Journal of Mathematical Research with Applications Jul., 2017, Vol. 37, No. 4, pp. 466–476 DOI:10.3770/j.issn:2095-2651.2017.04.008 Http://jmre.dlut.edu.cn

On Some Properties of c-Frames

Morteza RAHMANI

Young Researchers and Elite Club, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran

Abstract In this paper we discuss about c-frames, namely continuous frames. Since, c-frames are generalizations of discrete frames, we generalize some results of discrete frames to continuous version. We explain some results about relations of projections in Hilbert spaces and c-frames to characterize these frames. Also, we will specify (precisely) the synthesis and frame operators of Bochner integrable c-frames. Finally, we classify Hilbert-Schmidt operators by c-frames and express some new identities for Parseval c-frames.

 $\textbf{Keywords} \quad \text{Banach space; Hilbert space; frame; c-frame; Parseval c-frame; Bochner measurable}$

MR(2010) Subject Classification 42C15; 46C05; 46G10

1. Introduction

Duffin and Schaeffer introduced the concept of discrete frames in Hilbert spaces in 1952 to study some deep problems in nonharmonic Fourier series [1]. After the fundamental paper [2] by Daubechies, Grossmann and Meyer, frames usage began to be raised. In signal processing, image and data compression and sampling theory, the concept of frame has a fundamental impact. Frames provide an alternative to orthonormal bases in Hilbert spaces. Indeed, a discrete frame is a countable family of elements in a separable Hilbert space which allows for a stable, not necessarily unique, decomposition of an arbitrary element into an expansion of the frame elements. For more details about discrete frames we refer to [3]. Various kind of frames have been introduced till now, which are generalization of discrete frames. For more studies about some types of frames, the interested reader can refer to [4–11].

In this paper we generalize some concepts of discrete frames and some results in [12] to c-frames. The paper is organized as follows. In Section 2, we verify relations between projections and c-frames. Our aim in Section 3 is study of effects of Bochner integrability on c-frames. Section 4 is devoted to classifying Hilbert-Schmidt operators by c-frames. Finally, in the last section we show some new identities for Parseval c-frames.

Throughout this paper H and K stand for Hilbert spaces, and X and Y stand for Banach spaces.

Suppose (Ω, Σ, μ) is a measure space, where μ is a positive measure.

At first we give some definitions to introduce Bochner measurable and Bochner integrable mappings.

Received April 30, 2016; Accepted March 29, 2017 E-mail address: m_rahmani26@yahoo.com

Definition 1.1 A function $f: \Omega \longrightarrow X$ is called simple if there exist $x_1, \ldots, x_n \in X$ and $E_1, \ldots, E_n \in \Sigma$ such that $f = \sum_{i=1}^n x_i \chi_{E_i}$, where $\chi_{E_i}(\omega) = 1$ if $\omega \in E_i$ and $\chi_{E_i}(\omega) = 0$ if $\omega \in E_i^c$. If $\mu(E_i)$ is finite, whenever $x_i \neq 0$, then the simple function f is integrable, and the integral is then defined by

$$\int_{\Omega} f(\omega) d\mu(\omega) = \sum_{i=1}^{n} \mu(E_i) x_i.$$

Definition 1.2 A function $f: \Omega \longrightarrow X$ is called Bochner measurable if there exists a sequence of simple functions $\{f_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \|f_n - f\| = 0$, μ -almost everywhere.

Definition 1.3 A Bochner measurable function $f: \Omega \longrightarrow X$ is called Bochner integrable if there exists a sequence of integrable simple functions $\{f_n\}_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \int_{\Omega} ||f_n(\omega) - f(\omega)|| d\mu(\omega) = 0.$$

In this case, $\int_E f(\omega)d\mu(\omega)$ is defined by

$$\int_{E} f(\omega) d\mu(\omega) = \lim_{n \to \infty} \int_{E} f_n(\omega) d\mu(\omega), \quad E \in \Sigma.$$

Now, we review the definition of continuous frames.

Definition 1.4 A mapping $f: \Omega \longrightarrow H$ is called a continuous frame or c-frame for H if:

- (i) For each $h \in H$, $\omega \longmapsto \langle h, f(\omega) \rangle$ is a measurable function;
- (ii) There exist positive constants A and B such that

$$A\|h\|^2 \le \int_{\Omega} |\langle h, f(\omega) \rangle|^2 \mathrm{d}\mu(\omega) \le B\|h\|^2, \quad h \in H.$$

$$\tag{1.1}$$

The constants A and B are called c-frame bounds. f is called a tight c-frames if A = B and it is called a Parseval c-frame if A = B = 1. The mapping f is called c-Bessel mapping if the second inequality in (1.1) holds. In this case, B is called the Bessel constant.

For a c-Bessel mapping, there are two important associated operators as below.

Proposition 1.5 ([11]) Let f be a c-Bessel mapping for H. Then the operator

$$T: L^2(\Omega, \mu) \longrightarrow H$$

weakly defined by

$$\langle T\varphi, h \rangle = \int_{\Omega} \varphi(\omega) \langle f(\omega), h \rangle d\mu(\omega), \quad h \in H,$$
 (1.2)

is well defined, linear, bounded and its adjoint is given by

$$T^*: H \longrightarrow L^2(\Omega, \mu), \quad T^*h(\omega) = \langle h, f(\omega) \rangle, \quad \omega \in \Omega.$$
 (1.3)

The operator T is called the pre-frame operator or the synthesis operator and T^* is called the analysis operator of f.

If f is a c-Bessel mapping for H, then the operator $S: H \longrightarrow H$ defined by $S = TT^*$, is called the frame operator of f. Thus

$$\langle Sh, k \rangle = \int_{\Omega} \langle h, f(\omega) \rangle \langle f(\omega), k \rangle d\mu(\omega), \quad h, k \in H.$$

It can be easily shown that if f is a c-frame for H, then S is invertible.

The following Lemma provides a right inverse for a closed range operator.

Lemma 1.6 ([13]) Let H, K be Hilbert spaces, and suppose that $U : K \longrightarrow H$ is a bounded operator with closed range R_U . Then there exists a bounded operator $U^{\dagger} : K \longrightarrow H$ for which

$$N_{U^{\dagger}} = R_U^{\perp}, \quad R_{U^{\dagger}} = N_U^{\perp}, \quad UU^{\dagger}x = x, \quad x \in R_U.$$

The operator U^{\dagger} is called the pseudo-inverse of U.

Now, we state the definition of a Hilbert-Schmidt operator.

Definition 1.7 A linear operator $V \in B(H)$ is Hilbert-Schmidt if, for any orthonormal basis $\{e_i\}_{i=1}^{\infty}$, we have

$$||V||_{HS}^2 = \sum_{i=1}^{\infty} ||Ve_i||^2 < \infty.$$

2. Projections and c-frames

We start by a result that shows the alternative conditions of being c-frame.

Theorem 2.1 Let (Ω, μ) be a measure space where μ is σ -finite. The mapping $f : \Omega \longrightarrow H$ is a c-frame for H with bounds A and B if and only if the following conditions hold.

- (i) $\{h \in H : \langle h, f(\omega) \rangle = 0, \text{ a.e. } [\mu] \} = \{0\}.$
- (ii) The operator T defined by (1.2) is well defined and

$$A\|\varphi\|_{2}^{2} \le \|T\varphi\|^{2} \le B\|\varphi\|_{2}^{2}, \quad \varphi \in N_{T}^{\perp}.$$
 (2.1)

Proof Let $f: \Omega \longrightarrow H$ be a c-frame for H. It is clear that

$$||T\varphi||^2 \le B||\varphi||_2^2, \quad \varphi \in L^2(\Omega, \mu).$$

If $h \in H$ such that $\langle h, f(\omega) \rangle = 0$, a.e. $[\mu]$, then

$$\int_{\Omega} |\langle f(\omega), h \rangle|^2 d\mu(\omega) = 0.$$

Hence h = 0. By [11, Theorem 2.9], $R_T = H$, so R_{T^*} is closed and

$$N_T^{\perp} = \overline{R_{T^*}} = R_{T^*},$$

i.e., N_T^{\perp} consists of all families of the form $\{\langle h, f(\omega) \rangle\}_{\omega \in \Omega}$, $h \in H$. Now, for given $h \in H$,

$$\left(\int_{\Omega} |\langle f(\omega), h \rangle|^2 d\mu(\omega)\right)^2 = |\langle Sh, h \rangle|^2 \le ||Sh||^2 ||h||^2$$
$$\le ||Sh||^2 \frac{1}{A} \int_{\Omega} |\langle f(\omega), h \rangle|^2 d\mu(\omega),$$

where S is the frame operator of f. Therefore

$$A\Big(\int_{\Omega} |\langle f(\omega), h \rangle|^2 \mathrm{d}\mu(\omega)\Big)^2 \le \|Sh\|^2 = \|T\{\langle h, f(\omega) \rangle\}_{\omega \in \Omega}\|^2, \quad h \in H.$$

Now, we prove the other implication. Since T is bounded below, R_T is closed. By [11, Theorem 2.7], $f: \Omega \longrightarrow H$ is a c-Bessel mapping. We have

$$\{0\} = \{h \in H : \langle h, f(\omega) \rangle = 0, \text{ a.e. } [\mu]\} = \{h \in H : (T^*h)(\omega) = 0, \text{ a.e. } [\mu]\}$$

$$= \{h \in H : T^*h = 0\}.$$

So $N_{T^*} = \{0\}$. Hence $H = \{0\}^{\perp} = N_{T^*}^{\perp} = \overline{R_T} = R_T$. Let T^{\dagger} denote the pseudo inverse of T. By Lemma 1.6, $T^{\dagger}T$ is the orthogonal projection onto N_T^{\perp} , and TT^{\dagger} is the orthogonal projection onto $R_T = H$. Thus for each $\varphi \in L^2(\Omega, \mu)$, the inequality (2.1) implies that

$$A\|T^{\dagger}T\varphi\|^{2} \le \|TT^{\dagger}T\varphi\|^{2} = \|T\varphi\|^{2}. \tag{2.2}$$

Since $N_{T^{\dagger}} = R_T^{\perp}$, (2.2) gives that $||T^{\dagger}||^2 \leq \frac{1}{A}$. Thus $||(T^*)^{\dagger}||^2 \leq \frac{1}{A}$. But $(T^*)^{\dagger}T^*$ is the orthogonal projection onto

$$R_{(T^*)^{\dagger}} = R_{(T^{\dagger})^*} = N_{T^{\dagger}}^{\perp} = R_T = H,$$

so for all $h \in H$,

$$\|h\|^2 = \|(T^*)^\dagger T^*h\|^2 \le \frac{1}{A} \|T^*h\|^2 = \frac{1}{A} \int_{\Omega} |\langle f(\omega), h \rangle|^2 \mathrm{d}\mu(\omega). \quad \Box$$

Let $f: \Omega \longrightarrow H$ be a c-frame for H and $P: H \longrightarrow K$ be an orthogonal projection. Then $Pf: \Omega \longrightarrow K$ is a c-frame for K = PH and $PS^{-1}f$ is a dual of Pf, since for each $h, k \in H$

$$\langle Ph, Pk \rangle = \int_{\Omega} \langle Ph, f(\omega) \rangle \langle S^{-1}f(\omega), Pk \rangle d\mu(\omega)$$
$$= \int_{\Omega} \langle Ph, Pf(\omega) \rangle \langle PS^{-1}f(\omega), Pk \rangle d\mu(\omega).$$

Theorem 2.2 Let $f: \Omega \longrightarrow H$ be a c-frame for H and $P: H \longrightarrow K$ be an orthogonal projection and S and \tilde{S} be the frame operators of f and Pf, respectively. Then SP = PS if and only if $PS^{-1}f = \tilde{S}^{-1}Pf$.

Proof It is obvious that SP = PS if and only if $S^{-1}P = PS^{-1}$. Let $PS^{-1}f = \tilde{S}^{-1}Pf$. Considering $\tilde{S}^{-1}P$ as an operator in B(H), for each $h, k \in H$, we have

$$\langle P\tilde{S}^{-1}h, k \rangle = \int_{\Omega} \langle P\tilde{S}^{-1}h, f(\omega) \rangle \langle S^{-1}f(\omega), k \rangle d\mu(\omega)$$

$$= \int_{\Omega} \langle h, \tilde{S}^{-1}Pf(\omega) \rangle \langle S^{-1}f(\omega), k \rangle d\mu(\omega)$$

$$= \int_{\Omega} \langle h, PS^{-1}f(\omega) \rangle \langle S^{-1}f(\omega), k \rangle d\mu(\omega)$$

$$= \int_{\Omega} \langle S^{-1}Ph, f(\omega) \rangle \langle S^{-1}f(\omega), k \rangle d\mu(\omega)$$

$$= \langle S^{-1}Ph, k \rangle,$$

thus $P\tilde{S}^{-1} = S^{-1}P$. We have $P\tilde{S}^{-1} = PS^{-1}P$ so $S^{-1}P = PS^{-1}P$. By taking adjoint on both sides, we get $PS^{-1} = PS^{-1}P$. Therefore, $S^{-1}P = PS^{-1}$. Conversely, suppose $S^{-1}P = PS^{-1}$.

For each $h, k \in H$, we have

$$\langle Ph, k \rangle = \langle Ph, Pk \rangle = \int_{\Omega} \langle Ph, \tilde{S}^{-1}Pf(\omega) \rangle \langle Pf(\omega), Pk \rangle d\mu(\omega),$$

so for each $\nu \in \Omega$ and $k \in H$,

$$\begin{split} \langle \tilde{S}^{-1} P f(\nu), k \rangle &= \langle P \tilde{S}^{-1} P f(\nu), k \rangle = \langle P f(\nu), \tilde{S}^{-1} P k \rangle \\ &= \int_{\Omega} \langle P f(\nu), \tilde{S}^{-1} P f(\omega) \rangle \langle P f(\omega), \tilde{S}^{-1} P k \rangle \mathrm{d}\mu(\omega) \\ &= \int_{\Omega} \langle \tilde{S}^{-1} P f(\nu), P f(x) \rangle \langle \tilde{S}^{-1} P f(\omega), P k \rangle \mathrm{d}\mu(\omega) \\ &= \int_{\Omega} \langle P \tilde{S}^{-1} P f(\nu), f(\omega) \rangle \langle f(\omega), P \tilde{S}^{-1} P k \rangle \mathrm{d}\mu(\omega) \\ &= \langle P \tilde{S}^{-1} P f(\nu), S P \tilde{S}^{-1} P k \rangle. \end{split}$$

Therefore for each $\nu \in \Omega$ and $k \in H$,

$$\begin{split} \langle \tilde{S}^{-1}Pf(\nu),k\rangle &= \langle \tilde{S}^{-1}PSP\tilde{S}^{-1}Pf(\nu),Pk\rangle = \langle \tilde{S}^{-1}PSP\tilde{S}^{-1}Pf(\nu),k\rangle,\\ \tilde{S}^{-1}Pf(\nu) &= \tilde{S}^{-1}PSP\tilde{S}^{-1}Pf(\nu). \end{split}$$

Consequently, for each $\nu \in \Omega$,

$$Pf(\nu) = PSP\tilde{S}^{-1}Pf(\nu) = SP\tilde{S}^{-1}Pf(\nu),$$

this implies that $PS^{-1}f = \tilde{S}^{-1}Pf$. \square

Corollary 2.3 Let $f: \Omega \longrightarrow H$ be a c-frame for H. Then f is a tight c-frame for H if and only if for every orthogonal projection $P \in B(H)$,

$$PS^{-1}f = \tilde{S}^{-1}Pf.$$

where S and \tilde{S} are the frame operators of f and Pf, respectively.

Proof Let f be a tight c-frame for H with bound $A P \in B(H)$ being an orthogonal projection. Therefore $S = AI_H$ and Pf is a tight c-frame for PH with bound A and $\tilde{S} = AI_{PH}$. So $S^{-1} = A^{-1}I_H$ and $\tilde{S}^{-1} = A^{-1}I_{PH}$ and we have

$$\tilde{S}^{-1}Pf = A^{-1}I_{PH}Pf = A^{-1}Pf = PA^{-1}f = PA^{-1}I_{H}f = PS^{-1}f.$$

Conversely, suppose for every orthogonal projection $P \in B(H)$, $PS^{-1}f = \tilde{S}^{-1}Pf$. By Theorem 2.2, for every orthogonal projection $P \in B(H)$, PS = SP, so SPH = PSH = PH. Thus for each closed subspace $K \subseteq H$, SK = K. Let $\{e_{\alpha}\}_{{\alpha} \in I}$ be an orthonormal basis of H. For each $h \in H$, consider

$$K_h = {\lambda h : \lambda \in \mathbb{C}}.$$

Each K_h is a closed subspace of H, so by injectivity of S, there exists a unique λ_h such that $Sh = \lambda_h h$.

By a simple calculation, for every $\alpha, \beta \in I$, we have

$$\lambda_{e_{\alpha}} = \lambda_{e_{\beta}}.$$

Let λ be the common value of $\lambda_{e_{\alpha}}$'s. For each $h \in H$ we have

$$Sh = S\left(\sum_{\alpha \in \mathfrak{A}} \langle h, e_{\alpha} \rangle e_{\alpha}\right) = \sum_{\alpha \in \mathfrak{A}} \langle h, e_{\alpha} \rangle \lambda e_{\alpha} = \lambda h.$$

Therefore $S = \lambda I_H$ and f is a tight c-frame for H with bound λ . \square

Theorem 2.4 Let (Ω, μ) be a measure space and H be a Hilbert space such that dim $H = \operatorname{card} \Omega$. Fix an orthonormal basis $\{e_{\omega}\}_{{\omega}\in\Omega}$ for H. Suppose that P and Q are projections in B(H) and let M = PH and N = QH. Let $f: \Omega \longrightarrow M$ and $g: \Omega \longrightarrow N$ defined by

$$f(\omega) = Pe_{\omega}, \quad g(\omega) = Qe_{\omega}$$

be Parseval c-frames for M and N, respectively. Then f and g are unitarily equivalent if and only if P = Q.

Proof Suppose f and g are unitarily equivalent. Then there is a unitary $U \in B(M, N)$ such that Uf = g. This determines a partial isometry $\tilde{U} \in B(H)$ with initial and final spaces M and N, respectively, such that $\tilde{U}f = g$. So $\tilde{U}^*\tilde{U} = P$, $\tilde{U}\tilde{U}^* = Q$ and $\tilde{U} = Q\tilde{U}P = Q\tilde{U} = \tilde{U}P$. Note that $\tilde{U}Pe_{\omega} = Qe_{\omega}$, $\omega \in \Omega$. Therefore via $\tilde{U}P = \tilde{U}$ we obtain

$$\tilde{U}e_{\omega} = Qe_{\omega}, \ \omega \in \Omega.$$

So $\tilde{U}=Q$ and hence P=Q. \square

3. Bochner integrability and c-frames

Lemma 3.1 Let $f: \Omega \longrightarrow H$ be a Bochner integrable function and $V \in B(H, K)$. Then

$$\int_{\Omega} V f(\omega) d\mu(x) = V \int_{\Omega} f(\omega) d\mu(\omega).$$

Proof Since f is Bochner integrable, there exist a sequence of integrable simple functions $\{f_n\}_{n=1}^{\infty}$ such that

$$\lim_{n\to\infty} \int_{\Omega} \|f_n(\omega) - f(\omega)\| d\mu(\omega) = 0,$$

and

$$\int_{\Omega} f(\omega) d\mu(\omega) = \lim_{n \to \infty} \int_{\Omega} f_n(\omega) d\mu(\omega).$$

So

$$V \int_{\Omega} f(\omega) d\mu(\omega) = \lim_{n \to \infty} V \int_{\Omega} f_n(\omega) d\mu(\omega).$$
 (3.1)

Now, for each $h \in H$, we have

$$\left| \int_{\Omega} V f_n(\omega) d\mu(\omega) - \int_{\Omega} V f(\omega) d\mu(\omega) \right| = \left| \int_{\Omega} V (f_n(\omega) - f(\omega)) d\mu(\omega) \right|$$

$$\leq \int_{\Omega} \|V(f_n(\omega) - f(\omega))\| d\mu(\omega) \leq \|V\| \int_{\Omega} \|f_n(\omega) - f(\omega)\| d\mu(\omega),$$

then

$$\lim_{n \to \infty} \int_{\Omega} V f_n(\omega) d\mu(\omega) = \int_{\Omega} V f(\omega) d\mu(\omega). \tag{3.2}$$

Considering $f_n = \sum_{i=1}^{k^{(n)}} x_i^{(n)} \chi_{E_i^{(n)}}$, we have

$$\int_{\Omega} f_n(\omega) d\mu(\omega) = \sum_{i=1}^{k^{(n)}} x_i^{(n)} \mu(E_i^{(n)}),$$

so

$$V \int_{\Omega} f_n(\omega) d\mu(\omega) = \sum_{i=1}^{k^{(n)}} \mu(E_i^{(n)}) V(x_i^{(n)}).$$

Also,

$$Vf_n = \sum_{i=1}^{k^{(n)}} \chi_{E_i(n)} V(x_i^{(n)}),$$

therefore

$$\int_{\Omega} V f_n(\omega) d\mu(\omega) = \sum_{i=1}^{k^{(n)}} \mu(E_i^{(n)}) V(x_i^{(n)}).$$

Thus

$$\lim_{n \to \infty} \int_{\Omega} V f_n(\omega) d\mu(\omega) = \lim_{n \to \infty} V \int_{\Omega} f_n(\omega) d\mu(\nu),$$

consequently by (3.1) and (3.2)

$$\int_{\Omega} V f(\omega) d\mu(x) = V \int_{\Omega} f(\omega) d\mu(\omega). \quad \Box$$

Corollary 3.2 Let $f: \Omega \longrightarrow H$ be a Bochner integrable function. Then for each $h \in H$ we have

$$\int_{\Omega} \langle f(\omega), h \rangle d\mu(\omega) = \Big\langle \int_{\Omega} f(\omega) d\mu(\omega), h \Big\rangle.$$

Theorem 3.3 Let $f: \Omega \longrightarrow H$ be a c-frame for H and f be Bochner integrable. If T and S are synthesis and frame operators of f, respectively, then

$$T\varphi = \int_{\Omega} \varphi(\omega) f(\omega) d\mu(\omega), \quad \varphi \in L^{2}(\Omega, \mu),$$
$$Sh = \int_{\Omega} \langle h, f(\omega) \rangle f(\omega) d\mu(\omega), \quad h \in H.$$

Proof By Corollary 3.2, for each $\varphi \in L^2(\Omega, \mu)$,

$$\langle T\varphi, h \rangle = \int_{\Omega} \varphi(\omega) \langle f(\omega), h \rangle d\mu(\omega) = \Big\langle \int_{\Omega} \varphi(\omega) f(\omega) d\mu(\omega), h \Big\rangle,$$

thus

$$T\varphi = \int_{\Omega} \varphi(\omega) f(\omega) d\mu(\omega).$$

In a similar manner it can be shown that

$$Sh = \int_{\Omega} \langle h, f(\omega) \rangle f(\omega) d\mu(\omega), \quad h \in H. \quad \Box$$

Theorem 3.4 Let $f, g: \Omega \longrightarrow H$ be c-Bessel mappings and f and g be Bochner integrable. Then the following statements are equivalent.

(i) For each $h \in H$, $h = \int_{\Omega} \langle h, g(\omega) \rangle f(\omega) d\mu(\omega)$;

- (ii) For each $h \in H$, $h = \int_{\Omega} \langle h, f(\omega) \rangle g(\omega) d\mu(\omega)$;
- (iii) For each $h, k \in H$, $\langle h, k \rangle = \int_{\Omega} \langle h, f(\omega) \rangle \langle g(\omega), k \rangle d\mu(\omega)$.

Proof The proof is similar to discrete case [3, Lemma 5.6.2]. \square

4. Classifying Hilbert-Schmidt operators by c-frames

Lemma 4.1 Let $f: \Omega \longrightarrow H$ be c-frame for H with bounds A, B and $\{e_{\alpha}\}_{{\alpha} \in I}$ be an orthonormal basis of H. Let $V \in B(H)$. Then

$$A\sum_{\alpha\in I} \|V^* e_\alpha\|^2 \le \int_{\Omega} \|V f(\omega)\|^2 \mathrm{d}\mu(\omega) \le B\sum_{\alpha\in I} \|V^* e_\alpha\|^2.$$

Proof By [14, Theorem 1.27], we have

$$\begin{split} A \sum_{\alpha \in \mathfrak{A}} \| V^* e_\alpha \|^2 & \leq \sum_{\alpha \in \mathfrak{A}} \int_{\Omega} |\langle f(\omega), V^* e_\alpha \rangle|^2 \mathrm{d}\mu(\omega) = \int_{\Omega} \sum_{\alpha \in \mathfrak{A}} |\langle V f(\omega), e_\alpha \rangle|^2 \mathrm{d}\mu(\omega) \\ & = \int_{\Omega} \| V f(\omega) \|^2 \mathrm{d}\mu(\omega) \leq B \sum_{\alpha \in \mathfrak{A}} \| V^* e_\alpha \|^2. \quad \Box \end{split}$$

Corollary 4.2 Let $f: \Omega \longrightarrow H$ be a c-Bessel mapping with Bessel constant B and $\{e_{\alpha}\}_{{\alpha} \in I}$ be an orthonormal basis of H. If $V \in B(H)$, then

$$\int_{\Omega} \|Vf(\omega)\|^2 d\mu(\omega) \le B \sum_{\alpha \in I} \|V^*e_{\alpha}\|^2.$$

Theorem 4.3 An operator $V \in B(H)$ is Hilbert Schmidt if and only if

$$\int_{\Omega} \|Vf(\omega)\|^2 \mathrm{d}\mu(\omega) < \infty$$

for one (and therefore for all) c-frame(s) for H. Moreover

$$\sqrt{A} \|V\|_{HS} \le \sqrt{\int_{\Omega} \|Vf(\omega)\|^2 d\mu(\omega)} \le \sqrt{B} \|V\|_{HS},$$

in which A and B are c-frame bounds. In particular for tight c-frames (with bound A) we have

$$||V||_{HS} = \frac{1}{A} \sqrt{\int_{\Omega} ||Vf(\omega)||^2 \mathrm{d}\mu(\omega)}.$$

5. Some points about parseval c-frames

Lemma 5.1 Let $f: \Omega \longrightarrow H$ be a c-frame for H with frame operator S and $V \in B(H)$ be an invertible operator such that $V^*Vf = S^{-1}f$. Then $Vf: \Omega \longrightarrow H$ is a Parseval c-frame for H.

Proof For each $h, k \in H$, we have

$$\langle h, k \rangle = \int_{\Omega} \langle h, S^{-1} f(\omega) \rangle \langle f(\omega), k \rangle d\mu(\omega) = \int_{\Omega} \langle h, V^* V f(\omega) \rangle \langle f(\omega), k \rangle d\mu(\omega),$$

so

$$\langle V^{-1}h, k \rangle = \int_{\Omega} \langle V^{-1}h, V^*Vf(\omega) \rangle \langle f(\omega), k \rangle d\mu(\omega) = \int_{\Omega} \langle h, Vf(\omega) \rangle \langle f(\omega), k \rangle d\mu(\omega).$$

Then

$$||h||^{2} = \langle h, h \rangle = \langle V^{-1}h, V^{*}h \rangle = \int_{\Omega} \langle h, Vf(\omega) \rangle \langle f(\omega), V^{*}h \rangle d\mu(\omega)$$
$$= \int_{\Omega} \langle h, Vf(\omega) \rangle \langle Vf(\omega), h \rangle d\mu(\omega) = \int_{\Omega} |\langle h, Vf(\omega) \rangle|^{2} d\mu(\omega).$$

Thus Vf is a Parseval c-frame for H. \square

Remark 5.2 Let f_1, f_2, \ldots, f_k be c-frames for Hilbert spaces H_1, H_2, \ldots, H_k , respectively. Let $H_1 \oplus H_2 \oplus \cdots \oplus H_k$ be the direct sum of H_1, H_2, \ldots, H_k . We define

$$f_1 \oplus f_2 \oplus \cdots \oplus f_k : \Omega \longrightarrow H_1 \oplus H_2 \oplus \cdots \oplus H_k$$

 $f_1 \oplus f_2 \oplus \cdots \oplus f_k(\omega) = (f_1(\omega), f_2(\omega), \dots, f_k(\omega)).$

It is obvious that $f_1 \oplus f_2 \oplus \cdots \oplus f_k$ is weakly measurable.

For each $(h_1, h_2, \ldots, h_k) \in H_1 \oplus H_2 \oplus \cdots \oplus H_k$, we have

$$\int_{\Omega} \left| \langle (h_{1}, h_{2}, \dots, h_{k}), f_{1} \oplus f_{2} \oplus \dots \oplus f_{k}(\omega) \rangle \right|^{2} d\mu(\omega)
= \int_{\Omega} \left| \sum_{i=1}^{k} \langle h_{i}, f_{i}(\omega) \rangle \right|^{2} d\mu(\omega) \le \int_{\Omega} \left(\sum_{i=1}^{k} \left| \langle h_{i}, f_{i}(\omega) \rangle \right| \right)^{2} d\mu(\omega)
\le \int_{\Omega} \left[2^{k-1} (\left| \langle h_{1}, f_{1}(\omega) \rangle \right|^{2} + \left| \langle h_{2}, f_{2}(\omega) \rangle \right|^{2}) +
2^{k-2} \left| \langle h_{3}, f_{3}(\omega) \rangle \right|^{2} \dots + 2 \left| \langle h_{k}, f_{k}(\omega) \rangle \right|^{2} \right] d\mu(\omega)
\le 2^{k-1} (B_{1} \|h_{1}\|^{2} + B_{2} \|h_{2}\|^{2}) + 2^{k-2} B_{3} \|h_{3}\|^{2} + \dots + 2 B_{k} \|h_{k}\|^{2}
\le \max\{2^{k-1} B_{1}, 2^{k-1} B_{2}, 2^{k-2} B_{3}, \dots, 2 B_{k}\} \|(h_{1}, h_{2}, \dots, h_{k})\|^{2}.$$

So $f_1 \oplus f_2 \oplus \cdots \oplus f_k$ is a c-Bessel mapping for $H_1 \oplus H_2 \oplus \cdots \oplus H_k$.

Theorem 5.3 (i) If f is a c-frame for H and $V \in B(H)$ is a c-isometry, then Vf is a c-frame for H. Moreover if f is a Parseval c-frame for H, then Vf is a Parseval c-frame for H.

- (ii) Let f,g be Parseval c-frames for H and K, respectively, and $V \in B(H,K)$ be an operator such that Vf = g. Then V is a co-isometry. Moreover if V is invertible, then it is unitary.
- (iii) If $f: \Omega \longrightarrow H$, $g: \Omega \longrightarrow K$ are Parseval c-frames for H such that $f \oplus g$ is a Parseval c-frame and if $r: \Omega \longrightarrow M$ is a Parseval c-frame which is unitarily equivalent to g, then $f \oplus g$ is also a Parseval c-frame.

Proof (i) For each $h \in H$,

$$A\|h\|^{2} = A\|V^{*}h\|^{2} \le \int_{\Omega} |\langle V^{*}h, f(\omega)\rangle|^{2} d\mu(\omega) \le B\|V^{*}h\|^{2} = B\|h\|^{2}.$$

(ii) For each $k \in K$,

$$\|V^*k\|^2 = \int_{\Omega} |\langle V^*k, f(\omega)\rangle|^2 \mathrm{d}\mu(\omega) = \int_{\Omega} |\langle k, Vf(\omega)\rangle|^2 \mathrm{d}\mu(\omega) = \|k\|^2,$$

so V^* is an isometry. It is clear that if V is invertible, then it is unitary.

(iii) Let $U \in B(H, M)$ be a unitary such that Ug = r. Then $V = I_H \oplus U$ is a unitary such that $V(f \oplus g) = f \oplus r$. So $f \oplus r$ is a Parseval c-frame. \square

Let $f:\Omega\longrightarrow H$ be a c-Bessel mapping for H and $E\subseteq\Omega$ be measurable. Define the operator $S_E:H\longrightarrow H$ weakly by

$$\langle S_E h, k \rangle = \int_E \langle h, f(\omega) \rangle \langle f(\omega), k \rangle d\mu(\omega).$$

It is obvious that S_E is well defined. If $f:\Omega\longrightarrow H$ is a c-frame for H with frame operator S, then $S=S_E+S_{E^c}$.

Lemma 5.4 If T and S are two operators on H such that $S + T = I_H$, then $S - T = S^2 - T^2$.

Proof It is an easy calculation. \square

Theorem 5.5 Let $f: \Omega \longrightarrow H$ be a c-frame for H with canonical dual frame $\tilde{f} = S^{-1}f$. Then for each measurable set $E \subseteq \Omega$ we have

$$\int_{E} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - \int_{\Omega} |\langle S_{E}h, \tilde{f}(\omega) \rangle|^{2} d\mu(\omega)$$

$$= \int_{E^{c}} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - \int_{\Omega} |\langle S_{E}h, \tilde{f}(\omega) \rangle|^{2} d\mu(\omega).$$

Proof Since $S = S_E + S_{E^c}$, so $I_H = S^{-1}S_E + S^{-1}S_{E^c}$. By using Lemma 5.4 for $S^{-1}S_E$ and $S^{-1}S_{E^c}$, we have

$$S^{-1}S_E - S^{-1}S_E S^{-1}S_E = S^{-1}S_{E^c} - S^{-1}S_{E^c} S^{-1}S_{E^c}.$$
(5.1)

Also for each $h, k \in H$,

$$\langle S^{-1}S_E h, k \rangle - \langle S^{-1}S_E S^{-1}S_E h, k \rangle = \langle S_E h, S^{-1}k \rangle - \langle S^{-1}S_E h, S^{-1}S_E k \rangle. \tag{5.2}$$

Now let k = Sh. Then the equality (5.2) can be continued as:

$$= \langle S_E h, h \rangle - \langle S^{-1} S_E h, S_E h \rangle = \int_E |\langle h, f(\omega) \rangle|^2 d\mu(\omega) - \int_{\Omega} |\langle S_E h, \tilde{f}(\omega) \rangle|^2 d\mu(\omega).$$

Similarly, we can write the equation (5.2) for E^c . Therefore

$$\int_{E} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - \int_{\Omega} |\langle S_{E}h, \tilde{f}(\omega) \rangle|^{2} d\mu(\omega)$$

$$= \int_{E^{c}} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - \int_{\Omega} |\langle S_{E^{c}}h, \tilde{f}(\omega) \rangle|^{2} d\mu(\omega). \quad \Box$$

Theorem 5.6 Let $f: \Omega \longrightarrow H$ be a Parseval c-frame for H. Then for each measurable set $E \subseteq \Omega$ we have

$$\int_{E} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - ||S_{E}h||^{2} = \int_{E^{c}} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - ||S_{E^{c}}h||^{2}.$$

Proof By using Theorem 5.5, it is obvious. \square

Proposition 5.7 Let $f:\Omega \longrightarrow H$ be a Parseval c-frame for H. Then for each measurable set

 $E \subseteq \Omega$, measurable set $F \subseteq E^c$ and each $h \in H$ we have

$$||S_{E \cup F}h||^2 - ||S_{E^c \setminus F}h||^2 = ||S_E h||^2 - ||S_{E^c}h||^2 + 2\int_F |\langle h, f(\omega) \rangle|^2 d\mu(\omega).$$

Proof Using Theorem 5.6 twice implies the result. \square

Corollary 5.8 Let $f: \Omega \longrightarrow H$ be a λ -tight c-frame for H. Then for each measurable set $E \subseteq \Omega$ we have

$$\lambda \int_{E} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - \|S_{E}h\|^{2} = \lambda \int_{E^{c}} |\langle h, f(\omega) \rangle|^{2} d\mu(\omega) - \|S_{E^{c}}h\|^{2}.$$

Proof Since $\frac{1}{\sqrt{\lambda}}f$ is a Parseval c-frame, using Theorem 5.6 yields the result. \Box

Acknowledgements The author would like to thank the referees for their comments and suggestions.

References

- R. J. DUFFIN, A. C. SCHAEFFER. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 1952, 72: 341–366.
- [2] I. DAUBECHIES, A. GROSSMANN, Y. MEYER. Painless nonorthogonal expansions. J. Math. Phys., 1986, 27(5): 1271–1283.
- [3] O. CHRISTENSEN. Introduction to Frames and Riesz Bases. Birkhäuser Boston, Inc., Boston, MA, 2003.
- [4] S. T. ALI, J. P. ANTOINE, J. P. GAZEAU. Continuous frames in Hilbert space. Ann. Physics, 1993, 222(1): 1–37.
- [5] P. G. CASAZZA, G. KUTYNIOK. Frames of subspaces. Contemp. Math., 2004, 345: 87-114.
- [6] P. G. CASAZZA, G. KUTYNIOK, Shidong LI. Fusion frames and distributed processing. Appl. Comput. Harmon. Anal., 2008, 25(1): 114–132.
- [7] M. H. FAROUGHI, R. AHMADI, M. RAHMANI. Bochner (p, Y)-operator frames. Involve, 2012, 5(3): 283–293.
- [8] M. H. FAROUGHI, M. RAHMANI. Bochner pg-frames. J. Inequal. Appl., 2012, 196: 1–16.
- [9] M. H. FAROUGHI, M. RAHMANI. Bochner p-Frame of Subspaces. Southeast Asian Bull. Math., 2013, 37(2): 181–192.
- [10] M. RAHMANI. Sums of c-frames, c-Riesz bases and orthonormal mappings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 2015, 77(3): 3–14.
- [11] A. RAHIMI, A. NAJATI, Y. N. DEHGHAN. Continuous frame in Hilbert spaces. Methods Funct. Anal. Topology, 2006, 12(2): 170–182.
- [12] R. BALAN, P. G. CASAZZA, D. EDIDIN, et al. A new Identity for Parseval frames. Proc. Amer. Math. Soc., 2007, 135(4): 1007–1015.
- [13] O. CHRISTENSEN. Frames and Bases: An Introductory Course. Birkhäuser, Inc., Boston, MA, 2008.
- [14] W. RUDIN. Real and Complex Analysis. 3rd Edition, MacGraw-Hill, New York, 1987.