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Abstract Let F be an algebraically closed field of characteristic zero, and L be a basic

classical Lie superalgebra except A(n, n) over F. In this paper, we prove that every 2-local

superderivation on L is a superderivation. Furthermore, we give an example to show that a

subalgebra of spl(2, 2) admits a 2-local superderivation which is not a superderivation.
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1. Introduction

The definition of 2-local derivation on the algebra was introduced by Šemerl [1]. In the

reference [1], the author showed that each 2-local derivation on B(H) is a derivation, where

B(H) is the algebra of all linear bounded operators on H. Similarly, some authors started to

describe 2-local derivations on the different associative algebras such as semi-finite von Neumann

algebras, matrix algebras over commutative regular algebras [2–6]. In 2015, the authors of the

reference [7] investigated the 2-local derivations on a finite-dimensional semi-simple Lie algebra L

over an algebraically closed field of characteristic zero. They proved that every 2-local derivation

on L is a derivation and that a finite-dimensional nilpotent Lie algebra L with dimL > 1 admits

a 2-local derivation which is not a derivation. The reference [8] gave the definition of a 2-local

superderivation on the associative superalgebra and proved that every 2-local superderivation on

the associative superalgebra Mn(C) is a superderivation. In this paper, we introduce the notion

of 2-local superderivation on Lie superalgebra and prove that all 2-local superderivations on the

basic classical Lie superalgebras are superderivation. Furthermore, we give an example to show

that a subalgebra of spl(2, 2) admits a 2-local superderivation which is not a superderivation.

In this paper, the algebras and vector spaces are finite-dimensional over an algebraically

closed field F of characteristic zero. Let L = L0̄ ⊕ L1̄ be a Lie superalgebra. If H is a Cartan

subalgebra of the Lie algebra L0̄, then we have the root space decomposition of L with respect

to H. Let λ be any linear form on H and Lλ = {x ∈ L|adLh(x) = λ(h)x, ∀h ∈ H}. Then

L =
⊕

λ∈H∗ Lλ. Let ∆0̄ = {λ ∈ H∗|λ ̸= 0, Lλ
0̄ ̸= {0}}, ∆1̄ = {λ ∈ H∗|Lλ

1̄ ̸= {0}}. Then

∆ = ∆0̄ ∪∆1̄ is the set of roots of L with respect to H.
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Let Z be the integers set and Z2 the residue class modulo 2. The two elements of Z2 will

be denoted by 0̄ and 1̄. Let L = L0̄ ⊕ L1̄ be a Lie superalgebra. A map T : L → L is called

homogeneous of degree α, α ∈ Z2 if T (Lβ) ⊆ Lα+β for all β ∈ Z2. Let Dα(L), α ∈ Z2, be the

subspace of all the homogeneous linear mapping δ of degree α of L such that

δ([x, y]) = [δ(x), y] + (−1)αβ [x, δ(y)], for all x ∈ Lβ , y ∈ L, β ∈ Z2.

Define D(L) = D0̄(L)⊕ D1̄(L). The elements of D(L) are called superderivations of L. D(L) is

called the Lie superalgebra of superderivations of L. For a ∈ L, the linear mapping ada : L → L

such that ada(b) = [a, b] for all b ∈ L is a superderivation which is called inner.

Definition 1.1 A homogeneous map T : L → L of degree α is called a 2-local homogeneous

superderivation of degree α if for any two elements x, y ∈ L there exists a superderivation

δx,y : L → L(depending on x, y) such that T (x) = δx,y(x) and T (y) = δx,y(y).

Let TDα be the set of all 2-local homogeneous superderivations of degree α. The elements

of TD = TD0̄ ⊕ TD1̄ are called 2-local superderivations on L.

Obviously, ada for all a ∈ L is a 2-local superderivations on L and the sum of two 2-local

superderivations is also a 2-local superderivations on L.

In this paper, we will prove that 2-local superderivations on basic classical Lie superalgebras

are superderivation.

2. Some results on basic classical Lie superalgebras

In 1977, Kac gave the classification of simple Lie superalgebras over an algebraically closed

field of characteristic zero.

Definition 2.1 ([9]) The simple Lie superalgebra L = L0̄ ⊕ L1̄ is called classical if the repre-

sentation of L0̄ on L1̄ is completely reducible; otherwise, Cartan type.

Theorem 2.2 ([9]) The classical Lie superalgebras consist of basic classical Lie superalgebras

and two series P (n) and Q(n).

The basic classical Lie superalgebras include:

(a) simple Lie algebras;

(b) simple Lie superalgebras of type

A(m,n) n,m ≥ 0;m+ n ≥ 1

B(m,n) m ≥ 0, n ≥ 1

C(n) n ≥ 3

D(m, , n) m ≥ 2, n ≥ 1

D(2, 1, a) a ̸= 0,−1

G(3)

F (4)

Table 1 The basic classical simple Lie superalgebras
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Definition 2.3 ([10]) For a bilinear form f : L× L → F we say that

(1) f is even if (Lα, Lβ) = 0 for α ̸= β,

(2) f is supersymmetric if (x, y) = (−1)αβ(y, x),

(3) f is invariant if ([x, y], z) = (x, [y, z]).

If L is a basic classical Lie superalgebra, then there exists a non-degenerate even supersym-

metric invariant bilinear form on L.

Proposition 2.4 ([11]) Let L be one of the basic classical Lie superalgebras listed above. Sup-

pose that L is not equal to the algebras spl(2, 2)/F · I4. We consider the roots and the root space

decomposition of L with respect to some Cartan subalgebra H of L0̄.

(1) dimLλ = 1 for every λ ∈ ∆.

(2) 0 /∈ ∆1̄ and ∆0̄ ∩∆1̄ = ∅.
(3) Let α, β ∈ Z2. If λ ∈ ∆α, µ ∈ ∆β , and λ+ µ ∈ ∆α+β , then

[Lλ
α, L

µ
β ] = Lλ+µ

α+β .

(4) −∆α = ∆α for α ∈ Z2.

(5) We consider two roots λ and µ of L which are proportional:

µ = rλ with some r ∈ F.

If λ, µ are both even or both odd, then r = ±1; if λ is odd and µ is even, then r = ±2.

(6) There exists a simple root system B such that any root is a linear combination of simple

roots with integer coefficients.

Proposition 2.5 ([10]) The basic classical Lie superalgebras except for A(n, n) do not have any

outer superderivations.

In next section, we use the notation ℜ to represent the Lie superalgebras in Proposition 2.5.

3. 2-Local superderivations on Lie superalgebra ℜ

The main result of this section is given as follows.

Theorem 3.1 All 2-local superderivations on ℜ are superderivations.

Since any superderivation of ℜ is inner, it follows that for such algebras the definition of

2-local homogeneous superderivation is reformulated as follows. A homogeneous map T : ℜ → ℜ
of degree α is called a 2-local homogeneous superderivation of degree α if for any two elements

x, y ∈ ℜ there exists an element ax,y ∈ ℜ (depending on x, y) such that T (x) = [ax,y, x] and

T (y) = [ax,y, y]. If x and y are all homogeneous elements of ℜ, then we can choose a homogeneous

element ax,y of degree α. In the case, ax,y will be denoted by tx,y.

Let H be a Cartan subalgebra of ℜ. Then the root space decomposition of ℜ with respect

to H is ℜ = H
⊕⊕

λ∈∆ ℜλ. By Proposition 2.4 for each λ ∈ ∆, dimℜλ = 1. Thus we can take

a non zero element Eλ ∈ ℜλ. Note that every element x ∈ ℜ has a unique decomposition of the
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form:

x = h+
∑
λ∈∆

kλEλ, (3.1)

where h ∈ H, kλ ∈ F.
By the definition of the root subspaces it follows that

[h,Eλ] = λ(h)Eλ for all h ∈ H,λ ∈ ∆,

and ∆0̄

∩
∆1̄ = ∅ implies that Eλ ∈ Lλ

α, α ∈ Z2.

Proposition 3.2 If T is a 2-local superderivation on ℜ, then T is linear.

Proof We proceed in steps. Let T ∈ TDα, x ∈ ℜβ , y ∈ ℜγ , z ∈ ℜµ, α, β, γ, µ ∈ Z2. Suppose that

b( , ) is a non-degenerate even supersymmetric invariant bilinear form on ℜ.
(i) b(T (x), y) = −(−1)αβb(x, T (y)).

b(T (x), y) =b([tx,y, x], y) = −(−1)αβb([x, tx,y], y)

=− (−1)αβb(x, [tx,y, y]) = −(−1)αβb(x, T (y))

(ii) If β = γ, then

b(T (x+ y), z) =− (−1)αβb(x+ y, T (z)) = −(−1)αβ [b(x, T (z)) + b(y, T (z))]

=b(T (x), z) + b(T (y), z) = b(T (x) + T (y), z)

(iii) If β = µ = 0̄, γ = 1̄, then

b(T (x+ y), z) =b([a0 + a1, x+ y], z) = b([a0, x], z) + b([a1, y], z)

=− b([x, a0], z) + b([y, a1], z) = −b(x, [a0, z]) + b(y, [a1, z])

=− b(x, [a0 + a1, z]) + b(y, [a1 + a0, z]) = −b(x, T (z)) + b(y, T (z))

=b(T (x), z)− (−1)αb(T (y), z) = b(T (x) + T (y), z)

where ax+y,z = a0 + a1, a0 ∈ R0̄, a1 ∈ ℜ1̄.

(iv) If β = 0̄, γ = µ = 1̄, then

b(T (x+ y), z) =b([a0 + a1, x+ y], z) = b([a1, x], z) + b([a0, y], z)

=− b([x, a1], z)− b([y, a0], z) = −b(x, [a1, z])− b(y, [a0, z])

=− b(x, [a0 + a1, z])− b(y, [a0 + a1, z]) = −b(x, T (z))− b(y, T (z))

=b(T (x), z) + (−1)αb(T (y), z) = b(T (x) + T (y), z)

where ax+y,z = a0 + a1, a0 ∈ ℜ0̄, a1 ∈ ℜ1̄.

(v) By (ii), (iii) and (iv), we get b(T (x+ y), z) = b(T (x) + T (y), z) for all z ∈ ℜ. Because
the form b( , ) is non-degenerate, we have

T (x+ y) = T (x) + T (y) for all x, y ∈ ℜ.

(vi) Finally,

T (λx) = [aλx,x, λx] = λ[aλx,x, x] = λT (x).
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Hence T is linear. �

Lemma 3.3 There exists an element h0 ∈ H such that λ(h0) ̸= 0 for all λ ∈ ∆.

Proof Let B = {λ1, λ2, . . . , λl} be the simple roots system of ℜ, {h1, h2, . . . , hl} a basis in H

which is dual to {λ1, λ2, . . . , λl}, i.e., λi(hj) = δij for all i, j = 1, 2, . . . , l. Set h0 =
∑l

k=1 t
k
0hk,

where t0 is a fixed algebraic number from F of degree bigger than l = dimH. Let us take an

arbitrary λ ∈ ∆. There exist integers r1, r2, . . . , rl such that λ =
∑l

k=1 rkλk. Then

λ(h0) =
l∑

k=1

rkλk(h0) =
l∑

k=1

rkλk

( l∑
s=1

ts0hs

)
=

l∑
k=1

l∑
s=1

rkt
s
0λk(hs) =

l∑
k=1

rkt
k
0 ̸= 0.

Hence the conclusion is right. �

Lemma 3.4 Let a ∈ ℜ be an element such that [h0, a] = 0. Then a ∈ H.

Proof We represent the element a in the form of (3.1):

a = h+
∑
λ∈∆

kλEλ.

Then

0 = [h0, a] = [h0, h+
∑
λ∈∆

kλEλ]

= [h0, h] +
∑
λ∈∆

kλ[h0, E
λ] =

∑
λ∈∆

kλλ(h0)E
λ.

Thus kλλ(h0) = 0 for all λ ∈ ∆. Since λ(h0) ̸= 0, we get kλ = 0 for all λ ∈ ∆. Therefore

a = h ∈ H. �

Remark 3.5 Since h0 is a homogeneous element of degree 0̄, [h0, a] = 0 implies that [a, h0] = 0.

Lemma 3.6 Let T be a 2-local superderivation on ℜ such that T (h0) = 0. Then T annihilates

the Cartan subalgebra H of ℜ0̄, i.e., T |H ≡ 0.

Proof Let h be an arbitrary element of H. Since ℜ has no any outer superderivations, by

definition of T there exists an element ah,h0 ∈ ℜ such that

T (h) = [ah,h0 , h], T (h0) = [ah,h0 , h0].

Since 0 = T (h0) = [ah,h0 , h0], Lemma 3.4 implies that ah,h0 ∈ H. Therefore, T (h) = [ah,h0 , h] =

0. �

Lemma 3.7 Let T be a 2-local superderivation on ℜ such that T (h0) = 0. Then

(1) There exists kλ ∈ F such that T (Eλ) = kλEλ for all λ ∈ ∆;

(2) There exists h ∈ H such that T (Eλ) = λ(h)Eλ for all λ ∈ ∆;

(3) T = adh.
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Proof (1) Let h be an arbitrary element of H. Take an element ah,Eλ ∈ ℜ such that

T (h) = [ah,Eλ , h], T (Eλ) = [ah,Eλ , Eλ].

According to Lemma 3.6 we get T (h) = 0, i.e., [ah,Eλ , h] = 0. Then

[h, T (Eλ)] = [h, [ah,Eλ , Eλ]] = [[h, ah,Eλ ], Eλ] + [ah,Eλ , [h,Eλ]]

= λ(h)[ah,Eλ , Eλ] = λ(h)T (Eλ),

i.e.,

[h, T (Eλ)] = λ(h)T (Eλ) for all h ∈ H,λ ∈ ∆.

This means that T (Eλ) ∈ ℜλ. Since dimℜλ = 1, there exists kλ ∈ F, such that T (Eλ) = kλEλ

for all λ ∈ ∆.

(2) Now put x =
∑

λ∈∆ Eλ. Take an element ah0,x ∈ ℜ such that

T (h0) = [ah0,x, h0], T (x) = [ah0,x, x].

Since 0 = T (h0) = [ah0,x, h0], Lemma 3.4 implies that ah0,x ∈ H. Write ah0,x = h. Then

T (x) = [ah0,x, x] = [h, x] = [h,
∑
λ∈∆

Eλ] =
∑
λ∈∆

[h, Eλ] =
∑
λ∈∆

λ(h)Eλ,

i.e.,

T (x) =
∑
λ∈∆

λ(h)Eλ. (3.2)

On the other hand, taking into account the linearity of T we obtain

T (x) = T (
∑
λ∈∆

Eλ) =
∑
λ∈∆

T (Eλ) =
∑
λ∈∆

kλEλ,

i.e.,

T (x) =
∑
λ∈∆

kλEλ. (3.3)

Combining (3.2) and (3.3) we have ∑
λ∈∆

λ(h)Eλ =
∑
λ∈∆

kλEλ.

Thus kλ = λ(h) for all λ ∈ ∆, i.e., T (Eλ) = λ(h)Eλ for all λ ∈ ∆.

(3) Finally, let x be an arbitrary element of ℜ. We represent x in the form of (3.1):

x = h+
∑
λ∈∆

kλEλ.

Then T (x) = T (h) +
∑

λ∈∆ kλλ(h)Eλ. Due to Lemma 3.6 we get T (h) = 0, i.e., T (x) =∑
λ∈∆ kλλ(h)Eλ. On the other hand,

adh(x) =
∑
λ∈∆

kλ[h, Eλ] =
∑
λ∈∆

kλλ(h)Eλ.

Thus T = adh. �

The Proof of Theorem 3.1 Let T be a 2-local superderivation. Take an element a ∈ ℜ such
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that T (h0) = [a, h0]. Set T0 = T −ada. Then T0(h0) = 0. By Lemma 3.7 there exists h ∈ H such

that T0 = adh. Therefore, T = adh+ ada is a superderivation. �

4. 2-Local superderivation on a subalgebra of Lie superalgebra spl(2, 2)

In this section, we give an example of 2-local superderivation on a Lie superalgebra which

is not superderivation.

Suppose that L is a Lie superalgebra over F. Z(L) and [L,L] denote the center and derived

algebra of L, respectively. Let δ : L → L be a linear map which is homogeneous of degree

α such that δ|[L,L] ≡ 0 and δ(L) ⊆ Z(L). Then δ is a superderivation. Indeed, for every

x ∈ Lβ , y ∈ L,α, β ∈ Z2 we have

δ([x, y]) = 0 = [δ(x), y] + (−1)αβ [x, δ(y)].

Let S be a subalgebra of Lie superalgebra spl(2, 2). S consists of the elements as follows:

X =


0 0 0 0

b1 0 d1 d2

c1 0 0 b2

c2 0 0 0


where bi, ci, di ∈ F, i = 1, 2. If

X =


0 0 0 0

b1 0 d1 d2

c1 0 0 b2

c2 0 0 0

 , X ′ =


0 0 0 0

b′1 0 d′1 d′2

c′1 0 0 b′2

c′2 0 0 0

 ,

then

[X,X ′] =


0 0 0 0

d1c
′
1 + d2c

′
2 + d′1c1 + d′2c2 0 0 d1b

′
2 − d′1b2

b2c
′
2 − b′2c2 0 0 0

0 0 0 0

 .

It is easy to prove that Z(S) = FE21, [S, S] = FE21 ⊕ FE31 ⊕ FE24, where Eij is a 4× 4 matrix

with 1 in the (i, j) position and 0 elsewhere. We can give the decomposition of S in the following

form

S = [S, S]⊕ FE41 ⊕ FE23 ⊕ FE34.

Let us define a function f on F2 as follows

f(k1, k2) =


k21
k2

, if k2 ̸= 0,

0, if k2 = 0,

where k1, k2 ∈ F. Define a map T on S by

T (x) = f(k1, k2)E21, for x = x1 + k1E41 + k2E23 + k3E34 ∈ S,

where x1 ∈ [S, S], k1, k2, k3 ∈ F. The map is not a superderivation since it is not linear.
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In the following, we will show that T is a 2-local superderivation of degree 1̄ on S. Obviously,

S0̄ = FE21 ⊕ FE34, S1̄ = FE31 ⊕ FE24 ⊕ FE41 ⊕ FE23.

Thus T (S0̄) = 0 ∈ S1̄, T (S1̄) ⊆ S0̄, i.e., T is homogeneous map of degree 1̄.

Define a linear map δ on S by

δ(x) = (ak1 + bk2)E21, for x = x1 + k1E41 + k2E23 + k3E34 ∈ S,

where a, b ∈ F. Since δ|[L,L] ≡ 0 and δ(L) ⊆ Z(L), δ is a superderivation. δ(S0̄) = 0 ∈ S1̄ and

δ(S1̄) ⊆ S0̄ imply that δ is a superderivation of degree 1̄.

Let x = x1 + k1E41 + k2E23 + k3E34 and y = y1 + l1E41 + l2E23 + l3E34 be elements of S.

We are going to choose the elements a and b such that

T (x) = δ(x), T (y) = δ(y).

Let us rewrite the above equalities as a system equations with respect to unknowns a, b as follows{
k1a+ k2b = f(k1, k2),

l1a+ l2b = f(l1, l2).

According to the definition of f , we know that the rank of matrix of coefficients equals to the

rank of augmented matrix. Therefore the system of equations has a solution. As a result, T is a

2-local superderivation of degree 1̄. Thus we have the following conclusion:

Proposition 4.1 There exists a 2-local superderivation on S which is not a superderivation.
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