
Journal of Mathematical Research with Applications

Jul., 2017, Vol. 37, No. 4, pp. 466–476

DOI:10.3770/j.issn:2095-2651.2017.04.008

Http://jmre.dlut.edu.cn

On Some Properties of c-Frames

Morteza RAHMANI

Young Researchers and Elite Club, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran

Abstract In this paper we discuss about c-frames, namely continuous frames. Since, c-

frames are generalizations of discrete frames, we generalize some results of discrete frames to

continuous version. We explain some results about relations of projections in Hilbert spaces

and c-frames to characterize these frames. Also, we will specify (precisely) the synthesis and

frame operators of Bochner integrable c-frames. Finally, we classify Hilbert-Schmidt operators

by c-frames and express some new identities for Parseval c-frames.
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1. Introduction

Duffin and Schaeffer introduced the concept of discrete frames in Hilbert spaces in 1952 to

study some deep problems in nonharmonic Fourier series [1]. After the fundamental paper [2]

by Daubechies, Grossmann and Meyer, frames usage began to be raised. In signal processing,

image and data compression and sampling theory, the concept of frame has a fundamental

impact. Frames provide an alternative to orthonormal bases in Hilbert spaces. Indeed, a discrete

frame is a countable family of elements in a separable Hilbert space which allows for a stable,

not necessarily unique, decomposition of an arbitrary element into an expansion of the frame

elements. For more details about discrete frames we refer to [3]. Various kind of frames have

been introduced till now, which are generalization of discrete frames. For more studies about

some types of frames, the interested reader can refer to [4–11].

In this paper we generalize some concepts of discrete frames and some results in [12] to

c-frames. The paper is organized as follows. In Section 2, we verify relations between projections

and c-frames. Our aim in Section 3 is study of effects of Bochner integrability on c-frames.

Section 4 is devoted to classifying Hilbert-Schmidt operators by c-frames. Finally, in the last

section we show some new identities for Parseval c-frames.

Throughout this paper H and K stand for Hilbert spaces, and X and Y stand for Banach

spaces.

Suppose (Ω,Σ, µ) is a measure space, where µ is a positive measure.

At first we give some definitions to introduce Bochner measurable and Bochner integrable

mappings.
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Definition 1.1 A function f : Ω −→ X is called simple if there exist x1, . . . , xn ∈ X and

E1, . . . , En ∈ Σ such that f =
∑n

i=1 xiχEi , where χEi(ω) = 1 if ω ∈ Ei and χEi(ω) = 0 if

ω ∈ Ec
i . If µ(Ei) is finite, whenever xi ̸= 0, then the simple function f is integrable, and the

integral is then defined by ∫
Ω

f(ω)dµ(ω) =

n∑
i=1

µ(Ei)xi.

Definition 1.2 A function f : Ω −→ X is called Bochner measurable if there exists a sequence

of simple functions {fn}∞n=1 such that limn→∞ ∥fn − f∥ = 0, µ-almost everywhere.

Definition 1.3 A Bochner measurable function f : Ω −→ X is called Bochner integrable if

there exists a sequence of integrable simple functions {fn}∞n=1 such that

lim
n→∞

∫
Ω

∥fn(ω)− f(ω)∥dµ(ω) = 0.

In this case,
∫
E
f(ω)dµ(ω) is defined by∫

E

f(ω)dµ(ω) = lim
n→∞

∫
E

fn(ω)dµ(ω), E ∈ Σ.

Now, we review the definition of continuous frames.

Definition 1.4 A mapping f : Ω −→ H is called a continuous frame or c-frame for H if:

(i) For each h ∈ H, ω 7−→ ⟨h, f(ω)⟩ is a measurable function;

(ii) There exist positive constants A and B such that

A∥h∥2 ≤
∫
Ω

|⟨h, f(ω)⟩|2dµ(ω) ≤ B∥h∥2, h ∈ H. (1.1)

The constants A and B are called c-frame bounds. f is called a tight c-frames if A = B and it is

called a Parseval c-frame if A = B = 1. The mapping f is called c-Bessel mapping if the second

inequality in (1.1) holds. In this case, B is called the Bessel constant.

For a c-Bessel mapping, there are two important associated operators as below.

Proposition 1.5 ([11]) Let f be a c-Bessel mapping for H. Then the operator

T : L2(Ω, µ) −→ H

weakly defined by

⟨Tφ, h⟩ =
∫
Ω

φ(ω)⟨f(ω), h⟩dµ(ω), h ∈ H, (1.2)

is well defined, linear, bounded and its adjoint is given by

T ∗ : H −→ L2(Ω, µ), T ∗h(ω) = ⟨h, f(ω)⟩, ω ∈ Ω. (1.3)

The operator T is called the pre-frame operator or the synthesis operator and T ∗ is called the

analysis operator of f .

If f is a c-Bessel mapping for H, then the operator S : H −→ H defined by S = TT ∗, is

called the frame operator of f . Thus

⟨Sh, k⟩ =
∫
Ω

⟨h, f(ω)⟩⟨f(ω), k⟩dµ(ω), h, k ∈ H.
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It can be easily shown that if f is a c-frame for H, then S is invertible.

The following Lemma provides a right inverse for a closed range operator.

Lemma 1.6 ([13]) Let H,K be Hilbert spaces, and suppose that U : K −→ H is a bounded

operator with closed range RU . Then there exists a bounded operator U† : K −→ H for which

NU† = R⊥
U , RU† = N⊥

U , UU†x = x, x ∈ RU .

The operator U† is called the pseudo-inverse of U .

Now, we state the definition of a Hilbert-Schmidt operator.

Definition 1.7 A linear operator V ∈ B(H) is Hilbert-Schmidt if, for any orthonormal basis

{ei}∞i=1, we have

∥V ∥2HS =
∞∑
i=1

∥V ei∥2 < ∞.

2. Projections and c-frames

We start by a result that shows the alternative conditions of being c-frame.

Theorem 2.1 Let (Ω, µ) be a measure space where µ is σ-finite. The mapping f : Ω −→ H is

a c-frame for H with bounds A and B if and only if the following conditions hold.

(i) {h ∈ H : ⟨h, f(ω)⟩ = 0, a.e. [µ]} = {0}.
(ii) The operator T defined by (1.2) is well defined and

A∥φ∥22 ≤ ∥Tφ∥2 ≤ B∥φ∥22, φ ∈ N⊥
T . (2.1)

Proof Let f : Ω −→ H be a c-frame for H. It is clear that

∥Tφ∥2 ≤ B∥φ∥22, φ ∈ L2(Ω, µ).

If h ∈ H such that ⟨h, f(ω)⟩ = 0, a.e. [µ], then∫
Ω

|⟨f(ω), h⟩|2dµ(ω) = 0.

Hence h = 0. By [11, Theorem 2.9], RT = H, so RT∗ is closed and

N⊥
T = RT∗ = RT∗ ,

i.e., N⊥
T consists of all families of the form {⟨h, f(ω)⟩}ω∈Ω, h ∈ H. Now, for given h ∈ H,(∫

Ω

|⟨f(ω), h⟩|2dµ(ω)
)2

= |⟨Sh, h⟩|2 ≤ ∥Sh∥2∥h∥2

≤ ∥Sh∥2 1
A

∫
Ω

|⟨f(ω), h⟩|2dµ(ω),

where S is the frame operator of f . Therefore

A
(∫

Ω

|⟨f(ω), h⟩|2dµ(ω)
)2

≤ ∥Sh∥2 = ∥T{⟨h, f(ω)⟩}ω∈Ω∥2, h ∈ H.
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Now, we prove the other implication. Since T is bounded below, RT is closed. By [11, Theorem

2.7], f : Ω −→ H is a c-Bessel mapping. We have

{0} = {h ∈ H : ⟨h, f(ω)⟩ = 0, a.e. [µ]} = {h ∈ H : (T ∗h)(ω) = 0, a.e. [µ]}

= {h ∈ H : T ∗h = 0}.

So NT∗ = {0}. Hence H = {0}⊥ = N⊥
T∗ = RT = RT . Let T † denote the pseudo inverse of T .

By Lemma 1.6, T †T is the orthogonal projection onto N⊥
T , and TT † is the orthogonal projection

onto RT = H. Thus for each φ ∈ L2(Ω, µ), the inequality (2.1) implies that

A∥T †Tφ∥2 ≤ ∥TT †Tφ∥2 = ∥Tφ∥2. (2.2)

SinceNT † = R⊥
T , (2.2) gives that ∥T †∥2 ≤ 1

A . Thus ∥(T ∗)†∥2 ≤ 1
A . But (T ∗)†T ∗ is the orthogonal

projection onto

R(T∗)† = R(T †)∗ = N⊥
T † = RT = H,

so for all h ∈ H,

∥h∥2 = ∥(T ∗)†T ∗h∥2 ≤ 1

A
∥T ∗h∥2 =

1

A

∫
Ω

|⟨f(ω), h⟩|2dµ(ω). �

Let f : Ω −→ H be a c-frame for H and P : H −→ K be an orthogonal projection. Then

Pf : Ω −→ K is a c-frame for K = PH and PS−1f is a dual of Pf , since for each h, k ∈ H

⟨Ph, Pk⟩ =
∫
Ω

⟨Ph, f(ω)⟩⟨S−1f(ω), Pk⟩dµ(ω)

=

∫
Ω

⟨Ph, Pf(ω)⟩⟨PS−1f(ω), Pk⟩dµ(ω).

Theorem 2.2 Let f : Ω −→ H be a c-frame for H and P : H −→ K be an orthogonal projection

and S and S̃ be the frame operators of f and Pf , respectively. Then SP = PS if and only if

PS−1f = S̃−1Pf .

Proof It is obvious that SP = PS if and only if S−1P = PS−1. Let PS−1f = S̃−1Pf .

Considering S̃−1P as an operator in B(H), for each h, k ∈ H, we have

⟨PS̃−1h, k⟩ =
∫
Ω

⟨PS̃−1h, f(ω)⟩⟨S−1f(ω), k⟩dµ(ω)

=

∫
Ω

⟨h, S̃−1Pf(ω)⟩⟨S−1f(ω), k⟩dµ(ω)

=

∫
Ω

⟨h, PS−1f(ω)⟩⟨S−1f(ω), k⟩dµ(ω)

=

∫
Ω

⟨S−1Ph, f(ω)⟩⟨S−1f(ω), k⟩dµ(ω)

= ⟨S−1Ph, k⟩,

thus PS̃−1 = S−1P . We have PS̃−1 = PS−1P so S−1P = PS−1P . By taking adjoint on both

sides, we get PS−1 = PS−1P . Therefore, S−1P = PS−1. Conversely, suppose S−1P = PS−1.
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For each h, k ∈ H, we have

⟨Ph, k⟩ = ⟨Ph, Pk⟩ =
∫
Ω

⟨Ph, S̃−1Pf(ω)⟩⟨Pf(ω), Pk⟩dµ(ω),

so for each ν ∈ Ω and k ∈ H,

⟨S̃−1Pf(ν), k⟩ = ⟨PS̃−1Pf(ν), k⟩ = ⟨Pf(ν), S̃−1Pk⟩

=

∫
Ω

⟨Pf(ν), S̃−1Pf(ω)⟩⟨Pf(ω), S̃−1Pk⟩dµ(ω)

=

∫
Ω

⟨S̃−1Pf(ν), Pf(x)⟩⟨S̃−1Pf(ω), Pk⟩dµ(ω)

=

∫
Ω

⟨PS̃−1Pf(ν), f(ω)⟩⟨f(ω), P S̃−1Pk⟩dµ(ω)

= ⟨PS̃−1Pf(ν), SP S̃−1Pk⟩.

Therefore for each ν ∈ Ω and k ∈ H,

⟨S̃−1Pf(ν), k⟩ = ⟨S̃−1PSPS̃−1Pf(ν), Pk⟩ = ⟨S̃−1PSPS̃−1Pf(ν), k⟩,

S̃−1Pf(ν) = S̃−1PSPS̃−1Pf(ν).

Consequently, for each ν ∈ Ω,

Pf(ν) = PSPS̃−1Pf(ν) = SP S̃−1Pf(ν),

this implies that PS−1f = S̃−1Pf . �

Corollary 2.3 Let f : Ω −→ H be a c-frame for H. Then f is a tight c-frame for H if and only

if for every orthogonal projection P ∈ B(H),

PS−1f = S̃−1Pf,

where S and S̃ are the frame operators of f and Pf , respectively.

Proof Let f be a tight c-frame for H with bound A P ∈ B(H) being an orthogonal projection.

Therefore S = AIH and Pf is a tight c-frame for PH with bound A and S̃ = AIPH . So

S−1 = A−1IH and S̃−1 = A−1IPH and we have

S̃−1Pf = A−1IPHPf = A−1Pf = PA−1f = PA−1IHf = PS−1f.

Conversely, suppose for every orthogonal projection P ∈ B(H), PS−1f = S̃−1Pf . By Theorem

2.2, for every orthogonal projection P ∈ B(H), PS = SP , so SPH = PSH = PH. Thus for

each closed subspace K ⊆ H, SK = K. Let {eα}α∈I be an orthonormal basis of H. For each

h ∈ H, consider

Kh = {λh : λ ∈ C}.

Each Kh is a closed subspace of H, so by injectivity of S, there exists a unique λh such that

Sh = λhh.

By a simple calculation, for every α, β ∈ I, we have

λeα = λeβ .
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Let λ be the common value of λeα ’s. For each h ∈ H we have

Sh = S
( ∑

α∈A

⟨h, eα⟩eα
)
=

∑
α∈A

⟨h, eα⟩λeα = λh.

Therefore S = λIH and f is a tight c-frame for H with bound λ. �

Theorem 2.4 Let (Ω, µ) be a measure space andH be a Hilbert space such that dimH = cardΩ.

Fix an orthonormal basis {eω}ω∈Ω for H. Suppose that P and Q are projections in B(H) and

let M = PH and N = QH. Let f : Ω −→ M and g : Ω −→ N defined by

f(ω) = Peω, g(ω) = Qeω

be Parseval c-frames for M and N , respectively. Then f and g are unitarily equivalent if and

only if P = Q.

Proof Suppose f and g are unitarily equivalent. Then there is a unitary U ∈ B(M,N) such

that Uf = g. This determines a partial isometry Ũ ∈ B(H) with initial and final spaces M and

N , respectively, such that Ũf = g. So Ũ∗Ũ = P , Ũ Ũ∗ = Q and Ũ = QŨP = QŨ = ŨP . Note

that ŨPeω = Qeω, ω ∈ Ω. Therefore via ŨP = Ũ we obtain

Ũeω = Qeω, ω ∈ Ω.

So Ũ = Q and hence P = Q. �

3. Bochner integrability and c-frames

Lemma 3.1 Let f : Ω −→ H be a Bochner integrable function and V ∈ B(H,K). Then∫
Ω

V f(ω)dµ(x) = V

∫
Ω

f(ω)dµ(ω).

Proof Since f is Bochner integrable, there exist a sequence of integrable simple functions

{fn}∞n=1 such that

lim
n→∞

∫
Ω

∥fn(ω)− f(ω)∥dµ(ω) = 0,

and ∫
Ω

f(ω)dµ(ω) = lim
n→∞

∫
Ω

fn(ω)dµ(ω).

So

V

∫
Ω

f(ω)dµ(ω) = lim
n→∞

V

∫
Ω

fn(ω)dµ(ω). (3.1)

Now, for each h ∈ H, we have∣∣∣ ∫
Ω

V fn(ω)dµ(ω)−
∫
Ω

V f(ω)dµ(ω)
∣∣∣ = ∣∣∣ ∫

Ω

V (fn(ω)− f(ω))dµ(ω)
∣∣∣

≤
∫
Ω

∥V (fn(ω)− f(ω))∥dµ(ω) ≤ ∥V ∥
∫
Ω

∥fn(ω)− f(ω)∥dµ(ω),

then

lim
n→∞

∫
Ω

V fn(ω)dµ(ω) =

∫
Ω

V f(ω)dµ(ω). (3.2)
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Considering fn =
∑k(n)

i=1 x
(n)
i χ

E
(n)
i

, we have

∫
Ω

fn(ω)dµ(ω) =
k(n)∑
i=1

x
(n)
i µ(Ei

(n)),

so

V

∫
Ω

fn(ω)dµ(ω) =

k(n)∑
i=1

µ(Ei
(n))V (x

(n)
i ).

Also,

V fn =
k(n)∑
i=1

χEi
(n)V (x

(n)
i ),

therefore ∫
Ω

V fn(ω)dµ(ω) =
k(n)∑
i=1

µ(Ei
(n))V (x

(n)
i ).

Thus

lim
n→∞

∫
Ω

V fn(ω)dµ(ω) = lim
n→∞

V

∫
Ω

fn(ω)dµ(ν),

consequently by (3.1) and (3.2)∫
Ω

V f(ω)dµ(x) = V

∫
Ω

f(ω)dµ(ω). �

Corollary 3.2 Let f : Ω −→ H be a Bochner integrable function. Then for each h ∈ H we

have ∫
Ω

⟨f(ω), h⟩dµ(ω) =
⟨∫

Ω

f(ω)dµ(ω), h
⟩
.

Theorem 3.3 Let f : Ω −→ H be a c-frame for H and f be Bochner integrable. If T and S

are synthesis and frame operators of f , respectively, then

Tφ =

∫
Ω

φ(ω)f(ω)dµ(ω), φ ∈ L2(Ω, µ),

Sh =

∫
Ω

⟨h, f(ω)⟩f(ω)dµ(ω), h ∈ H.

Proof By Corollary 3.2, for each φ ∈ L2(Ω, µ),

⟨Tφ, h⟩ =
∫
Ω

φ(ω)⟨f(ω), h⟩dµ(ω) =
⟨∫

Ω

φ(ω)f(ω)dµ(ω), h
⟩
,

thus

Tφ =

∫
Ω

φ(ω)f(ω)dµ(ω).

In a similar manner it can be shown that

Sh =

∫
Ω

⟨h, f(ω)⟩f(ω)dµ(ω), h ∈ H. �

Theorem 3.4 Let f, g : Ω −→ H be c-Bessel mappings and f and g be Bochner integrable.

Then the following statements are equivalent.

(i) For each h ∈ H, h =
∫
Ω
⟨h, g(ω)⟩f(ω)dµ(ω);
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(ii) For each h ∈ H, h =
∫
Ω
⟨h, f(ω)⟩g(ω)dµ(ω);

(iii) For each h, k ∈ H, ⟨h, k⟩ =
∫
Ω
⟨h, f(ω)⟩⟨g(ω), k⟩dµ(ω).

Proof The proof is similar to discrete case [3, Lemma 5.6.2]. �

4. Classifying Hilbert-Schmidt operators by c-frames

Lemma 4.1 Let f : Ω −→ H be c-frame forH with bounds A,B and {eα}α∈I be an orthonormal

basis of H. Let V ∈ B(H). Then

A
∑
α∈I

∥V ∗eα∥2 ≤
∫
Ω

∥V f(ω)∥2dµ(ω) ≤ B
∑
α∈I

∥V ∗eα∥2.

Proof By [14, Theorem 1.27], we have

A
∑
α∈A

∥V ∗eα∥2 ≤
∑
α∈A

∫
Ω

|⟨f(ω), V ∗eα⟩|2dµ(ω) =
∫
Ω

∑
α∈A

|⟨V f(ω), eα⟩|2dµ(ω)

=

∫
Ω

∥V f(ω)∥2dµ(ω) ≤ B
∑
α∈A

∥V ∗eα∥2. �

Corollary 4.2 Let f : Ω −→ H be a c-Bessel mapping with Bessel constant B and {eα}α∈I be

an orthonormal basis of H. If V ∈ B(H), then∫
Ω

∥V f(ω)∥2dµ(ω) ≤ B
∑
α∈I

∥V ∗eα∥2.

Theorem 4.3 An operator V ∈ B(H) is Hilbert Schmidt if and only if∫
Ω

∥V f(ω)∥2dµ(ω) < ∞

for one (and therefore for all) c-frame(s) for H. Moreover

√
A∥V ∥HS ≤

√∫
Ω

∥V f(ω)∥2dµ(ω) ≤
√
B∥V ∥HS ,

in which A and B are c-frame bounds. In particular for tight c-frames (with bound A) we have

∥V ∥HS =
1

A

√∫
Ω

∥V f(ω)∥2dµ(ω).

5. Some points about parseval c-frames

Lemma 5.1 Let f : Ω −→ H be a c-frame for H with frame operator S and V ∈ B(H) be an

invertible operator such that V ∗V f = S−1f . Then V f : Ω −→ H is a Parseval c-frame for H.

Proof For each h, k ∈ H, we have

⟨h, k⟩ =
∫
Ω

⟨h, S−1f(ω)⟩⟨f(ω), k⟩dµ(ω) =
∫
Ω

⟨h, V ∗V f(ω)⟩⟨f(ω), k⟩dµ(ω),

so

⟨V −1h, k⟩ =
∫
Ω

⟨V −1h, V ∗V f(ω)⟩⟨f(ω), k⟩dµ(ω) =
∫
Ω

⟨h, V f(ω)⟩⟨f(ω), k⟩dµ(ω).
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Then

∥h∥2 = ⟨h, h⟩ = ⟨V −1h, V ∗h⟩ =
∫
Ω

⟨h, V f(ω)⟩⟨f(ω), V ∗h⟩dµ(ω)

=

∫
Ω

⟨h, V f(ω)⟩⟨V f(ω), h⟩dµ(ω) =
∫
Ω

|⟨h, V f(ω)⟩|2dµ(ω).

Thus V f is a Parseval c-frame for H. �

Remark 5.2 Let f1, f2, . . . , fk be c-frames for Hilbert spaces H1,H2, . . . , Hk, respectively. Let

H1 ⊕H2 ⊕ · · · ⊕Hk be the direct sum of H1,H2, . . . ,Hk. We define

f1 ⊕ f2 ⊕ · · · ⊕ fk : Ω −→ H1 ⊕H2 ⊕ · · · ⊕Hk

f1 ⊕ f2 ⊕ · · · ⊕ fk(ω) = (f1(ω), f2(ω), . . . , fk(ω)).

It is obvious that f1 ⊕ f2 ⊕ · · · ⊕ fk is weakly measurable.

For each (h1, h2, . . . , hk) ∈ H1 ⊕H2 ⊕ · · · ⊕Hk, we have∫
Ω

∣∣⟨(h1, h2, . . . , hk), f1 ⊕ f2 ⊕ · · · ⊕ fk(ω)⟩
∣∣2dµ(ω)

=

∫
Ω

∣∣∣ k∑
i=1

⟨hi, fi(ω)⟩
∣∣∣2dµ(ω) ≤ ∫

Ω

( k∑
i=1

|⟨hi, fi(ω)⟩|
)2

dµ(ω)

≤
∫
Ω

[
2k−1(|⟨h1, f1(ω)⟩|2 + |⟨h2, f2(ω)⟩|2)+

2k−2|⟨h3, f3(ω)⟩|2 · · ·+ 2|⟨hk, fk(ω)⟩|2
]
dµ(ω)

≤ 2k−1(B1∥h1∥2 +B2∥h2∥2) + 2k−2B3∥h3∥2 + · · ·+ 2Bk∥hk∥2

≤ max{2k−1B1, 2
k−1B2, 2

k−2B3, . . . , 2Bk}∥(h1, h2, . . . , hk)∥2.

So f1 ⊕ f2 ⊕ · · · ⊕ fk is a c-Bessel mapping for H1 ⊕H2 ⊕ · · · ⊕Hk.

Theorem 5.3 (i) If f is a c-frame for H and V ∈ B(H) is a co-isometry, then V f is a c-frame

for H. Moreover if f is a Parseval c-frame for H, then V f is a Parseval c-frame for H.

(ii) Let f, g be Parseval c-frames for H and K, respectively, and V ∈ B(H,K) be an

operator such that V f = g. Then V is a co-isometry. Moreover if V is invertible, then it is

unitary.

(iii) If f : Ω −→ H, g : Ω −→ K are Parseval c-frames for H such that f ⊕ g is a Parseval

c-frame and if r : Ω −→ M is a Parseval c-frame which is unitarily equivalent to g, then f ⊕ g is

also a Parseval c-frame.

Proof (i) For each h ∈ H,

A∥h∥2 = A∥V ∗h∥2 ≤
∫
Ω

|⟨V ∗h, f(ω)⟩|2dµ(ω) ≤ B∥V ∗h∥2 = B∥h∥2.

(ii) For each k ∈ K,

∥V ∗k∥2 =

∫
Ω

|⟨V ∗k, f(ω)⟩|2dµ(ω) =
∫
Ω

|⟨k, V f(ω)⟩|2dµ(ω) = ∥k∥2,

so V ∗ is an isometry. It is clear that if V is invertible, then it is unitary.
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(iii) Let U ∈ B(H,M) be a unitary such that Ug = r. Then V = IH ⊕U is a unitary such

that V (f ⊕ g) = f ⊕ r. So f ⊕ r is a Parseval c-frame. �
Let f : Ω −→ H be a c-Bessel mapping for H and E ⊆ Ω be measurable. Define the

operator SE : H −→ H weakly by

⟨SEh, k⟩ =
∫
E

⟨h, f(ω)⟩⟨f(ω), k⟩dµ(ω).

It is obvious that SE is well defined. If f : Ω −→ H is a c-frame for H with frame operator S,

then S = SE + SEc .

Lemma 5.4 If T and S are two operators on H such that S + T = IH , then S − T = S2 − T 2.

Proof It is an easy calculation. �

Theorem 5.5 Let f : Ω −→ H be a c-frame for H with canonical dual frame f̃ = S−1f . Then

for each measurable set E ⊆ Ω we have∫
E

|⟨h, f(ω)⟩|2dµ(ω)−
∫
Ω

|⟨SEh, f̃(ω)⟩|2dµ(ω)

=

∫
Ec

|⟨h, f(ω)⟩|2dµ(ω)−
∫
Ω

|⟨SEh, f̃(ω)⟩|2dµ(ω).

Proof Since S = SE + SEc , so IH = S−1SE + S−1SEc . By using Lemma 5.4 for S−1SE and

S−1SEc , we have

S−1SE − S−1SES
−1SE = S−1SEc − S−1SEcS−1SEc . (5.1)

Also for each h, k ∈ H,

⟨S−1SEh, k⟩ − ⟨S−1SES
−1SEh, k⟩ = ⟨SEh, S

−1k⟩ − ⟨S−1SEh, S
−1SEk⟩. (5.2)

Now let k = Sh. Then the equality (5.2) can be continued as:

= ⟨SEh, h⟩ − ⟨S−1SEh, SEh⟩ =
∫
E

|⟨h, f(ω)⟩|2dµ(ω)−
∫
Ω

|⟨SEh, f̃(ω)⟩|2dµ(ω).

Similarly, we can write the equation (5.2) for Ec. Therefore∫
E

|⟨h, f(ω)⟩|2dµ(ω)−
∫
Ω

|⟨SEh, f̃(ω)⟩|2dµ(ω)

=

∫
Ec

|⟨h, f(ω)⟩|2dµ(ω)−
∫
Ω

|⟨SEch, f̃(ω)⟩|2dµ(ω). �

Theorem 5.6 Let f : Ω −→ H be a Parseval c-frame for H. Then for each measurable set

E ⊆ Ω we have∫
E

|⟨h, f(ω)⟩|2dµ(ω)− ∥SEh∥2 =

∫
Ec

|⟨h, f(ω)⟩|2dµ(ω)− ∥SEch∥2.

Proof By using Theorem 5.5, it is obvious. �

Proposition 5.7 Let f : Ω −→ H be a Parseval c-frame for H. Then for each measurable set



476 Morteza RAHMANI

E ⊆ Ω, measurable set F ⊆ Ec and each h ∈ H we have

∥SE∪Fh∥2 − ∥SEc\Fh∥2 = ∥SEh∥2 − ∥SEch∥2 + 2

∫
F

|⟨h, f(ω)⟩|2dµ(ω).

Proof Using Theorem 5.6 twice implies the result. �

Corollary 5.8 Let f : Ω −→ H be a λ-tight c-frame for H. Then for each measurable set

E ⊆ Ω we have

λ

∫
E

|⟨h, f(ω)⟩|2dµ(ω)− ∥SEh∥2 = λ

∫
Ec

|⟨h, f(ω)⟩|2dµ(ω)− ∥SEch∥2.

Proof Since 1√
λ
f is a Parseval c-frame, using Theorem 5.6 yields the result. �
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[14] W. RUDIN. Real and Complex Analysis. 3rd Edition, MacGraw-Hill, New York, 1987.


