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Abstract We propose an `1 regularized method for numerical differentiation using empirical

eigenfunctions. Compared with traditional methods for numerical differentiation, the output of

our method can be considered directly as the derivative of the underlying function. Moreover,

our method could produce sparse representations with respect to empirical eigenfunctions.

Numerical results show that our method is quite effective.
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1. Introduction

Numerical differentiation is a problem to determine the derivatives of a function from the

values on scattered points. It plays an important role in scientific research and application,

such as solving Volterra integral equation [1], image processing [2], option pricing models [3] and

identification [4]. The main difficulty of numerical differentiation is that it is an ill-posed problem,

which means, the small error of measurement may cause huge error in the computed derivatives

[5]. Several methods for numerical differentiation have been proposed in the literature, including

difference methods [6] and interpolation methods [7]. In particular, some researchers proposed to

use Tikhonov regularization for numerical differentiation problems, which has been shown quite

effective [8–10].

Note that most regularization methods for numerical differentiation consist of estimating a

function from the given data and then computing derivatives of the function. However, in many

practical applications, the thing we need to obtain is the derivative of the underlying function

not the underlying function itself [3,4]. Thus, a natural approach to computing derivatives would

be to directly estimate the derivatives. In this paper, we propose an algorithm for numerical

differentiation in the framework of statistical learning theory. More specifically, we study an

`1 regularized algorithm for numerical differentiation using empirical eigenfunctions. The key
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advantage of the algorithm is that its output could be considered directly as the derivative of

the underlying function. Moreover, the algorithm produces sparse representations with respect

to empirical eigenfunctions, without assuming sparsity in terms of any basis or system.

The remainder of this paper is organized as follows. In Section 2, we first review some basic

facts in statistical learning theory and then present our main algorithm. In Section 3, we present

an approach for computing explicitly the empirical eigenfunctions. In Section 4, we establish the

representer theorem of the algorithm. To illustrate the effectiveness of the algorithm, we provide

several numerical examples in Section 5. Finally, some concluding remarks are given in Section

6.

2. Formulation of the method

To present our main algorithm, let us first describe the basic setting of statistical learning

theory.

Let X be the input space and Y ⊂ R the output space. Assume that ρ is a Borel probability

measure on Z = X × Y . Let ρX be the marginal distribution on X and ρ(·|x) the conditional

distribution on Y at given x. Let fρ be the function defined by

fρ(x) =

∫
Y

ydρ(y|x), x ∈ X.

Given a sample z = {(xi, yi)}mi=1 drawn independently and identically according to ρ, we are

interested in estimating the derivative of fρ. More precisely, we want to find a function fz : X →
R that can be used as an approximation of the derivative of fρ.

Before proceeding further, we need to introduce some notions related to kernels [11,12]. A

Mercer kernel on X is defined to be a symmetric continuous function K : X×X → R such that for

any finite subset {xi}mi=1 of X, the m×m matrix K whose (i, j) entry is K(xi, xj) is positive semi-

definite. Let span{Kx : x ∈ X} denote the space spanned by the set {Kx = K(·, x) : x ∈ X}.
We define an inner product in the space span{Kx : x ∈ X} as follows:〈 s∑

i=1

αiKxi
,

t∑
j=1

βjKtj

〉
K

=

s∑
i=1

t∑
j=1

αiβjK(xi, tj).

The reproducing kernel Hilbert space HK associated with K is defined to be the completion

of span{Kx : x ∈ X} under the norm ‖ · ‖K induced by the inner product 〈·, ·〉K . The re-

producing property in HK takes the form f(x) = 〈f,Kx〉K for all x ∈ X and f ∈ HK . Let

κ =
√

supx,y∈X |K(x, y)|. Then it follows from the reproducing property that

‖f‖∞ ≤ κ‖f‖K , ∀f ∈ HK .

Taylor’s expansion of a function g(u) about the point x gives us, for u ≈ x, g(u) ≈ g(x) +

g′(x)(u − x). Thus the empirical error incurred by the function f on the sample points x =

xi, u = xj can be measured by

(g(u)− g(x)− g′(x)(u− x))2 = (yi − yj + f(xi)(xj − xi))2.
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The restriction u ≈ x could be enforced by the weight ωi,j = ω
(s)
i,j > 0 corresponding to (xi, xj)

with the requirement that ω
(s)
i,j → 0 as |xi − xj |/s→∞. One possible choice of weights is given

by a Gaussian with variance s > 0. Let ω be the function on R given by ω(x) = 1
s4 e
− x2

2s2 .

Then this choice of weights is ωi,j = ω
(s)
i,j = ω(xi − xj). The following regularized algorithm for

numerical differentiation was proposed in [13]:

min
f∈HK

{ 1

m2

m∑
i,j=1

ω(xi − xj)(yi − yj − f(xi)(xi − xj))2 + γ‖f‖2K
}
.

In this paper, we shall modify the algorithm (1) by using an `1 regularizer. Note that the `1

regularizer plays a key role in producing sparse approximations. This phenomenon has been ob-

served in LASSO [14] and compressed sensing [15], under the assumption that the approximated

function has a sparse representation with respect to some basis.

Let LK,s denote the operator defined by

LK,s(f) =

∫
X

∫
X

ω(x− u)Kx(u− x)2f(x)dρX(x)dρX(u), f ∈ HK .

The operator LK,s is compact, positive, and self-adjoint [13]. Therefore it has at most countably

many eigenvalues, and all of these eigenvalues are nonnegative. One can arrange these eigenval-

ues {λl} (with multiplicities) as a nonincreasing sequence tending to 0 and take an associated

sequence of eigenfunctions {φl} to be an orthonormal basis of HK . Let x denote the unlabeled

part of the samples z = {(xi, yi)}mi=1, i.e., x = {xi}mi=1. We consider another operator Lx
K,s

defined on HK as follows:

Lx
K,s(f) =

1

m(m− 1)

m∑
i,j=1

ω(xi − xj)Kxi
(xj − xi)2f(xi), f ∈ HK . (3)

It is easy to show that Ex(Lx
K,sf) = LK,sf , which means Ex(Lx

K,s) = LK,s. As a result, Lx
K,s can

be viewed as an empirical version of the operator LK,s with respect to x. The operator Lx
K,s is

self-adjoint, positive. Its eigensystem, called an empirical eigensystem, is denoted by {(λxl , φxl )},
where the eigenvalues {λxl } are arranged in nonincreasing order. We notice here two important

facts: for one thing, all the empirical eigenfunctions {φxl } form an orthonormal basis of HK ; for

another, at most m eigenvalues are nonzero, i.e., λxl = 0 whenever l > m.

Based on the first m empirical eigenfunctions {φxl }ml=1, we are now in a position to present

our main algorithm as follows:

czγ = arg min
c∈Rm

{ 1

m2

m∑
i,j=1

ω(xi − xj)
(
yi − yj −

( m∑
l=1

clφ
x
l (xi)

)
(xj − xi)

)2
+ γ‖c‖1

}
. (4)

The output function of algorithm (4) is

fzγ =

m∑
l=1

czγ,lφ
x
l ,

which is expected to approximate the derivative of the underlying target function fρ. Next we

shall focus on the computations of empirical eigenpairs, the representer theorem (i.e., the explicit

solution to problem (4), and the sparsity of coefficients in the representation fzγ =
∑m
l=1 c

z
γ,lφ

x
l .



An `1 regularized method for numerical differentiation using empirical eigenfunctions 499

3. Computations of empirical eigenpairs

We shall establish in this section an approach for computing explicitly the empirical eigen-

pairs {(λxl , φxl )}. To present our method, some notations and definitions are needed. Recall

that K denotes the m × m matrix whose (i, j) entry is K(xi, xj). For 1 ≤ i ≤ m, define

bi =
∑m
j=1 ω(xi−xj)(xj−xi)2, di =

√
bi. Let B = diag{b1, b2, . . . , bm},D = diag{d1, d2, . . . , dm},

and A = DKD. Denote rank(A) and rank(Lx
K,s) to be the ranks of the matrix A and the op-

erator Lx
K,s, respectively.

In the following theorem, we shall express the empirical eigenpairs of the operator Lx
K,s in

terms of the eigenpairs of a matrix.

Theorem 3.1 Let d = rank(A). Denote all eigenvalues of A as λ1 ≥ λ2 ≥ · · · ≥ λd >

λd+1 = · · · = λm = 0, and the corresponding orthonormal eigenvectors as u1, u2, . . . , um. Then

rank(Lx
K,s) = rank(A), and the empirical eigenpairs {(λxl , φxl )}dl=1 of Lx

K,s can be computed in

terms of the eigenpairs of A as follows:

λxl =
λl

m(m− 1)
, φxl =

1√
λl

m∑
j=1

dj(ul)jKxj .

Proof By the definitions of Lx
K,s and φxl , we have

Lx
K,s(φ

x
l ) =

1

m(m− 1)
√
λl

m∑
j=1

m∑
i,p=1

ω(xi − xp)Kxi(xp − xi)2dj(ul)jK(xi, xj)

=
1

m(m− 1)
√
λl

m∑
i=1

Kxi

m∑
j=1

(
m∑
p=1

ω(xi − xp)(xp − xi)2
)
K(xi, xj)dj(ul)j

=
1

m(m− 1)
√
λl

m∑
i=1

Kxi

m∑
j=1

biK(xi, xj)dj(ul)j

=
1

m(m− 1)
√
λl

m∑
i=1

Kxidi

m∑
j=1

diK(xi, xj)dj(ul)j

=
1

m(m− 1)
√
λl

m∑
i=1

Kxidiλl(ul)i

=
λl

m(m− 1)

1√
λl

m∑
i=1

di(ul)iKxi
= λxl φ

x
l

and 〈
φxp , φ

x
q

〉
K

=
1√
λpλq

m∑
i,j=1

〈
di(up)iKxi

, dj(uq)jKxj

〉
K

=
1√
λpλq

m∑
i,j=1

di(up)iK(xi, xj)dj(uq)j

=
1√
λpλq

(Dup)
TK(Duq) =

1√
λpλq

uTpD
TKDuq
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=
1√
λpλq

uTpAuq =

√
λq
λp
uTp uq = δp,q.

Therefore, the numbers {λxl }dl=1 are eigenvalues of Lx
K,s with corresponding orthonormal eigen-

functions {φxl }dl=1, and rank(Lx
K,s) ≥ rank(A).

On the other hand, let t = rank(Lx
K,s). Then, for 1 ≤ l ≤ t, it follows from Lx

K,s(φ
x
l ) = λxl φ

x
l

that

1

m(m− 1)

m∑
i,j=1

ω(xi − xj)K(xi, xp)(xj − xi)2φxl (xi)

=
1

m(m− 1)

m∑
i=1

K(xi, xp)biφ
x
l (xi) = λxl φ

x
l (xp), 1 ≤ p ≤ m.

Let φxl |x= (φxl (x1), . . . , φxl (xm))T . Then

1

m(m− 1)
KBφxl |x = λxl φ

x
l |x,

1

m(m− 1)
DKD2φxl |x = λxl Dφ

x
l |x,

1

m(m− 1)
ADφxl |x = λxl Dφ

x
l |x .

Now, for 1 ≤ p, q ≤ m, we have

δp,qλ
x
p = 〈Lx

K,s(φ
x
p), φxq 〉K

=
1

m(m− 1)
〈
m∑

i,j=1

ω(xi − xj)Kxi
(xj − xi)2φxp , φxq 〉K

=
1

m(m− 1)

m∑
i,j=1

ω(xi − xj)(xj − xi)2φxp(xi)φ
x
q (xi)

=
1

m(m− 1)

m∑
i=1

φxp(xi)φ
x
q (xi)

m∑
j=1

ω(xi − xj)(xj − xi)2

=
1

m(m− 1)

m∑
i=1

φxp(xi)biφ
x
q (xi) =

1

m(m− 1)

m∑
i=1

(diφ
x
p(xi))(diφ

x
q (xi))

=
1

m(m− 1)
〈Dφxp |x,Dφxq |x〉.

It follows that for 1 ≤ l ≤ t, Dφxl |x are the orthonormal eigenvector system of A, and rank(A) ≥
rank(Lx

K,s). The proof of the theorem is now completed. �

Remark 3.2 According to the proof of Theorem 3.1, we know that the eigenfunctions {φxl }dl=1

satisfy the following two properties:

• 1
m(m−1)

∑m
i,j=1 ω(xi − xj)(xj − xi)2φxp(xi)φ

x
q (xi) = δp,qλ

x
p .

• If λxl = 0, then φxl (xi)(xj − xi) = 0.

4. Representer Theorem
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The following theorem provides the solution to problem (4) explicitly.

Theorem 4.1 For 1 ≤ l ≤ m, denote

Sz
l =

{
1

m2λx
l

∑m
i,j=1 ω

(s)(xi − xj)(yi − yj)φxl (xi)(xj − xi), if λxl > 0,

0, otherwise.

Then the solution to problem (4) is given by

czγ,l =


0, if 2λxl |Sz

l | ≤ γ,
− m

(m−1)

(
Sz
l −

γ
2λx

l

)
, if 2λxl |Sz

l | > γ and Sz
l >

γ
2λx

l
,

− m
(m−1)

(
Sz
l + γ

2λx
l

)
, if 2λxl |Sz

l | > γ and Sz
l < −

γ
2λx

l
.

(5)

Proof Let ωi,j = ω(xi − xj). By using Remark 3.2, we can reduce the empirical error part in

algorithm (4) as follows:

1

m2

m∑
i,j=1

ωi,j

(
yi − yj +

( m∑
l=1

clφ
x
l (xi)

)
(xj − xi)

)2

=
1

m2

m∑
i,j=1

ωi,j

[( m∑
l=1

clφ
x
l (xi)(xj − xi)

)2

+ 2(yi − yj)
m∑
l=1

clφ
x
l (xi)(xj − xi) + (yi − yj)2

]

=
1

m2

m∑
i,j=1

ωi,j

m∑
l=1

clφ
x
l (xi)(xj − xi)2

m∑
l=1

clφ
x
l (xi) +

1

m2

m∑
i,j=1

ωi,j(yi − yj)2+

2

m2

m∑
i,j=1

ωi,j(yi − yj)
m∑
l=1

clφ
x
l (xi)(xj − xi)

1

m2

m∑
p,q=1

cpcq

m∑
i,j=1

ωi,jφ
x
p(xi)(xj − xi)2φxq (xi) +

1

m2

m∑
i,j=1

ωi,j(yi − yj)2+

2

m2

m∑
l=1

cl

m∑
i,j=1

ωi,j(yi − yj)φxl (xi)(xj − xi)

=
1

m2

m∑
l=1

c2l λ
x
l m(m− 1) +

1

m2

m∑
i,j=1

ωi,j(yi − yj)2+

2

m2

m∑
l=1

cl

m∑
i,j=1

ωi,j(yi − yj)φxl (xi)(xj − xi)

=
m− 1

m

m∑
l=1

c2l λ
x
l + 2

m∑
l=1

λxl S
z
l cl +

1

m2

m∑
i,j=1

ωi,j(yi − yj)2.

We now have an equivalent form of the algorithm as

czγ = arg min
c∈Rm

m∑
l=1

{m− 1

m
λxl (cl +

m

(m− 1)
Sz
l )2 + γ|cl|

}
.

It is easy to see that czγ,l = 0 when λxl = 0. When λxl > 0, the components czγ,l can be found by

solving the following optimization problem

czγ,l = arg min
c∈R

{
(c+

m

(m− 1)
Sz
l )2 +

m

(m− 1)

γ

λxl
|c|
}
,
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which has the solution given by (5). This proves the theorem. �

5. Numerical examples

We present three numerical examples to illustrate the approximating performance for the

numerical differentiation. We consider the following functions

f1(x) = x2 ∗ exp(−x2/4), (6)

f2(x) = sin(x) ∗ exp(−x2/8), (7)

f3(x) = x2 ∗ cos(x)/8, (8)

f4(x) = x ∗ sin(x). (9)

To estimate the computational error, we choose N test points {ti}Ni=0 on the interval [−4, 4]

and then compute the errors by using the following two formulae:

E1(f) =
1

N

N∑
i=0

|(fzγ (ti)− f ′(ti)|,

E2(f) =

√√√√ 1

N

N∑
i=0

(fzγ (ti)− f ′(ti))2.

In the experiments, the points {xi}20i=0 are uniformly distributed over [−4, 4], i.e., xi =

−4 + 0.4i (0 ≤ i ≤ 20). The parameters s and γ are chosen as 0.1 and 0.001, respectively. The

resulting numerical results are shown in Figures 1 and 2. Moreover, the errors are listed in Table

1. From these figures, it could be observed that the function fzγ matches the derivative function

f ′ρ well. Meanwhile, the sparse properties could be explicitly found from the number of non-zero

coefficients in Table 1.

Function f E1(f) E2(f) rate of non-zero coefficients

f1(x) 0.0412 0.0473 10/21

f2(x) 0.0222 0.0257 10/21

f3(x) 0.0489 0.0868 10/21

f4(x) 0.0301 0.0349 10/21

Table 1 Errors

6. Discussion

In this paper, we study a method for numerical differentiation in the framework of statistical

learning theory. Based on empirical eigenfunctions, we propose an `1 regularized algorithm.

We present an approach for computing explicitly the empirical eigenfunctions and establish

the representer theorem of the algorithm. Compared with traditional methods for numerical

differentiation, the output of our method could be considered directly as the derivative of the
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underlying function. Moreover, the algorithm could produce sparse representations with respect

to empirical eigenfunctions, without assuming sparsity in terms of any basis or system. Finally,

this work leaves several open issues for further study. For example, it is interesting to extend

our method to the estimation of gradient in high dimensional space.

(a) (b)

Figure 1 (a) Approximate derivative of f1(x) (b) Approximate derivative of f2(x)

(a) (b)

Figure 2 (a) Approximate derivative of f3(x) (b) Approximate derivative of f4(x)
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