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On Some Properties of c-Frames
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Abstract In this paper we discuss about c-frames, namely continuous frames. Since, c-
frames are generalizations of discrete frames, we generalize some results of discrete frames to
continuous version. We explain some results about relations of projections in Hilbert spaces
and c-frames to characterize these frames. Also, we will specify (precisely) the synthesis and
frame operators of Bochner integrable c-frames. Finally, we classify Hilbert-Schmidt operators
by c-frames and express some new identities for Parseval c-frames.

Keywords Banach space; Hilbert space; frame; c-frame; Parseval c-frame; Bochner measur-
able

MR(2010) Subject Classification 42C15; 46C05; 46G10

1. Introduction

Duffin and Schaeffer introduced the concept of discrete frames in Hilbert spaces in 1952 to
study some deep problems in nonharmonic Fourier series [1]. After the fundamental paper [2]
by Daubechies, Grossmann and Meyer, frames usage began to be raised. In signal processing,
image and data compression and sampling theory, the concept of frame has a fundamental
impact. Frames provide an alternative to orthonormal bases in Hilbert spaces. Indeed, a discrete
frame is a countable family of elements in a separable Hilbert space which allows for a stable,
not necessarily unique, decomposition of an arbitrary element into an expansion of the frame
elements. For more details about discrete frames we refer to [3]. Various kind of frames have
been introduced till now, which are generalization of discrete frames. For more studies about
some types of frames, the interested reader can refer to [4-11].

In this paper we generalize some concepts of discrete frames and some results in [12] to
c-frames. The paper is organized as follows. In Section 2, we verify relations between projections
and c-frames. Our aim in Section 3 is study of effects of Bochner integrability on c-frames.
Section 4 is devoted to classifying Hilbert-Schmidt operators by c-frames. Finally, in the last
section we show some new identities for Parseval c-frames.

Throughout this paper H and K stand for Hilbert spaces, and X and Y stand for Banach
spaces.

Suppose (£2, X, 1) is a measure space, where p is a positive measure.

At first we give some definitions to introduce Bochner measurable and Bochner integrable

mappings.

Received April 30, 2016; Accepted March 29, 2017
E-mail address: m_rahmani26@yahoo.com



On some properties of c-frames 467

Definition 1.1 A function f : Q@ — X is called simple if there exist x1,...,x, € X and
Ei,...,E, € ¥ such that f = > | x;XE,, where xp,(w) = 1 if w € E; and xg,(w) = 0 if
w € Ef. If u(E;) is finite, whenever x; # 0, then the simple function f is integrable, and the
integral is then defined by

/Q F(@)dp() = 3 pEoe:

Definition 1.2 A function f : Q — X is called Bochner measurable if there exists a sequence

of simple functions {f,}22; such that lim, . ||fn» — f|| = 0, p-almost everywhere.

Definition 1.3 A Bochner measurable function f : Q — X is called Bochner integrable if

there exists a sequence of integrable simple functions { f,}52_; such that

lim / (@) — £(@)dp(w) = 0.

n— oo

In this case, [}, f(w)du(w) is defined by

/ fw)dp(w) = lim [ fr(w)dp(w), E€X.
E E

n— oo

Now, we review the definition of continuous frames.

Definition 1.4 A mapping f : Q) — H is called a continuous frame or c-frame for H if:
(i) Foreach h € H, w — (h, f(w)) is a measurable function;

(ii) There exist positive constants A and B such that
Allh|* < /Q [(h, f(w))[Pdu(w) < B|[Al*, he H. (1.1)

The constants A and B are called c-frame bounds. f is called a tight c-frames if A = B and it is
called a Parseval c-frame if A = B = 1. The mapping f is called c-Bessel mapping if the second
inequality in (1.1) holds. In this case, B is called the Bessel constant.

For a c-Bessel mapping, there are two important associated operators as below.
Proposition 1.5 ([11]) Let f be a c-Bessel mapping for H. Then the operator
T:L*(Qu) — H
weakly defined by
Toh) = [ o) (fw)h)dute). he I, (12)
is well defined, linear, bounded and its adjoint is given by
T*: H — L*(Q,u), T h(w) = (h, f(w)), we Q. (1.3)

The operator T is called the pre-frame operator or the synthesis operator and T is called the
analysis operator of f.

If f is a c-Bessel mapping for H, then the operator S : H — H defined by S = TT*, is
called the frame operator of f. Thus

(Sh. k) = /Q (b, F@) (@), kdu(w), h.k e H.
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It can be easily shown that if f is a c-frame for H, then S is invertible.

The following Lemma provides a right inverse for a closed range operator.

Lemma 1.6 ([13]) Let H, K be Hilbert spaces, and suppose that U : K — H is a bounded
operator with closed range Ry. Then there exists a bounded operator Ut : K — H for which

Nyt = R5, Ryr = Ng, UU'z ==z, = € Ry.

The operator U is called the pseudo-inverse of U.
Now, we state the definition of a Hilbert-Schmidt operator.

Definition 1.7 A linear operator V. € B(H) is Hilbert-Schmidt if, for any orthonormal basis

{e;}2,, we have
o0
2 2
IVIlFs =D IVeill* < oc.
i=1
2. Projections and c-frames
We start by a result that shows the alternative conditions of being c-frame.

Theorem 2.1 Let (2, ) be a measure space where i is o-finite. The mapping f : Q — H Is
a c-frame for H with bounds A and B if and only if the following conditions hold.

(i) {he H:(h, f(w)) =0, a.e. [u]} ={0}.
(ii) The operator T defined by (1.2) is well defined and

Allell3 < IIT¢)? < Bllel3, » € N (2.1)
Proof Let f:Q — H be a c-frame for H. It is clear that
ITl* < Bligll3, ¢ € L*(Q, ).

If h € H such that (h, f(w)) =0, a.e. [u], then

[ 1t Pau) = o.

Hence h = 0. By [11, Theorem 2.9], R = H, so Rp+ is closed and
Ni = Ry« = Ry,
i.e., Ni consists of all families of the form {(h, f(w))},eq, h € H. Now, for given h € H,
2
(] 1) mPant))” = (sl < [ShE|I?
<lsulPg [ 1) mPdu)
where S is the frame operator of f. Therefore

A( [ 1) mPau)” < ISh* = I1T{(h, f)ocal’, he I
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Now, we prove the other implication. Since T is bounded below, Rr is closed. By [11, Theorem

2.7, f : @ — H is a c-Bessel mapping. We have

{0} ={heH:(h,f(w)=0, ae. [u]} ={h e H: (T"h)(w) =0, ae. [u]}
—{heH:Th=0}.
So Ny« = {0}. Hence H = {0}* = N. = Ry = Ry. Let T denote the pseudo inverse of 7.

By Lemma 1.6, TTT is the orthogonal projection onto N4, and T7T is the orthogonal projection
onto Ry = H. Thus for each ¢ € L*(Q, i), the inequality (2.1) implies that

AT To|? < |TTTe|* = || Tel. (2.2)

Since Nyt = R, (2.2) gives that | TT[|? <

projection onto

o

. Thus ||(T*)"]|? < %. But (T*)T* is the orthogonal

Ripeyi = Rypiy- = Nj = Rp = H,
so for all h € H,
1R = [(T)'T*h||* < Z||IT*A|* = */ [{f(w), h)Pdp(w). O
A A Jq

Let f: Q — H be a c-frame for H and P : H — K be an orthogonal projection. Then
Pf:Q — K is a c-frame for K = PH and PS~!f is a dual of Pf, since for each h,k € H

(Ph, Pk) = / (Ph, ()5~ f(w), PR)dpu(w)

:/Q<Ph,Pf(w))(PS_lf(w)vPk>dﬂ(w)'

Theorem 2.2 Let f : QQ — H be a c-frame for H and P : H — K be an orthogonal projection
and S and S be the frame operators of f and Pf, respectively. Then SP = PS if and only if
PS-1f=S8-1pf.

Proof It is obvious that SP = PS if and only if S™'P = PS~'. Let PS~1f = S~1Pf.
Considering S~ P as an operator in B(H), for each h, k € H, we have

(P5,H) = [ (P S (5™ 1) Rane)

:/Q<h,S*lpf(w)><5*1f(w),k>du(w)
_ /Q<h7PS‘lf(w)><S_1f(w)»k>dﬂ(w)
_ /Q (STLPh, (W) (S f(w), k)dp(w)
= (ST'Ph, k),

thus PS~! = S~1P. We have PS~! = PS~'P so S~'P = PS~'P. By taking adjoint on both
sides, we get PS~! = PS~!P. Therefore, S™'P = PS~!. Conversely, suppose S™!P = PSS!
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For each h,k € H, we have

(Ph, k) = (Ph, Pk) = /Q(Ph,S’le(w)ﬂPf(w),Pk)du(w),
so for each v € Q and k € H,
(ST'Pf(v),k) = (PST'Pf(v),k) = (Pf(v),5 ' Pk)

- /Q (PF(r), 57 Pf(w))(Pf(w). 5 Ph)du(w)
- /Q (571 PF(), PF))E Pf(w), PR)dpu(w)

= [(PSIPFw). £ @), P PR)dutw)
= (PS'Pf(v),SPS™'PEk).

Therefore for each v € Q and k € H,

(S7IPf(v), k) = (§"*PSPS™'Pf(v), Pk) = (ST'PSPS™'Pf(v), k),

STIPf(v) = ST'PSPS'Pf(v).

Consequently, for each v € ),

Pf(v) = PSPS™IPf(v) = SPS™'Pf(v),
this implies that PS~1f = S~'Pf. O

Corollary 2.3 Let f: Q) — H be a c-frame for H. Then f is a tight c-frame for H if and only
if for every orthogonal projection P € B(H),

PS~lf=S"tpf,
where S and S are the frame operators of f and Pf, respectively.

Proof Let f be a tight c-frame for H with bound A P € B(H) being an orthogonal projection.
Therefore S = Alg and Pf is a tight c-frame for PH with bound A and S = Alpy. So
S~ = A", and S~! = A~'Ipy and we have

STIPf=A"'pyPf=A"'Pf=PA ' f =PA ' Iyf=PS7'f.
Conversely, suppose for every orthogonal projection P € B(H), PS™'f = S~'Pf. By Theorem
2.2, for every orthogonal projection P € B(H), PS = SP, so SPH = PSH = PH. Thus for
each closed subspace K C H, SK = K. Let {es}acr be an orthonormal basis of H. For each

h € H, consider
K, ={\h:XeC}.

Each Kj, is a closed subspace of H, so by injectivity of S, there exists a unique A;, such that
Sh = A\ph.

By a simple calculation, for every «, 8 € I, we have

Aew = Aey-
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Let A be the common value of A._’s. For each h € H we have

Sh = S( Z(h,eo)ea) =3 (b ca)rea = A

acl acl
Therefore S = Ay and f is a tight c-frame for H with bound A. O

Theorem 2.4 Let (2, 1) be a measure space and H be a Hilbert space such that dim H = card .
Fix an orthonormal basis {e, },cq for H. Suppose that P and @ are projections in B(H) and
let M = PH and N =QH. Let f: Q) — M and g : Q@ — N defined by

f(w) = Pey, g(w) = Qe

be Parseval c-frames for M and N, respectively. Then f and g are unitarily equivalent if and
only if P = Q.

Proof Suppose f and g are unitarily equivalent. Then there is a unitary U € B(M, N) such
that U f = g. This determines a partial isometry UeB (H) with initial and final spaces M and
N, respectively, such that Uf =g. SoU*U =P, UU* =Q and U = QUP = QU = UP. Note
that UPe, = Qe,,, w € Q. Therefore via UP = U we obtain

Ue, = Qe,, w e

So U = @ and hence P = Q. O

3. Bochner integrability and c-frames
Lemma 3.1 Let f: Q — H be a Bochner integrable function and V € B(H,K). Then

/Qf V/f Jdja(w

Proof Since f is Bochner integrable, there exist a sequence of integrable simple functions
{fn}2o, such that

Jm [ 146 = F@)ldute) <o
and

| Feant) = im /Q fulw)dp(w)
So

v [ F@ne) = lim V[ @), (.1
Q n—reo Q
Now, for each h € H, we have

| [ Vi) - / V)] = | [ Vi) = F@)in)
/ IV (fu(w) — (@) lduw) < V] / ) — £ () [dpa(w),

then

n—oo

tin [ Via@dnte) = [ Vidnte) (3.2)
Q Q
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. . k(n)
Considering f, =), m(n)XE(n), we have
k3

k()

| fuferante) = X al (B,

SO
k()
V/ Fr(w)dp(w ZM E(n) (n)).
Also,
k(m)
V=3 XxgwV(@™"),
i=1
therefore
Ek(n)
/ V ful(w Zu V(™).
Thus
lim [ Vf,(w)dp(w) = lim V/ frn(w)dpu(v
n—oo Q n—oo

consequently by (3.1) and (3.2)

| viiaua) = v [ feue

Corollary 3.2 Let f : Q@ — H be a Bochner integrable function. Then for each h € H we

@ man) = ( [ feue).n

Theorem 3.3 Let f : QQ — H be a c-frame for H and f be Bochner integrable. If T and S

are synthesis and frame operators of f, respectively, then

Ty = /Q o) f@)dp(w), @ L3 p),

have

sh= [ (h @) f@dnte), he .
Q
Proof By Corollary 3.2, for each ¢ € L2(Q, i),
Tty = [ plo)tr)mante) = ( [ o) fe)due).h).

thus

To = [ plw)f@)n(o).
In a similar manner it can be shown that
Sh = / (h, f(w))f(w)dp(w), heH. O
Q

Theorem 3.4 Let f,g : Q@ — H be c-Bessel mappings and f and g be Bochner integrable.
Then the following statements are equivalent.
(i) For each h € H, h = [, (h,g(w))f(w)dpu(w);
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(ii) For each h € H, h = [(h, f(w))g(w)dpu(w);
(iii) For each h,k € H, (h,k) = [, (h, f(w))(g(w), k)du(w).

Proof The proof is similar to discrete case [3, Lemma 5.6.2]. O

4. Classifying Hilbert-Schmidt operators by c-frames

Lemma 4.1 Let f : Q — H be c-frame for H with bounds A, B and {e, }ocr be an orthonormal
basis of H. Let V € B(H). Then

AS WV eall < [ IVF@Paute) < B [V el

acl ael
Proof By [14, Theorem 1.27], we have

AZHV*en2<Z/| V) P /Zw ), o) Pdu(w)

aeA acA acA

/ IVF@) 2 dp(w) < B Y [Veal®. O

ac
Corollary 4.2 Let f : Q — H be a c-Bessel mapping with Bessel constant B and {eq }oc1 be
an orthonormal basis of H. If V € B(H), then

LIV H@IPdut) < B3 [veal

ael
Theorem 4.3 An operator V € B(H) is Hilbert Schmidt if and only if

/IIVf J[2du(w) <

for one (and therefore for all) c-frame(s) for H. Moreover

VAV s < \//Q IV f(@)[2dp(w) < VBV |us,

in which A and B are c-frame bounds. In particular for tight c-frames (with bound A) we have

1Vlims = jl\/ REEIRT®

5. Some points about parseval c-frames

Lemma 5.1 Let f: Q — H be a c-frame for H with frame operator S and V € B(H) be an
invertible operator such that V*V f = S~'f. Then V f : Q — H is a Parseval c-frame for H.

Proof For each h,k € H, we have

(k) = / (h, 571 F (@) (f (), K dp(w) = / BV 1 (@) (f (), Ky dp(w),

(Vlh k) = /Q VR VOV @) (@), Wdp(w) = /Q (B V@) (@), Fdpu(w).
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Then

I[|* = (R, h) = (V ’1h,V*h>=/<h,Vf(w)><f(w),V*h>du(w)

= [ VIV I@L ) = [ 1V fe) )
Q
Thus V f is a Parseval c-frame for H. [J

Remark 5.2 Let fi, fo,..., fx be c-frames for Hilbert spaces Hy, Ho, ..., Hg, respectively. Let
Hy® Hy ®--- @ Hj be the direct sum of Hy, Ho, ..., H,. We define

hefh®e - @fh: Q—H OCH, ®---®H,

1O @ filw) = (filw), fo(w),..., fr(w)).

It is obvious that f1 @ fo ®--- & fi is weakly measurable.
For each (hy,ho,..., hy) € Hy & Hy & -+ - & Hy, we have

/| (i sk B, 1@ fo @ - @ fi(w)) P dpa()

:/Q‘;<hmfi(w)>‘2dﬂ(w) </Q<§;|<hivfi(w)>)2du(w)

< [ R0 D + L, o)+
2572 (s, f3(@)) - -+ 20 (s fro(w))P]dpu(w)
< 2" (B[l ||? + Balh2||?) + 272 Byl hs|1® + - - + 2By | ||
<max{2" 1B, 2" 1By, 2" 2By, ..., 2B }||(h1, oy - . i) |2
So fi® fa®--- @ fr is a c-Bessel mapping for Hy © Hy & -+ - © H.
Theorem 5.3 (i) If f is a c-frame for H and V € B(H) is a co-isometry, then V f is a c-frame
for H. Moreover if f is a Parseval c-frame for H, then V f is a Parseval c-frame for H.

(ii) Let f,g be Parseval c-frames for H and K, respectively, and V € B(H,K) be an
operator such that Vf = g. Then V is a co-isometry. Moreover if V is invertible, then it is
unitary.

(iii) If f: Q — H, g : Q — K are Parseval c-frames for H such that f @ g is a Parseval

c-frame and if r : Q — M is a Parseval c-frame which is unitarily equivalent to g, then f & g is

also a Parseval c-frame.
Proof (i) For each h € H,
Al[h]* = A[[V*h|* < /Q [(V*h, f(w)Pdp(w) < B|V*h|* = BA|*.
(ii) For each k € K,
IV*k||* = / {(V7k, f(w))Pdp(w / [{k, V f(w))[Pdu(w) = k]|,

so V* is an isometry. It is clear that if V' is invertible, then it is unitary.
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(iii) Let U € B(H, M) be a unitary such that Ug = r. Then V = Iy @ U is a unitary such
that V(f @ g) = f ®r. So f @ r is a Parseval c-frame. O

Let f : Q — H be a c-Bessel mapping for H and E C Q be measurable. Define the
operator Sg : H — H weakly by

<sEhwk>::/Q<h,fou»<f<w>,k>duou»

It is obvious that Sg is well defined. If f : ) — H is a c-frame for H with frame operator S,
then S = Sg + Sge.

Lemma 5.4 If T and S are two operators on H such that S +T = Iy, then S — T = §% —
Proof It is an easy calculation. OJ

Theorem 5.5 Let f: Q2 — H be a c-frame for H with canonical dual frame fz S—1f. Then

for each measurable set E C ) we have

[ 1th s Paute) /I&ﬂf ) Pdu)
= [t fpPante) — [ 1eh, FpPFante)

Proof Since S = Sg + Sge, so Iy = S™1Sp + S~1Sp.. By using Lemma 5.4 for S~'Sg and
S~1Sge, we have

S8y — S 1SpSTSy =S5 Sk — ST SE-S T Sk, (5.1)
Also for each h,k € H,
(S71Sph, k) — (ST1SES™'Sph, k) = (Sph,S7'k) — (S71Sgh, ST1SEk). (5.2)
Now let k = Sh. Then the equality (5.2) can be continued as:
= (Sih.h) = (575ph,Sph) = [ |(h, (@) Pdn(e) = [ [(Seh, Flw)Pdue).

Similarly, we can write the equation (5.2) for E°. Therefore
[ b ) Pute /\&ﬁf (@) Pue)
= [ b @ Pau) - [ [(Speh. fl)Pante). O

Theorem 5.6 Let f : Q — H be a Parseval c-frame for H. Then for each measurable set
E C Q we have

[ h s Pdte) = 186 = [ Jh, 7)) Pdu) ~ 1S
E Eec

Proof By using Theorem 5.5, it is obvious. [J

Proposition 5.7 Let f : Q@ — H be a Parseval c-frame for H. Then for each measurable set



476 Morteza RAHMANI

E C Q, measurable set F' C E° and each h € H we have
ISeurhl® = |1Sgarhl? = [|Sehl® = |Seeh|? + 2/F [(h, f(w)) Pdp(w).
Proof Using Theorem 5.6 twice implies the result. O

Corollary 5.8 Let f : Q2 — H be a A-tight c-frame for H. Then for each measurable set
E C Q) we have

3 [ b FPau) = ISshE =X [ 1(h fe)Pdu(e) = |Seehl
Proof Since \%/\ f is a Parseval c-frame, using Theorem 5.6 yields the result. [J
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