On Some Properties of c-Frames

Morteza RAHMANI
Young Researchers and Elite Club, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran

Abstract

In this paper we discuss about c-frames, namely continuous frames. Since, c frames are generalizations of discrete frames, we generalize some results of discrete frames to continuous version. We explain some results about relations of projections in Hilbert spaces and c-frames to characterize these frames. Also, we will specify (precisely) the synthesis and frame operators of Bochner integrable c-frames. Finally, we classify Hilbert-Schmidt operators by c-frames and express some new identities for Parseval c-frames.

Keywords Banach space; Hilbert space; frame; c-frame; Parseval c-frame; Bochner measurable

MR(2010) Subject Classification 42C15; 46C05; 46G10

1. Introduction

Duffin and Schaeffer introduced the concept of discrete frames in Hilbert spaces in 1952 to study some deep problems in nonharmonic Fourier series [1]. After the fundamental paper [2] by Daubechies, Grossmann and Meyer, frames usage began to be raised. In signal processing, image and data compression and sampling theory, the concept of frame has a fundamental impact. Frames provide an alternative to orthonormal bases in Hilbert spaces. Indeed, a discrete frame is a countable family of elements in a separable Hilbert space which allows for a stable, not necessarily unique, decomposition of an arbitrary element into an expansion of the frame elements. For more details about discrete frames we refer to [3]. Various kind of frames have been introduced till now, which are generalization of discrete frames. For more studies about some types of frames, the interested reader can refer to [4-11].

In this paper we generalize some concepts of discrete frames and some results in [12] to c-frames. The paper is organized as follows. In Section 2, we verify relations between projections and c-frames. Our aim in Section 3 is study of effects of Bochner integrability on c-frames. Section 4 is devoted to classifying Hilbert-Schmidt operators by c-frames. Finally, in the last section we show some new identities for Parseval c-frames.

Throughout this paper H and K stand for Hilbert spaces, and X and Y stand for Banach spaces.

Suppose (Ω, Σ, μ) is a measure space, where μ is a positive measure.
At first we give some definitions to introduce Bochner measurable and Bochner integrable mappings.

Received April 30, 2016; Accepted March 29, 2017
E-mail address: m_rahmani26@yahoo.com

Definition 1.1 A function $f: \Omega \longrightarrow X$ is called simple if there exist $x_{1}, \ldots, x_{n} \in X$ and $E_{1}, \ldots, E_{n} \in \Sigma$ such that $f=\sum_{i=1}^{n} x_{i} \chi_{E_{i}}$, where $\chi_{E_{i}}(\omega)=1$ if $\omega \in E_{i}$ and $\chi_{E_{i}}(\omega)=0$ if $\omega \in E_{i}^{c}$. If $\mu\left(E_{i}\right)$ is finite, whenever $x_{i} \neq 0$, then the simple function f is integrable, and the integral is then defined by

$$
\int_{\Omega} f(\omega) \mathrm{d} \mu(\omega)=\sum_{i=1}^{n} \mu\left(E_{i}\right) x_{i} .
$$

Definition 1.2 A function $f: \Omega \longrightarrow X$ is called Bochner measurable if there exists a sequence of simple functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$, μ-almost everywhere.

Definition 1.3 A Bochner measurable function $f: \Omega \longrightarrow X$ is called Bochner integrable if there exists a sequence of integrable simple functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left\|f_{n}(\omega)-f(\omega)\right\| \mathrm{d} \mu(\omega)=0
$$

In this case, $\int_{E} f(\omega) d \mu(\omega)$ is defined by

$$
\int_{E} f(\omega) \mathrm{d} \mu(\omega)=\lim _{n \rightarrow \infty} \int_{E} f_{n}(\omega) \mathrm{d} \mu(\omega), \quad E \in \Sigma
$$

Now, we review the definition of continuous frames.
Definition 1.4 A mapping $f: \Omega \longrightarrow H$ is called a continuous frame or c-frame for H if:
(i) For each $h \in H, \omega \longmapsto\langle h, f(\omega)\rangle$ is a measurable function;
(ii) There exist positive constants A and B such that

$$
\begin{equation*}
A\|h\|^{2} \leq \int_{\Omega}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) \leq B\|h\|^{2}, \quad h \in H \tag{1.1}
\end{equation*}
$$

The constants A and B are called c-frame bounds. f is called a tight c-frames if $A=B$ and it is called a Parseval c-frame if $A=B=1$. The mapping f is called c-Bessel mapping if the second inequality in (1.1) holds. In this case, B is called the Bessel constant.

For a c-Bessel mapping, there are two important associated operators as below.
Proposition 1.5 ([11]) Let f be a c-Bessel mapping for H. Then the operator

$$
T: L^{2}(\Omega, \mu) \longrightarrow H
$$

weakly defined by

$$
\begin{equation*}
\langle T \varphi, h\rangle=\int_{\Omega} \varphi(\omega)\langle f(\omega), h\rangle \mathrm{d} \mu(\omega), \quad h \in H \tag{1.2}
\end{equation*}
$$

is well defined, linear, bounded and its adjoint is given by

$$
\begin{equation*}
T^{*}: H \longrightarrow L^{2}(\Omega, \mu), \quad T^{*} h(\omega)=\langle h, f(\omega)\rangle, \omega \in \Omega \tag{1.3}
\end{equation*}
$$

The operator T is called the pre-frame operator or the synthesis operator and T^{*} is called the analysis operator of f.

If f is a c-Bessel mapping for H, then the operator $S: H \longrightarrow H$ defined by $S=T T^{*}$, is called the frame operator of f. Thus

$$
\langle S h, k\rangle=\int_{\Omega}\langle h, f(\omega)\rangle\langle f(\omega), k\rangle \mathrm{d} \mu(\omega), \quad h, k \in H
$$

It can be easily shown that if f is a c-frame for H, then S is invertible.
The following Lemma provides a right inverse for a closed range operator.
Lemma 1.6 ([13]) Let H, K be Hilbert spaces, and suppose that $U: K \longrightarrow H$ is a bounded operator with closed range R_{U}. Then there exists a bounded operator $U^{\dagger}: K \longrightarrow H$ for which

$$
N_{U^{\dagger}}=R_{U}^{\perp}, \quad R_{U^{\dagger}}=N_{U}^{\perp}, \quad U U^{\dagger} x=x, x \in R_{U}
$$

The operator U^{\dagger} is called the pseudo-inverse of U.
Now, we state the definition of a Hilbert-Schmidt operator.
Definition 1.7 A linear operator $V \in B(H)$ is Hilbert-Schmidt if, for any orthonormal basis $\left\{e_{i}\right\}_{i=1}^{\infty}$, we have

$$
\|V\|_{H S}^{2}=\sum_{i=1}^{\infty}\left\|V e_{i}\right\|^{2}<\infty
$$

2. Projections and c-frames

We start by a result that shows the alternative conditions of being c-frame.
Theorem 2.1 Let (Ω, μ) be a measure space where μ is σ-finite. The mapping $f: \Omega \longrightarrow H$ is a c-frame for H with bounds A and B if and only if the following conditions hold.
(i) $\{h \in H:\langle h, f(\omega)\rangle=0$, a.e. $[\mu]\}=\{0\}$.
(ii) The operator T defined by (1.2) is well defined and

$$
\begin{equation*}
A\|\varphi\|_{2}^{2} \leq\|T \varphi\|^{2} \leq B\|\varphi\|_{2}^{2}, \quad \varphi \in N_{T}^{\perp} . \tag{2.1}
\end{equation*}
$$

Proof Let $f: \Omega \longrightarrow H$ be a c-frame for H. It is clear that

$$
\|T \varphi\|^{2} \leq B\|\varphi\|_{2}^{2}, \quad \varphi \in L^{2}(\Omega, \mu) .
$$

If $h \in H$ such that $\langle h, f(\omega)\rangle=0$, a.e. $[\mu]$, then

$$
\int_{\Omega}|\langle f(\omega), h\rangle|^{2} \mathrm{~d} \mu(\omega)=0
$$

Hence $h=0$. By [11, Theorem 2.9], $R_{T}=H$, so $R_{T^{*}}$ is closed and

$$
N_{T}^{\perp}=\overline{R_{T^{*}}}=R_{T^{*}},
$$

i.e., N_{T}^{\perp} consists of all families of the form $\{\langle h, f(\omega)\rangle\}_{\omega \in \Omega}, h \in H$. Now, for given $h \in H$,

$$
\begin{aligned}
\left(\int_{\Omega}|\langle f(\omega), h\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{2} & =|\langle S h, h\rangle|^{2} \leq\|S h\|^{2}\|h\|^{2} \\
& \leq\|S h\|^{2} \frac{1}{A} \int_{\Omega}|\langle f(\omega), h\rangle|^{2} \mathrm{~d} \mu(\omega)
\end{aligned}
$$

where S is the frame operator of f. Therefore

$$
A\left(\int_{\Omega}|\langle f(\omega), h\rangle|^{2} \mathrm{~d} \mu(\omega)\right)^{2} \leq\|S h\|^{2}=\left\|T\{\langle h, f(\omega)\rangle\}_{\omega \in \Omega}\right\|^{2}, \quad h \in H
$$

Now, we prove the other implication. Since T is bounded below, R_{T} is closed. By [11, Theorem 2.7], $f: \Omega \longrightarrow H$ is a c-Bessel mapping. We have

$$
\begin{aligned}
\{0\} & =\{h \in H:\langle h, f(\omega)\rangle=0, \text { a.e. }[\mu]\}=\left\{h \in H:\left(T^{*} h\right)(\omega)=0, \text { a.e. }[\mu]\right\} \\
& =\left\{h \in H: T^{*} h=0\right\} .
\end{aligned}
$$

So $N_{T^{*}}=\{0\}$. Hence $H=\{0\}^{\perp}=N_{T^{*}}^{\perp}=\overline{R_{T}}=R_{T}$. Let T^{\dagger} denote the pseudo inverse of T. By Lemma 1.6, $T^{\dagger} T$ is the orthogonal projection onto N_{T}^{\perp}, and $T T^{\dagger}$ is the orthogonal projection onto $R_{T}=H$. Thus for each $\varphi \in L^{2}(\Omega, \mu)$, the inequality (2.1) implies that

$$
\begin{equation*}
A\left\|T^{\dagger} T \varphi\right\|^{2} \leq\left\|T T^{\dagger} T \varphi\right\|^{2}=\|T \varphi\|^{2} . \tag{2.2}
\end{equation*}
$$

Since $N_{T^{\dagger}}=R_{T}^{\perp},(2.2)$ gives that $\left\|T^{\dagger}\right\|^{2} \leq \frac{1}{A}$. Thus $\left\|\left(T^{*}\right)^{\dagger}\right\|^{2} \leq \frac{1}{A}$. But $\left(T^{*}\right)^{\dagger} T^{*}$ is the orthogonal projection onto

$$
R_{\left(T^{*}\right)^{\dagger}}=R_{\left(T^{\dagger}\right)^{*}}=N_{T^{\dagger}}^{\perp}=R_{T}=H
$$

so for all $h \in H$,

$$
\|h\|^{2}=\left\|\left(T^{*}\right)^{\dagger} T^{*} h\right\|^{2} \leq \frac{1}{A}\left\|T^{*} h\right\|^{2}=\frac{1}{A} \int_{\Omega}|\langle f(\omega), h\rangle|^{2} \mathrm{~d} \mu(\omega)
$$

Let $f: \Omega \longrightarrow H$ be a c-frame for H and $P: H \longrightarrow K$ be an orthogonal projection. Then $P f: \Omega \longrightarrow K$ is a c-frame for $K=P H$ and $P S^{-1} f$ is a dual of $P f$, since for each $h, k \in H$

$$
\begin{aligned}
\langle P h, P k\rangle & =\int_{\Omega}\langle P h, f(\omega)\rangle\left\langle S^{-1} f(\omega), P k\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\langle P h, P f(\omega)\rangle\left\langle P S^{-1} f(\omega), P k\right\rangle \mathrm{d} \mu(\omega)
\end{aligned}
$$

Theorem 2.2 Let $f: \Omega \longrightarrow H$ be a c-frame for H and $P: H \longrightarrow K$ be an orthogonal projection and S and \tilde{S} be the frame operators of f and $P f$, respectively. Then $S P=P S$ if and only if $P S^{-1} f=\tilde{S}^{-1} P f$.

Proof It is obvious that $S P=P S$ if and only if $S^{-1} P=P S^{-1}$. Let $P S^{-1} f=\tilde{S}^{-1} P f$. Considering $\tilde{S}^{-1} P$ as an operator in $B(H)$, for each $h, k \in H$, we have

$$
\begin{aligned}
\left\langle P \tilde{S}^{-1} h, k\right\rangle & =\int_{\Omega}\left\langle P \tilde{S}^{-1} h, f(\omega)\right\rangle\left\langle S^{-1} f(\omega), k\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\left\langle h, \tilde{S}^{-1} P f(\omega)\right\rangle\left\langle S^{-1} f(\omega), k\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\left\langle h, P S^{-1} f(\omega)\right\rangle\left\langle S^{-1} f(\omega), k\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\left\langle S^{-1} P h, f(\omega)\right\rangle\left\langle S^{-1} f(\omega), k\right\rangle \mathrm{d} \mu(\omega) \\
& =\left\langle S^{-1} P h, k\right\rangle,
\end{aligned}
$$

thus $P \tilde{S}^{-1}=S^{-1} P$. We have $P \tilde{S}^{-1}=P S^{-1} P$ so $S^{-1} P=P S^{-1} P$. By taking adjoint on both sides, we get $P S^{-1}=P S^{-1} P$. Therefore, $S^{-1} P=P S^{-1}$. Conversely, suppose $S^{-1} P=P S^{-1}$.

For each $h, k \in H$, we have

$$
\langle P h, k\rangle=\langle P h, P k\rangle=\int_{\Omega}\left\langle P h, \tilde{S}^{-1} P f(\omega)\right\rangle\langle P f(\omega), P k\rangle \mathrm{d} \mu(\omega)
$$

so for each $\nu \in \Omega$ and $k \in H$,

$$
\begin{aligned}
\left\langle\tilde{S}^{-1} P f(\nu), k\right\rangle & =\left\langle P \tilde{S}^{-1} P f(\nu), k\right\rangle=\left\langle P f(\nu), \tilde{S}^{-1} P k\right\rangle \\
& =\int_{\Omega}\left\langle P f(\nu), \tilde{S}^{-1} P f(\omega)\right\rangle\left\langle P f(\omega), \tilde{S}^{-1} P k\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\left\langle\tilde{S}^{-1} P f(\nu), P f(x)\right\rangle\left\langle\tilde{S}^{-1} P f(\omega), P k\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\left\langle P \tilde{S}^{-1} P f(\nu), f(\omega)\right\rangle\left\langle f(\omega), P \tilde{S}^{-1} P k\right\rangle \mathrm{d} \mu(\omega) \\
& =\left\langle P \tilde{S}^{-1} P f(\nu), S P \tilde{S}^{-1} P k\right\rangle .
\end{aligned}
$$

Therefore for each $\nu \in \Omega$ and $k \in H$,

$$
\begin{aligned}
&\left\langle\tilde{S}^{-1} \operatorname{Pf}(\nu), k\right\rangle=\left\langle\tilde{S}^{-1} P S P \tilde{S}^{-1} \operatorname{Pf}(\nu), P k\right\rangle=\left\langle\tilde{S}^{-1} P S P \tilde{S}^{-1} \operatorname{Pf}(\nu), k\right\rangle, \\
& \tilde{S}^{-1} \operatorname{Pf}(\nu)=\tilde{S}^{-1} P S P \tilde{S}^{-1} \operatorname{Pf}(\nu) .
\end{aligned}
$$

Consequently, for each $\nu \in \Omega$,

$$
P f(\nu)=P S P \tilde{S}^{-1} P f(\nu)=S P \tilde{S}^{-1} P f(\nu)
$$

this implies that $P S^{-1} f=\tilde{S}^{-1} P f$.
Corollary 2.3 Let $f: \Omega \longrightarrow H$ be a c-frame for H. Then f is a tight c-frame for H if and only if for every orthogonal projection $P \in B(H)$,

$$
P S^{-1} f=\tilde{S}^{-1} P f
$$

where S and \tilde{S} are the frame operators of f and $P f$, respectively.
Proof Let f be a tight c-frame for H with bound $A P \in B(H)$ being an orthogonal projection. Therefore $S=A I_{H}$ and $P f$ is a tight c-frame for $P H$ with bound A and $\tilde{S}=A I_{P H}$. So $S^{-1}=A^{-1} I_{H}$ and $\tilde{S}^{-1}=A^{-1} I_{P H}$ and we have

$$
\tilde{S}^{-1} P f=A^{-1} I_{P H} P f=A^{-1} P f=P A^{-1} f=P A^{-1} I_{H} f=P S^{-1} f .
$$

Conversely, suppose for every orthogonal projection $P \in B(H), P S^{-1} f=\tilde{S}^{-1} P f$. By Theorem 2.2, for every orthogonal projection $P \in B(H), P S=S P$, so $S P H=P S H=P H$. Thus for each closed subspace $K \subseteq H, S K=K$. Let $\left\{e_{\alpha}\right\}_{\alpha \in I}$ be an orthonormal basis of H. For each $h \in H$, consider

$$
K_{h}=\{\lambda h: \lambda \in \mathbb{C}\} .
$$

Each K_{h} is a closed subspace of H, so by injectivity of S, there exists a unique λ_{h} such that $S h=\lambda_{h} h$.

By a simple calculation, for every $\alpha, \beta \in I$, we have

$$
\lambda_{e_{\alpha}}=\lambda_{e_{\beta}} .
$$

Let λ be the common value of $\lambda_{e_{\alpha}}$'s. For each $h \in H$ we have

$$
S h=S\left(\sum_{\alpha \in \mathfrak{A}}\left\langle h, e_{\alpha}\right\rangle e_{\alpha}\right)=\sum_{\alpha \in \mathfrak{A}}\left\langle h, e_{\alpha}\right\rangle \lambda e_{\alpha}=\lambda h .
$$

Therefore $S=\lambda I_{H}$ and f is a tight c-frame for H with bound λ.
Theorem 2.4 Let (Ω, μ) be a measure space and H be a Hilbert space such that $\operatorname{dim} H=\operatorname{card} \Omega$. Fix an orthonormal basis $\left\{e_{\omega}\right\}_{\omega \in \Omega}$ for H. Suppose that P and Q are projections in $B(H)$ and let $M=P H$ and $N=Q H$. Let $f: \Omega \longrightarrow M$ and $g: \Omega \longrightarrow N$ defined by

$$
f(\omega)=P e_{\omega}, \quad g(\omega)=Q e_{\omega}
$$

be Parseval c-frames for M and N, respectively. Then f and g are unitarily equivalent if and only if $P=Q$.

Proof Suppose f and g are unitarily equivalent. Then there is a unitary $U \in B(M, N)$ such that $U f=g$. This determines a partial isometry $\tilde{U} \in B(H)$ with initial and final spaces M and N, respectively, such that $\tilde{U} f=g$. So $\tilde{U}^{*} \tilde{U}=P, \tilde{U} \tilde{U}^{*}=Q$ and $\tilde{U}=Q \tilde{U} P=Q \tilde{U}=\tilde{U} P$. Note that $\tilde{U} P e_{\omega}=Q e_{\omega}, \omega \in \Omega$. Therefore via $\tilde{U} P=\tilde{U}$ we obtain

$$
\tilde{U} e_{\omega}=Q e_{\omega}, \quad \omega \in \Omega
$$

So $\tilde{U}=Q$ and hence $P=Q$.

3. Bochner integrability and c-frames

Lemma 3.1 Let $f: \Omega \longrightarrow H$ be a Bochner integrable function and $V \in B(H, K)$. Then

$$
\int_{\Omega} V f(\omega) \mathrm{d} \mu(x)=V \int_{\Omega} f(\omega) \mathrm{d} \mu(\omega) .
$$

Proof Since f is Bochner integrable, there exist a sequence of integrable simple functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ such that

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left\|f_{n}(\omega)-f(\omega)\right\| \mathrm{d} \mu(\omega)=0
$$

and

$$
\int_{\Omega} f(\omega) \mathrm{d} \mu(\omega)=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(\omega) \mathrm{d} \mu(\omega) .
$$

So

$$
\begin{equation*}
V \int_{\Omega} f(\omega) \mathrm{d} \mu(\omega)=\lim _{n \rightarrow \infty} V \int_{\Omega} f_{n}(\omega) \mathrm{d} \mu(\omega) . \tag{3.1}
\end{equation*}
$$

Now, for each $h \in H$, we have

$$
\begin{aligned}
& \left|\int_{\Omega} V f_{n}(\omega) \mathrm{d} \mu(\omega)-\int_{\Omega} V f(\omega) \mathrm{d} \mu(\omega)\right|=\left|\int_{\Omega} V\left(f_{n}(\omega)-f(\omega)\right) \mathrm{d} \mu(\omega)\right| \\
& \quad \leq \int_{\Omega}\left\|V\left(f_{n}(\omega)-f(\omega)\right)\right\| \mathrm{d} \mu(\omega) \leq\|V\| \int_{\Omega}\left\|f_{n}(\omega)-f(\omega)\right\| \mathrm{d} \mu(\omega),
\end{aligned}
$$

then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} V f_{n}(\omega) \mathrm{d} \mu(\omega)=\int_{\Omega} V f(\omega) \mathrm{d} \mu(\omega) . \tag{3.2}
\end{equation*}
$$

Considering $f_{n}=\sum_{i=1}^{k^{(n)}} x_{i}^{(n)} \chi_{E_{i}^{(n)}}$, we have

$$
\int_{\Omega} f_{n}(\omega) \mathrm{d} \mu(\omega)=\sum_{i=1}^{k^{(n)}} x_{i}^{(n)} \mu\left(E_{i}^{(n)}\right)
$$

so

$$
V \int_{\Omega} f_{n}(\omega) \mathrm{d} \mu(\omega)=\sum_{i=1}^{k^{(n)}} \mu\left(E_{i}^{(n)}\right) V\left(x_{i}^{(n)}\right) .
$$

Also,

$$
V f_{n}=\sum_{i=1}^{k^{(n)}} \chi_{E_{i}(n)} V\left(x_{i}^{(n)}\right)
$$

therefore

$$
\int_{\Omega} V f_{n}(\omega) \mathrm{d} \mu(\omega)=\sum_{i=1}^{k^{(n)}} \mu\left(E_{i}^{(n)}\right) V\left(x_{i}^{(n)}\right)
$$

Thus

$$
\lim _{n \rightarrow \infty} \int_{\Omega} V f_{n}(\omega) \mathrm{d} \mu(\omega)=\lim _{n \rightarrow \infty} V \int_{\Omega} f_{n}(\omega) \mathrm{d} \mu(\nu)
$$

consequently by (3.1) and (3.2)

$$
\int_{\Omega} V f(\omega) \mathrm{d} \mu(x)=V \int_{\Omega} f(\omega) \mathrm{d} \mu(\omega)
$$

Corollary 3.2 Let $f: \Omega \longrightarrow H$ be a Bochner integrable function. Then for each $h \in H$ we have

$$
\int_{\Omega}\langle f(\omega), h\rangle \mathrm{d} \mu(\omega)=\left\langle\int_{\Omega} f(\omega) \mathrm{d} \mu(\omega), h\right\rangle .
$$

Theorem 3.3 Let $f: \Omega \longrightarrow H$ be a c-frame for H and f be Bochner integrable. If T and S are synthesis and frame operators of f, respectively, then

$$
\begin{gathered}
T \varphi=\int_{\Omega} \varphi(\omega) f(\omega) \mathrm{d} \mu(\omega), \quad \varphi \in L^{2}(\Omega, \mu) \\
S h=\int_{\Omega}\langle h, f(\omega)\rangle f(\omega) \mathrm{d} \mu(\omega), \quad h \in H
\end{gathered}
$$

Proof By Corollary 3.2, for each $\varphi \in L^{2}(\Omega, \mu)$,

$$
\langle T \varphi, h\rangle=\int_{\Omega} \varphi(\omega)\langle f(\omega), h\rangle \mathrm{d} \mu(\omega)=\left\langle\int_{\Omega} \varphi(\omega) f(\omega) \mathrm{d} \mu(\omega), h\right\rangle
$$

thus

$$
T \varphi=\int_{\Omega} \varphi(\omega) f(\omega) \mathrm{d} \mu(\omega)
$$

In a similar manner it can be shown that

$$
S h=\int_{\Omega}\langle h, f(\omega)\rangle f(\omega) \mathrm{d} \mu(\omega), \quad h \in H .
$$

Theorem 3.4 Let $f, g: \Omega \longrightarrow H$ be c-Bessel mappings and f and g be Bochner integrable. Then the following statements are equivalent.
(i) For each $h \in H, h=\int_{\Omega}\langle h, g(\omega)\rangle f(\omega) \mathrm{d} \mu(\omega)$;
(ii) For each $h \in H, h=\int_{\Omega}\langle h, f(\omega)\rangle g(\omega) \mathrm{d} \mu(\omega)$;
(iii) For each $h, k \in H,\langle h, k\rangle=\int_{\Omega}\langle h, f(\omega)\rangle\langle g(\omega), k\rangle \mathrm{d} \mu(\omega)$.

Proof The proof is similar to discrete case [3, Lemma 5.6.2].

4. Classifying Hilbert-Schmidt operators by c-frames

Lemma 4.1 Let $f: \Omega \longrightarrow H$ be c-frame for H with bounds A, B and $\left\{e_{\alpha}\right\}_{\alpha \in I}$ be an orthonormal basis of H. Let $V \in B(H)$. Then

$$
A \sum_{\alpha \in I}\left\|V^{*} e_{\alpha}\right\|^{2} \leq \int_{\Omega}\|V f(\omega)\|^{2} \mathrm{~d} \mu(\omega) \leq B \sum_{\alpha \in I}\left\|V^{*} e_{\alpha}\right\|^{2}
$$

Proof By [14, Theorem 1.27], we have

$$
\begin{aligned}
A \sum_{\alpha \in \mathfrak{A}}\left\|V^{*} e_{\alpha}\right\|^{2} & \leq \sum_{\alpha \in \mathfrak{A}} \int_{\Omega}\left|\left\langle f(\omega), V^{*} e_{\alpha}\right\rangle\right|^{2} \mathrm{~d} \mu(\omega)=\int_{\Omega} \sum_{\alpha \in \mathfrak{A}}\left|\left\langle V f(\omega), e_{\alpha}\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& =\int_{\Omega}\|V f(\omega)\|^{2} \mathrm{~d} \mu(\omega) \leq B \sum_{\alpha \in \mathfrak{A}}\left\|V^{*} e_{\alpha}\right\|^{2} .
\end{aligned}
$$

Corollary 4.2 Let $f: \Omega \longrightarrow H$ be a c-Bessel mapping with Bessel constant B and $\left\{e_{\alpha}\right\}_{\alpha \in I}$ be an orthonormal basis of H. If $V \in B(H)$, then

$$
\int_{\Omega}\|V f(\omega)\|^{2} \mathrm{~d} \mu(\omega) \leq B \sum_{\alpha \in I}\left\|V^{*} e_{\alpha}\right\|^{2}
$$

Theorem 4.3 An operator $V \in B(H)$ is Hilbert Schmidt if and only if

$$
\int_{\Omega}\|V f(\omega)\|^{2} \mathrm{~d} \mu(\omega)<\infty
$$

for one (and therefore for all) c-frame(s) for H. Moreover

$$
\sqrt{A}\|V\|_{H S} \leq \sqrt{\int_{\Omega}\|V f(\omega)\|^{2} \mathrm{~d} \mu(\omega)} \leq \sqrt{B}\|V\|_{H S}
$$

in which A and B are c-frame bounds. In particular for tight c-frames (with bound A) we have

$$
\|V\|_{H S}=\frac{1}{A} \sqrt{\int_{\Omega}\|V f(\omega)\|^{2} \mathrm{~d} \mu(\omega)}
$$

5. Some points about parseval c-frames

Lemma 5.1 Let $f: \Omega \longrightarrow H$ be a c-frame for H with frame operator S and $V \in B(H)$ be an invertible operator such that $V^{*} V f=S^{-1} f$. Then $V f: \Omega \longrightarrow H$ is a Parseval c-frame for H.

Proof For each $h, k \in H$, we have

$$
\begin{gathered}
\langle h, k\rangle=\int_{\Omega}\left\langle h, S^{-1} f(\omega)\right\rangle\langle f(\omega), k\rangle \mathrm{d} \mu(\omega)=\int_{\Omega}\left\langle h, V^{*} V f(\omega)\right\rangle\langle f(\omega), k\rangle \mathrm{d} \mu(\omega), \\
\left\langle V^{-1} h, k\right\rangle=\int_{\Omega}\left\langle V^{-1} h, V^{*} V f(\omega)\right\rangle\langle f(\omega), k\rangle \mathrm{d} \mu(\omega)=\int_{\Omega}\langle h, V f(\omega)\rangle\langle f(\omega), k\rangle \mathrm{d} \mu(\omega) .
\end{gathered}
$$

so

Then

$$
\begin{aligned}
\|h\|^{2} & =\langle h, h\rangle=\left\langle V^{-1} h, V^{*} h\right\rangle=\int_{\Omega}\langle h, V f(\omega)\rangle\left\langle f(\omega), V^{*} h\right\rangle \mathrm{d} \mu(\omega) \\
& =\int_{\Omega}\langle h, V f(\omega)\rangle\langle V f(\omega), h\rangle \mathrm{d} \mu(\omega)=\int_{\Omega}|\langle h, V f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)
\end{aligned}
$$

Thus $V f$ is a Parseval c-frame for H.
Remark 5.2 Let $f_{1}, f_{2}, \ldots, f_{k}$ be c-frames for Hilbert spaces $H_{1}, H_{2}, \ldots, H_{k}$, respectively. Let $H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$ be the direct sum of $H_{1}, H_{2}, \ldots, H_{k}$. We define

$$
\begin{gathered}
f_{1} \oplus f_{2} \oplus \cdots \oplus f_{k}: \Omega \longrightarrow H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k} \\
f_{1} \oplus f_{2} \oplus \cdots \oplus f_{k}(\omega)=\left(f_{1}(\omega), f_{2}(\omega), \ldots, f_{k}(\omega)\right) .
\end{gathered}
$$

It is obvious that $f_{1} \oplus f_{2} \oplus \cdots \oplus f_{k}$ is weakly measurable.
For each $\left(h_{1}, h_{2}, \ldots, h_{k}\right) \in H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$, we have

$$
\begin{aligned}
& \int_{\Omega}\left|\left\langle\left(h_{1}, h_{2}, \ldots, h_{k}\right), f_{1} \oplus f_{2} \oplus \cdots \oplus f_{k}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& \quad= \int_{\Omega}\left|\sum_{i=1}^{k}\left\langle h_{i}, f_{i}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \leq \int_{\Omega}\left(\sum_{i=1}^{k}\left|\left\langle h_{i}, f_{i}(\omega)\right\rangle\right|\right)^{2} \mathrm{~d} \mu(\omega) \\
& \leq \int_{\Omega}\left[2^{k-1}\left(\left|\left\langle h_{1}, f_{1}(\omega)\right\rangle\right|^{2}+\left|\left\langle h_{2}, f_{2}(\omega)\right\rangle\right|^{2}\right)+\right. \\
&\left.2^{k-2}\left|\left\langle h_{3}, f_{3}(\omega)\right\rangle\right|^{2} \cdots+2\left|\left\langle h_{k}, f_{k}(\omega)\right\rangle\right|^{2}\right] \mathrm{d} \mu(\omega) \\
& \leq 2^{k-1}\left(B_{1}\left\|h_{1}\right\|^{2}+B_{2}\left\|h_{2}\right\|^{2}\right)+2^{k-2} B_{3}\left\|h_{3}\right\|^{2}+\cdots+2 B_{k}\left\|h_{k}\right\|^{2} \\
& \leq \max \left\{2^{k-1} B_{1}, 2^{k-1} B_{2}, 2^{k-2} B_{3}, \ldots, 2 B_{k}\right\}\left\|\left(h_{1}, h_{2}, \ldots, h_{k}\right)\right\|^{2}
\end{aligned}
$$

So $f_{1} \oplus f_{2} \oplus \cdots \oplus f_{k}$ is a c-Bessel mapping for $H_{1} \oplus H_{2} \oplus \cdots \oplus H_{k}$.
Theorem 5.3 (i) If f is a c-frame for H and $V \in B(H)$ is a co-isometry, then $V f$ is a c-frame for H. Moreover if f is a Parseval c-frame for H, then $V f$ is a Parseval c-frame for H.
(ii) Let f, g be Parseval c-frames for H and K, respectively, and $V \in B(H, K)$ be an operator such that $V f=g$. Then V is a co-isometry. Moreover if V is invertible, then it is unitary.
(iii) If $f: \Omega \longrightarrow H, g: \Omega \longrightarrow K$ are Parseval c-frames for H such that $f \oplus g$ is a Parseval c-frame and if $r: \Omega \longrightarrow M$ is a Parseval c-frame which is unitarily equivalent to g, then $f \oplus g$ is also a Parseval c-frame.

Proof (i) For each $h \in H$,

$$
A\|h\|^{2}=A\left\|V^{*} h\right\|^{2} \leq \int_{\Omega}\left|\left\langle V^{*} h, f(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \leq B\left\|V^{*} h\right\|^{2}=B\|h\|^{2}
$$

(ii) For each $k \in K$,

$$
\left\|V^{*} k\right\|^{2}=\int_{\Omega}\left|\left\langle V^{*} k, f(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega)=\int_{\Omega}|\langle k, V f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)=\|k\|^{2},
$$

so V^{*} is an isometry. It is clear that if V is invertible, then it is unitary.
(iii) Let $U \in B(H, M)$ be a unitary such that $U g=r$. Then $V=I_{H} \oplus U$ is a unitary such that $V(f \oplus g)=f \oplus r$. So $f \oplus r$ is a Parseval c-frame.

Let $f: \Omega \longrightarrow H$ be a c-Bessel mapping for H and $E \subseteq \Omega$ be measurable. Define the operator $S_{E}: H \longrightarrow H$ weakly by

$$
\left\langle S_{E} h, k\right\rangle=\int_{E}\langle h, f(\omega)\rangle\langle f(\omega), k\rangle \mathrm{d} \mu(\omega) .
$$

It is obvious that S_{E} is well defined. If $f: \Omega \longrightarrow H$ is a c-frame for H with frame operator S, then $S=S_{E}+S_{E^{c}}$.

Lemma 5.4 If T and S are two operators on H such that $S+T=I_{H}$, then $S-T=S^{2}-T^{2}$.
Proof It is an easy calculation.
Theorem 5.5 Let $f: \Omega \longrightarrow H$ be a c-frame for H with canonical dual frame $\tilde{f}=S^{-1} f$. Then for each measurable set $E \subseteq \Omega$ we have

$$
\begin{aligned}
& \int_{E}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\int_{\Omega}\left|\left\langle S_{E} h, \tilde{f}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& =\int_{E^{c}}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\int_{\Omega}\left|\left\langle S_{E} h, \tilde{f}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) .
\end{aligned}
$$

Proof Since $S=S_{E}+S_{E^{c}}$, so $I_{H}=S^{-1} S_{E}+S^{-1} S_{E^{c}}$. By using Lemma 5.4 for $S^{-1} S_{E}$ and $S^{-1} S_{E^{c}}$, we have

$$
\begin{equation*}
S^{-1} S_{E}-S^{-1} S_{E} S^{-1} S_{E}=S^{-1} S_{E^{c}}-S^{-1} S_{E^{c}} S^{-1} S_{E^{c}} \tag{5.1}
\end{equation*}
$$

Also for each $h, k \in H$,

$$
\begin{equation*}
\left\langle S^{-1} S_{E} h, k\right\rangle-\left\langle S^{-1} S_{E} S^{-1} S_{E} h, k\right\rangle=\left\langle S_{E} h, S^{-1} k\right\rangle-\left\langle S^{-1} S_{E} h, S^{-1} S_{E} k\right\rangle \tag{5.2}
\end{equation*}
$$

Now let $k=S h$. Then the equality (5.2) can be continued as:

$$
=\left\langle S_{E} h, h\right\rangle-\left\langle S^{-1} S_{E} h, S_{E} h\right\rangle=\int_{E}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\int_{\Omega}\left|\left\langle S_{E} h, \tilde{f}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) .
$$

Similarly, we can write the equation (5.2) for E^{c}. Therefore

$$
\begin{aligned}
& \int_{E}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\int_{\Omega}\left|\left\langle S_{E} h, \tilde{f}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) \\
& \quad=\int_{E^{c}}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\int_{\Omega}\left|\left\langle S_{E^{c}} h, \tilde{f}(\omega)\right\rangle\right|^{2} \mathrm{~d} \mu(\omega) .
\end{aligned}
$$

Theorem 5.6 Let $f: \Omega \longrightarrow H$ be a Parseval c-frame for H. Then for each measurable set $E \subseteq \Omega$ we have

$$
\int_{E}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\left\|S_{E} h\right\|^{2}=\int_{E^{c}}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\left\|S_{E^{c}} h\right\|^{2}
$$

Proof By using Theorem 5.5, it is obvious.
Proposition 5.7 Let $f: \Omega \longrightarrow H$ be a Parseval c-frame for H. Then for each measurable set
$E \subseteq \Omega$, measurable set $F \subseteq E^{c}$ and each $h \in H$ we have

$$
\left\|S_{E \cup F} h\right\|^{2}-\left\|S_{E^{c} \backslash F} h\right\|^{2}=\left\|S_{E} h\right\|^{2}-\left\|S_{E^{c}} h\right\|^{2}+2 \int_{F}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega) .
$$

Proof Using Theorem 5.6 twice implies the result.
Corollary 5.8 Let $f: \Omega \longrightarrow H$ be a λ-tight c-frame for H. Then for each measurable set $E \subseteq \Omega$ we have

$$
\lambda \int_{E}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\left\|S_{E} h\right\|^{2}=\lambda \int_{E^{c}}|\langle h, f(\omega)\rangle|^{2} \mathrm{~d} \mu(\omega)-\left\|S_{E^{c}} h\right\|^{2} .
$$

Proof Since $\frac{1}{\sqrt{\lambda}} f$ is a Parseval c-frame, using Theorem 5.6 yields the result.
Acknowledgements The author would like to thank the referees for their comments and suggestions.

References

[1] R. J. DUFFIN, A. C. SCHAEFFER. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 1952, 72: 341-366
[2] I. DAUBECHIES, A. GROSSMANN, Y. MEYER. Painless nonorthogonal expansions. J. Math. Phys., 1986, $27(5): 1271-1283$.
[3] O. CHRISTENSEN. Introduction to Frames and Riesz Bases. Birkhäuser Boston, Inc., Boston, MA, 2003.
[4] S. T. ALI, J. P. ANTOINE, J. P. GAZEAU. Continuous frames in Hilbert space. Ann. Physics, 1993, 222(1): 1-37.
[5] P. G. CASAZZA, G. KUTYNIOK. Frames of subspaces. Contemp. Math., 2004, 345: 87-114.
[6] P. G. CASAZZA, G. KUTYNIOK, Shidong LI. Fusion frames and distributed processing. Appl. Comput. Harmon. Anal., 2008, 25(1): 114-132.
[7] M. H. FAROUGHI, R. AHMADI, M. RAHMANI. Bochner (p, Y)-operator frames. Involve, 2012, 5(3): 283-293.
[8] M. H. FAROUGHI, M. RAHMANI. Bochner pg-frames. J. Inequal. Appl., 2012, 196: 1-16.
[9] M. H. FAROUGHI, M. RAHMANI. Bochner p-Frame of Subspaces. Southeast Asian Bull. Math., 2013, $37(2)$: 181-192.
[10] M. RAHMANI. Sums of c-frames, c-Riesz bases and orthonormal mappings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 2015, 77(3): 3-14.
[11] A. RAHIMI, A. NAJATI, Y. N. DEHGHAN. Continuous frame in Hilbert spaces. Methods Funct. Anal. Topology, 2006, 12(2): 170-182.
[12] R. BALAN, P. G. CASAZZA, D. EDIDIN, et al. A new Identity for Parseval frames. Proc. Amer. Math. Soc., 2007, 135(4): 1007-1015.
[13] O. CHRISTENSEN. Frames and Bases: An Introductory Course. Birkhäuser, Inc., Boston, MA, 2008.
[14] W. RUDIN. Real and Complex Analysis. 3rd Edition, MacGraw-Hill, New York, 1987.

