1

5
, µ2 =

1

8
, ν2 =

1

3
,

we can then obtain σ2 = max{µ2, α2} = 1
3 , δ2 = max{β2, ν2} = 1

3 , and

0 <
1

x
1
3

≤ 1 + t

x
1
4

≤ 5

x
1
5

, x ∈ [1,∞), t ∈ [0, π];

0 <
1

x
1
8

≤ 1 + t

x
1
4

≤ 6

x
1
3

, x ∈ (0, 1), t ∈ [0, π].

Hence (A2) is also satisfied.

Simple computation gives

B̂1∗ = B̂∗
1 = 2, B1∗ = B∗

1 = 16, E1∗ = E∗
1 = 24,

B̂2∗ = B̂∗
2 = 3, B2∗ = B∗

2 = 15, E2∗ = E∗
2 = 18;

ρ∗1 = E∗
1 +B∗

1 = 40, ρ∗2 = E∗
2 +B∗

2 = 33;

(δ1σ2B̂2∗)
1
σ2 =

1

8
, (δ1σ2B̂2∗)

δ1 =

√
2

2
; (δ2σ1B̂1∗)

1
σ1 =

1

9
, (δ2σ1B̂1∗)

δ2 =
1
3
√
3
,

and conditions (4.1) and (4.2) are also satisfied.

Finally, it follows from

γ1(t) =

∫ π

0

G1(t, s)(−c1)ds = −4c1, γ2(t) =

∫ π

0

G2(t, s)(−c2)ds = −3c2
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that γ1∗ = γ∗
1 = −4c1 < 0, γ2∗ = γ∗

2 = −3c2 < 0. (4.8) yields

γ1∗ = −4c1 ≥ −4 · 1

20

( 1

3
√
33

) 6
5 = −1

5

( 1

3
√
33

) 6
5 =

(
δ2σ1 ·

B̂1∗

(ρ∗2)
σ1

) 1
1−δ2σ1 ·

(
1− 1

1− δ2σ1

)
,

γ2∗ = −3c2 ≥ −3 · 1

15

( 1

2 3
√
40

) 6
5 = −1

5

( 1

2 3
√
40

) 6
5 =

(
δ1σ2 ·

B̂2∗

(ρ∗1)
σ2

) 1
1−δ1σ2 ·

(
1− 1

1− δ1σ2

)
.

Therefore, (4.3) and (4.4) are satisfied. Consequently, Theorem 4.1 implies system (4.7) has a

positive periodic solution.

5. The case γ1∗ ≥ 0, γ∗
2 ≤ 0 (γ∗

1 ≤ 0, γ2∗ ≥ 0)

Theorem 5.1 Let (A0), (A1) and (A3) hold. If γ1∗ ≥ 0, γ∗
2 ≤ 0 and

γ2∗ ≥ r21 − B̂2∗ ·
rµ2β1

21

(ρ∗1 + γ∗
1r

β1

21 )
µ2

, (5.1)

where 0 < r21 < +∞ is the unique positive solution of the equation

r1−µ2β1

2 · (ρ∗1 + γ∗
1r

β1

2 )1+µ2 = µ2β1B̂2∗ρ
∗
1, (5.2)

then (1.1) has a positive T -periodic solution.

Proof Let K be a closed convex set defined as

K =
{
(x, y) ∈ CT × CT : r1 ≤ x(t) ≤ R1, r2 ≤ y(t) ≤ R2, t ∈ [0, T ], R2 > 1, r1 < 1

}
.

To prove the theorem, we shall follow the same strategy as in the proofs of previous theorems.

For given (x, y) ∈ K, by (A0), (A3) and R2 > 1, we have

(A1x)(t) ≥
∫
J11

G1(t, s)f1(s, y(s))ds+

∫
J12

G1(t, s)f1(s, y(s))ds+ γ1∗

≥
∫
J11

G1(t, s)
b̂1(s)

yµ1
ds+

∫
J12

G1(t, s)
b̂1(s)

yα1
ds

≥
∫ T

0

G1(t, s)
b̂1(s)

Rσ1
2

ds ≥ B̂1∗ ·
1

Rσ1
2

,

(A1x)(t) ≤
∫
J11

G1(t, s)
e1(s)

yβ1
ds+

∫
J12

G1(t, s)
b1(s)

yβ1
ds+ γ∗

1

≤
∫
J11

G1(t, s)
e1(s)

rβ1

2

ds+

∫
J12

G1(t, s)
b1(s)

rβ1

2

ds+ γ∗
1

≤
∫ T

0

G1(t, s)
e1(s)

rβ1

2

ds+

∫ T

0

G1(t, s)
b1(s)

rβ1

2

ds+ γ∗
1

≤ 1

rβ1

2

· ρ∗1 + γ∗
1 .

Similarly, we can get

(A2y)(t) ≤
1

rδ21
· ρ∗2, (A2y)(t) ≥ B̂2∗ ·

1

Rµ2

1

+ γ2∗.
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Now, (A1x,A2y) ∈ K if r1, r2, R1 and R2 are chosen such that

B̂1∗ ·
1

Rσ1
2

≥ r1,
1

rδ21
· ρ∗2 ≤ R2; (5.3)

1

rβ1

2

· ρ∗1 + γ∗
1 ≤ R1, B̂2∗ ·

1

Rµ2

1

+ γ2∗ ≥ r2, (5.4)

and they should satisfy that R2 > 1, r1 < 1.

Let R2 = 1

r
δ2
1

· ρ∗2 be fixed. The first inequality of (5.3) holds if r1 satisfies

B̂1∗

(ρ∗2)
σ1

· rδ2σ1
1 ≥ r1, (5.5)

or equivalently,

0 < r1 ≤
( B̂1∗

(ρ∗2)
σ1

) 1
1−δ2σ1 . (5.6)

If we choose 0 < r1 < 1 small enough, then (5.6) holds, and R2 > 1 is large enough.

If we fix R1 = 1

r
β1
2

·ρ∗1+γ∗
1 , then the second inequality of (5.4) holds provided that r2 verifies

γ2∗ ≥ r2 − B̂2∗ · 1
R

µ2
1

= r2 − B̂2∗ · r
µ2β1
2

(ρ∗
1+γ∗

1 r
β1
2 )µ2

, or equivalently,

γ2∗ ≥ f(r2) := r2 − B̂2∗ ·
rµ2β1

2

(ρ∗1 + γ∗
1r

β1

2 )µ2

. (5.7)

It is not difficult to check

f ′(r2) = 1− µ2β1B̂2∗ρ
∗
1 · r

µ2β1−1
2 · (ρ∗1 + γ∗

1r
β1

2 )−1−µ2 , (5.8)

and then f ′(0) = −∞, f ′(+∞) = 1, hence there exists r21 such that f ′(r21) = 0. Furthermore,

f ′′(r2) =µ2β1B̂2∗ρ
∗
1(1− µ2β1) · rµ2β1−1

2 · (ρ∗1 + γ∗
1r

β1

2 )−1−µ2+

µ2β1B̂2∗ρ
∗
1 · r

µ2β1−1
2 (1 + µ2)(ρ

∗
1 + γ∗

1r
β1

2 )−2−µ2 · β1γ
∗
1r

β1−1
2 > 0, (5.9)

and therefore f(r2) possesses a minimum at r21, i.e., f(r21) = min
r2∈(0,∞)

f(r2).

Since f ′(r21) = 0, we get 1− µ2β1B̂2∗ρ
∗
1 · r

µ2β1−1
21 · (ρ∗1 + γ∗

1r
β1

21 )
−1−µ2 = 0, or equivalently,

r1−µ2β1

21 · (ρ∗1 + γ∗
1r

β1

21 )
1+µ2 = µ2β1B̂2∗ρ

∗
1. (5.10)

Taking r2 = r21, the second inequality of (5.4) holds if γ2∗ ≥ f(r21), which is just (5.1). The

first inequality of (5.4) holds directly by the choice of R1. �

Remark 5.2 Note that the right-hand side of (5.1) is always negative, which is equivalent to

showing f(r21) < 0. By (5.10), this is obviously satisfied because

f(r21) = r21 − B̂2∗ ·
rµ2β1

21

(ρ∗1 + γ∗
1r

β1

21 )
µ2

=
rµ2β1

21 · B̂2∗

(ρ∗1 + γ∗
1r

β1

21 )
1+µ2

·
(
(µ2β1 − 1)ρ∗1 − γ∗

1r
β1

21

)
< 0. (5.11)

Moreover, Theorem 5.1 is still valid if we choose α1, µ1, β2, ν2 ∈ (0, 1) and µ2 > 0, β1 > 0 with

µ2β1 < 1, which implies f1 satisfies weak force condition, f2 satisfies either strong force condition
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or weak force condition.

Remark 5.3 In the special case α1 = β1 = β2 = µ1 = µ2 = ν2, our condition (A3) is also more

general than (H2), so Theorem 5.1 improves Theorem 1.3.

Using the same methods as in the proof of Theorem 5.1 with obvious changes, we can prove

the following

Theorem 5.4 Let (A0), (A1) hold. Assume

(A4) There are b̂i, bi, ei ∈ L1(0, T ) with b̂i, bi, ei ≻ 0, α1, α2, β1, β2, µ2, ν1 ∈ (0, 1)

satisfying

0 ≤ b̂1(t)

xα1
≤ f1(t, x) ≤

b1(t)

xβ1
, x ∈ [1,∞), a.e. t ∈ [0, T ],

0 ≤ b̂1(t)

xα1
≤ f1(t, x) ≤

e1(t)

xν1
, x ∈ (0, 1), a.e. t ∈ [0, T ];

Moreover, suppose

0 ≤ b̂2(t)

xα2
≤ f2(t, x) ≤

b2(t)

xβ2
, x ∈ [1,∞), a.e. t ∈ [0, T ],

0 ≤ b̂2(t)

xµ2
≤ f2(t, x) ≤

e2(t)

xβ2
, x ∈ (0, 1), a.e. t ∈ [0, T ].

If γ∗
1 ≤ 0, γ2∗ ≥ 0 and

γ1∗ ≥ r11 − B̂1∗ ·
rβ2α1

11

(ρ∗2 + γ∗
2r

β2

11 )
α1

, (5.12)

(1.1) possesses a positive T -periodic solution, where r11 is the unique positive solution of

r1−β2α1

1 · (ρ∗2 + γ∗
2r

β2

1 )1+α1 = β2α1B̂1∗ρ
∗
2. (5.13)

Remark 5.5 As Remark 5.2, we can show the right-hand side of (5.12) is always negative.

Moreover, Theorem 5.4 is still valid if we choose α2, µ2, β1, ν1 ∈ (0, 1) and β2 > 0, α1 > 0 with

β2α1 < 1. This implies f1 satisfies either strong or weak force condition, and f2 satisfies weak

force condition.
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différentielle non linéaire. Mém. Public. Soc. Sci. Artts Lettres Hainaut, 1962, 79: 3–13.

[2] A. HUAUX. Sur L’existence d’une solution périodique de l’é equation différentielle non linéaire x′′ +0.2x′ +
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