Journal of Mathematical Research with Applications Sept., 2017, Vol. 37, No. 5, pp. 527–534 DOI:10.3770/j.issn:2095-2651.2017.05.003 Http://jmre.dlut.edu.cn

2-Local Superderivations on Basic Classical Lie Superalgebras

Ying WANG*, Haixian CHEN, Jizhu NAN

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Let \mathbb{F} be an algebraically closed field of characteristic zero, and L be a basic classical Lie superalgebra except A(n,n) over \mathbb{F} . In this paper, we prove that every 2-local superderivation on L is a superderivation. Furthermore, we give an example to show that a subalgebra of spl(2,2) admits a 2-local superderivation which is not a superderivation.

Keywords basic classical Lie superalgebras; 2-local superderivation; superderivation

MR(2010) Subject Classification 16W25; 17B20; 17B40

1. Introduction

The definition of 2-local derivation on the algebra was introduced by Semerl [1]. In the reference [1], the author showed that each 2-local derivation on $\mathcal{B}(H)$ is a derivation, where $\mathcal{B}(H)$ is the algebra of all linear bounded operators on H. Similarly, some authors started to describe 2-local derivations on the different associative algebras such as semi-finite von Neumann algebras, matrix algebras over commutative regular algebras [2–6]. In 2015, the authors of the reference [7] investigated the 2-local derivations on a finite-dimensional semi-simple Lie algebra L over an algebraically closed field of characteristic zero. They proved that every 2-local derivation on L is a derivation and that a finite-dimensional nilpotent Lie algebra L with dimL > 1 admits a 2-local derivation which is not a derivation. The reference [8] gave the definition of a 2-local superderivation on the associative superalgebra and proved that every 2-local superderivation on the associative superalgebra and prove that all 2-local superderivations on the basic classical Lie superalgebras are superderivation. Furthermore, we give an example to show that a subalgebra of spl(2, 2) admits a 2-local superderivation which is not a 2-local superderivation.

In this paper, the algebras and vector spaces are finite-dimensional over an algebraically closed field \mathbb{F} of characteristic zero. Let $L = L_{\bar{0}} \oplus L_{\bar{1}}$ be a Lie superalgebra. If H is a Cartan subalgebra of the Lie algebra $L_{\bar{0}}$, then we have the root space decomposition of L with respect to H. Let λ be any linear form on H and $L^{\lambda} = \{x \in L | \mathrm{ad}_L h(x) = \lambda(h)x, \forall h \in H\}$. Then $L = \bigoplus_{\lambda \in H^*} L^{\lambda}$. Let $\Delta_{\bar{0}} = \{\lambda \in H^* | \lambda \neq 0, L_{\bar{0}}^{\lambda} \neq \{0\}\}, \Delta_{\bar{1}} = \{\lambda \in H^* | L_{\bar{1}}^{\lambda} \neq \{0\}\}$. Then $\Delta = \Delta_{\bar{0}} \cup \Delta_{\bar{1}}$ is the set of roots of L with respect to H.

Received October 26, 2016; Accepted May 19, 2017

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant No. 11471090).

E-mail address: wangying@dlut.edu.cn (Ying WANG); chenhx2012@mail.dlut.edu.cn (Haixian CHEN); jz-nan@163.com (Jizhu NAN)

Let \mathbb{Z} be the integers set and \mathbb{Z}_2 the residue class modulo 2. The two elements of \mathbb{Z}_2 will be denoted by $\overline{0}$ and $\overline{1}$. Let $L = L_{\overline{0}} \oplus L_{\overline{1}}$ be a Lie superalgebra. A map $T : L \to L$ is called homogeneous of degree $\alpha, \alpha \in \mathbb{Z}_2$ if $T(L_{\beta}) \subseteq L_{\alpha+\beta}$ for all $\beta \in \mathbb{Z}_2$. Let $D_{\alpha}(L), \alpha \in \mathbb{Z}_2$, be the subspace of all the homogeneous linear mapping δ of degree α of L such that

$$\delta([x,y]) = [\delta(x), y] + (-1)^{\alpha\beta} [x, \delta(y)], \text{ for all } x \in L_{\beta}, y \in L, \beta \in \mathbb{Z}_2.$$

Define $D(L) = D_{\bar{0}}(L) \oplus D_{\bar{1}}(L)$. The elements of D(L) are called superderivations of L. D(L) is called the Lie superalgebra of superderivations of L. For $a \in L$, the linear mapping $ad_a : L \to L$ such that $ad_a(b) = [a, b]$ for all $b \in L$ is a superderivation which is called inner.

Definition 1.1 A homogeneous map $T: L \to L$ of degree α is called a 2-local homogeneous superderivation of degree α if for any two elements $x, y \in L$ there exists a superderivation $\delta_{x,y}: L \to L$ (depending on x, y) such that $T(x) = \delta_{x,y}(x)$ and $T(y) = \delta_{x,y}(y)$.

Let TD_{α} be the set of all 2-local homogeneous superderivations of degree α . The elements of $TD = TD_{\bar{0}} \oplus TD_{\bar{1}}$ are called 2-local superderivations on L.

Obviously, ad_a for all $a \in L$ is a 2-local superderivations on L and the sum of two 2-local superderivations is also a 2-local superderivations on L.

In this paper, we will prove that 2-local superderivations on basic classical Lie superalgebras are superderivation.

2. Some results on basic classical Lie superalgebras

In 1977, Kac gave the classification of simple Lie superalgebras over an algebraically closed field of characteristic zero.

Definition 2.1 ([9]) The simple Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$ is called classical if the representation of $L_{\bar{0}}$ on $L_{\bar{1}}$ is completely reducible; otherwise, Cartan type.

Theorem 2.2 ([9]) The classical Lie superalgebras consist of basic classical Lie superalgebras and two series P(n) and Q(n).

- The basic classical Lie superalgebras include:
- (a) simple Lie algebras;
- (b) simple Lie superalgebras of type

$\frown A(m,n)$	$n,m\geq 0;m+n\geq 1$
B(m,n)	$m \geq 0, n \geq 1$
C(n)	$n \ge 3$
D(m, n)	$m\geq 2,n\geq 1$
D(2,1,a)	$a \neq 0, -1$
G(3)	
F(4)	

Table 1 The basic classical simple Lie superalgebras

2-local superderivations on basic classical Lie superalgebras

Definition 2.3 ([10]) For a bilinear form $f: L \times L \to \mathbb{F}$ we say that

- (1) f is even if $(L_{\alpha}, L_{\beta}) = 0$ for $\alpha \neq \beta$,
- (2) f is supersymmetric if $(x, y) = (-1)^{\alpha\beta}(y, x)$,
- (3) f is invariant if ([x, y], z) = (x, [y, z]).

If L is a basic classical Lie superalgebra, then there exists a non-degenerate even supersymmetric invariant bilinear form on L.

Proposition 2.4 ([11]) Let L be one of the basic classical Lie superalgebras listed above. Suppose that L is not equal to the algebras $spl(2,2)/\mathbb{F} \cdot I_4$. We consider the roots and the root space decomposition of L with respect to some Cartan subalgebra H of $L_{\bar{0}}$.

- (1) dim $L^{\lambda} = 1$ for every $\lambda \in \Delta$.
- (2) $0 \notin \Delta_{\bar{1}}$ and $\Delta_{\bar{0}} \cap \Delta_{\bar{1}} = \emptyset$.
- (3) Let $\alpha, \beta \in \mathbb{Z}_2$. If $\lambda \in \Delta_{\alpha}, \mu \in \Delta_{\beta}$, and $\lambda + \mu \in \Delta_{\alpha+\beta}$, then

$$[L^{\lambda}_{\alpha}, L^{\mu}_{\beta}] = L^{\lambda+\mu}_{\alpha+\beta}.$$

- (4) $-\Delta_{\alpha} = \Delta_{\alpha}$ for $\alpha \in \mathbb{Z}_2$.
- (5) We consider two roots λ and μ of L which are proportional:

$$\mu = r\lambda$$
 with some $r \in \mathbb{F}$.

If λ, μ are both even or both odd, then $r = \pm 1$; if λ is odd and μ is even, then $r = \pm 2$.

(6) There exists a simple root system **B** such that any root is a linear combination of simple roots with integer coefficients.

Proposition 2.5 ([10]) The basic classical Lie superalgebras except for A(n, n) do not have any outer superderivations.

In next section, we use the notation \Re to represent the Lie superalgebras in Proposition 2.5.

3. 2-Local superderivations on Lie superalgebra \Re

The main result of this section is given as follows.

Theorem 3.1 All 2-local superderivations on \Re are superderivations.

Since any superderivation of \Re is inner, it follows that for such algebras the definition of 2-local homogeneous superderivation is reformulated as follows. A homogeneous map $T: \Re \to \Re$ of degree α is called a 2-local homogeneous superderivation of degree α if for any two elements $x, y \in \Re$ there exists an element $a_{x,y} \in \Re$ (depending on x, y) such that $T(x) = [a_{x,y}, x]$ and $T(y) = [a_{x,y}, y]$. If x and y are all homogeneous elements of \Re , then we can choose a homogeneous element $a_{x,y}$ of degree α . In the case, $a_{x,y}$ will be denoted by $t_{x,y}$.

Let H be a Cartan subalgebra of \Re . Then the root space decomposition of \Re with respect to H is $\Re = H \bigoplus \bigoplus_{\lambda \in \Delta} \Re^{\lambda}$. By Proposition 2.4 for each $\lambda \in \Delta$, dim $\Re^{\lambda} = 1$. Thus we can take a non zero element $E^{\lambda} \in \Re^{\lambda}$. Note that every element $x \in \Re$ has a unique decomposition of the

Ying WANG, Haixian CHEN and Jizhu NAN

form:

$$x = h + \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}, \tag{3.1}$$

where $h \in H, k^{\lambda} \in \mathbb{F}$.

By the definition of the root subspaces it follows that

$$[h, E^{\lambda}] = \lambda(h)E^{\lambda}$$
 for all $h \in H, \lambda \in \Delta$,

and $\Delta_{\bar{0}} \bigcap \Delta_{\bar{1}} = \emptyset$ implies that $E^{\lambda} \in L^{\lambda}_{\alpha}, \alpha \in \mathbb{Z}_2$.

Proposition 3.2 If T is a 2-local superderivation on \Re , then T is linear.

Proof We proceed in steps. Let $T \in TD_{\alpha}, x \in \Re_{\beta}, y \in \Re_{\gamma}, z \in \Re_{\mu}, \alpha, \beta, \gamma, \mu \in \mathbb{Z}_2$. Suppose that b(,) is a non-degenerate even supersymmetric invariant bilinear form on \Re .

(i) $b(T(x), y) = -(-1)^{\alpha\beta}b(x, T(y)).$

$$b(T(x), y) = b([t_{x,y}, x], y) = -(-1)^{\alpha\beta} b([x, t_{x,y}], y)$$
$$= -(-1)^{\alpha\beta} b(x, [t_{x,y}, y]) = -(-1)^{\alpha\beta} b(x, T(y))$$

(ii) If $\beta = \gamma$, then

$$b(T(x+y), z) = -(-1)^{\alpha\beta}b(x+y, T(z)) = -(-1)^{\alpha\beta}[b(x, T(z)) + b(y, T(z))]$$

= b(T(x), z) + b(T(y), z) = b(T(x) + T(y), z)

(iii) If
$$\beta = \mu = \overline{0}, \gamma = \overline{1}$$
, then

$$b(T(x+y), z) = b([a_0 + a_1, x+y], z) = b([a_0, x], z) + b([a_1, y], z)$$

= - b([x, a_0], z) + b([y, a_1], z) = -b(x, [a_0, z]) + b(y, [a_1, z])
= - b(x, [a_0 + a_1, z]) + b(y, [a_1 + a_0, z]) = -b(x, T(z)) + b(y, T(z))
= b(T(x), z) - (-1)^{\alpha}b(T(y), z) = b(T(x) + T(y), z)

where $a_{x+y,z} = a_0 + a_1, a_0 \in R_{\bar{0}}, a_1 \in \Re_{\bar{1}}.$

(iv) If $\beta = \overline{0}$, $\gamma = \mu = \overline{1}$, then

$$b(T(x+y), z) = b([a_0 + a_1, x+y], z) = b([a_1, x], z) + b([a_0, y], z)$$

= - b([x, a_1], z) - b([y, a_0], z) = -b(x, [a_1, z]) - b(y, [a_0, z])
= - b(x, [a_0 + a_1, z]) - b(y, [a_0 + a_1, z]) = -b(x, T(z)) - b(y, T(z))
= b(T(x), z) + (-1)^{\alpha}b(T(y), z) = b(T(x) + T(y), z)

where $a_{x+y,z} = a_0 + a_1, a_0 \in \Re_{\bar{0}}, a_1 \in \Re_{\bar{1}}.$

(v) By (ii), (iii) and (iv), we get b(T(x+y), z) = b(T(x) + T(y), z) for all $z \in \Re$. Because the form b(,) is non-degenerate, we have

$$T(x+y) = T(x) + T(y)$$
 for all $x, y \in \Re$.

(vi) Finally,

$$T(\lambda x) = [a_{\lambda x,x}, \lambda x] = \lambda [a_{\lambda x,x}, x] = \lambda T(x).$$

530

2-local superderivations on basic classical Lie superalgebras

Hence T is linear. \Box

Lemma 3.3 There exists an element $h_0 \in H$ such that $\lambda(h_0) \neq 0$ for all $\lambda \in \Delta$.

Proof Let $\mathbf{B} = \{\lambda_1, \lambda_2, \dots, \lambda_l\}$ be the simple roots system of \Re , $\{h_1, h_2, \dots, h_l\}$ a basis in H which is dual to $\{\lambda_1, \lambda_2, \dots, \lambda_l\}$, i.e., $\lambda_i(h_j) = \delta_{ij}$ for all $i, j = 1, 2, \dots, l$. Set $h_0 = \sum_{k=1}^l t_0^k h_k$, where t_0 is a fixed algebraic number from \mathbb{F} of degree bigger than $l = \dim H$. Let us take an arbitrary $\lambda \in \Delta$. There exist integers r_1, r_2, \dots, r_l such that $\lambda = \sum_{k=1}^l r_k \lambda_k$. Then

$$\lambda(h_0) = \sum_{k=1}^{l} r_k \lambda_k(h_0) = \sum_{k=1}^{l} r_k \lambda_k \Big(\sum_{s=1}^{l} t_0^s h_s \Big)$$
$$= \sum_{k=1}^{l} \sum_{s=1}^{l} r_k t_0^s \lambda_k(h_s) = \sum_{k=1}^{l} r_k t_0^k \neq 0.$$

Hence the conclusion is right. \Box

Lemma 3.4 Let $a \in \Re$ be an element such that $[h_0, a] = 0$. Then $a \in H$.

Proof We represent the element a in the form of (3.1):

$$a = h + \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}.$$

Then

$$0 = [h_0, a] = [h_0, h + \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}]$$
$$= [h_0, h] + \sum_{\lambda \in \Delta} k^{\lambda} [h_0, E^{\lambda}] = \sum_{\lambda \in \Delta} k^{\lambda} \lambda(h_0) E^{\lambda}.$$

Thus $k^{\lambda}\lambda(h_0) = 0$ for all $\lambda \in \Delta$. Since $\lambda(h_0) \neq 0$, we get $k^{\lambda} = 0$ for all $\lambda \in \Delta$. Therefore $a = h \in H$. \Box

Remark 3.5 Since h_0 is a homogeneous element of degree $\overline{0}$, $[h_0, a] = 0$ implies that $[a, h_0] = 0$.

Lemma 3.6 Let T be a 2-local superderivation on \Re such that $T(h_0) = 0$. Then T annihilates the Cartan subalgebra H of \Re_0 , i.e., $T|_H \equiv 0$.

Proof Let *h* be an arbitrary element of *H*. Since \Re has no any outer superderivations, by definition of *T* there exists an element $a_{h,h_0} \in \Re$ such that

$$T(h) = [a_{h,h_0}, h], T(h_0) = [a_{h,h_0}, h_0].$$

Since $0 = T(h_0) = [a_{h,h_0}, h_0]$, Lemma 3.4 implies that $a_{h,h_0} \in H$. Therefore, $T(h) = [a_{h,h_0}, h] = 0$. \Box

Lemma 3.7 Let T be a 2-local superderivation on \Re such that $T(h_0) = 0$. Then

- (1) There exists $k^{\lambda} \in \mathbb{F}$ such that $T(E^{\lambda}) = k^{\lambda} E^{\lambda}$ for all $\lambda \in \Delta$;
- (2) There exists $\mathfrak{h} \in H$ such that $T(E^{\lambda}) = \lambda(\mathfrak{h})E^{\lambda}$ for all $\lambda \in \Delta$;
- (3) $T = ad\mathfrak{h}$.

Proof (1) Let h be an arbitrary element of H. Take an element $a_{h,E^{\lambda}} \in \Re$ such that

$$T(h)=[a_{h,E^{\lambda}},h], \ \ T(E^{\lambda})=[a_{h,E^{\lambda}},E^{\lambda}].$$

According to Lemma 3.6 we get T(h) = 0, i.e., $[a_{h,E^{\lambda}}, h] = 0$. Then

$$\begin{split} [h, T(E^{\lambda})] &= [h, [a_{h, E^{\lambda}}, E^{\lambda}]] = [[h, a_{h, E^{\lambda}}], E^{\lambda}] + [a_{h, E^{\lambda}}, [h, E^{\lambda}]] \\ &= \lambda(h)[a_{h, E^{\lambda}}, E^{\lambda}] = \lambda(h)T(E^{\lambda}), \end{split}$$

i.e.,

$$[h, T(E^{\lambda})] = \lambda(h)T(E^{\lambda})$$
 for all $h \in H, \lambda \in \Delta$.

This means that $T(E^{\lambda}) \in \Re^{\lambda}$. Since dim $\Re^{\lambda} = 1$, there exists $k^{\lambda} \in \mathbb{F}$, such that $T(E^{\lambda}) = k^{\lambda} E^{\lambda}$ for all $\lambda \in \Delta$.

(2) Now put $x = \sum_{\lambda \in \Delta} E^{\lambda}$. Take an element $a_{h_0,x} \in \Re$ such that

$$T(h_0) = [a_{h_0,x}, h_0], T(x) = [a_{h_0,x}, x].$$

Since $0 = T(h_0) = [a_{h_0,x}, h_0]$, Lemma 3.4 implies that $a_{h_0,x} \in H$. Write $a_{h_0,x} = \mathfrak{h}$. Then

$$T(x) = [a_{h_0,x}, x] = [\mathfrak{h}, x] = [\mathfrak{h}, \sum_{\lambda \in \Delta} E^{\lambda}] = \sum_{\lambda \in \Delta} [\mathfrak{h}, E^{\lambda}] = \sum_{\lambda \in \Delta} \lambda(\mathfrak{h}) E^{\lambda},$$

i.e.,

$$T(x) = \sum_{\lambda \in \Delta} \lambda(\mathfrak{h}) E^{\lambda}.$$
(3.2)

On the other hand, taking into account the linearity of T we obtain

$$T(x) = T(\sum_{\lambda \in \Delta} E^{\lambda}) = \sum_{\lambda \in \Delta} T(E^{\lambda}) = \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda},$$
$$T(x) = \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}.$$
(3.3)

i.e.,

$$T(x) = \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}.$$
(3.3)

Combining (3.2) and (3.3) we have

$$\sum_{\lambda \in \Delta} \lambda(\mathfrak{h}) E^{\lambda} = \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}.$$

Thus $k^{\lambda} = \lambda(\mathfrak{h})$ for all $\lambda \in \Delta$, i.e., $T(E^{\lambda}) = \lambda(\mathfrak{h})E^{\lambda}$ for all $\lambda \in \Delta$.

(3) Finally, let x be an arbitrary element of \Re . We represent x in the form of (3.1):

$$x = h + \sum_{\lambda \in \Delta} k^{\lambda} E^{\lambda}.$$

Then $T(x) = T(h) + \sum_{\lambda \in \Delta} k^{\lambda} \lambda(\mathfrak{h}) E^{\lambda}$. Due to Lemma 3.6 we get T(h) = 0, i.e., T(x) = 0 $\sum_{\lambda\in\Delta}k^\lambda\lambda(\mathfrak{h})E^\lambda.$ On the other hand,

$$\mathrm{ad}\mathfrak{h}(x) = \sum_{\lambda \in \Delta} k^{\lambda}[\mathfrak{h}, E^{\lambda}] = \sum_{\lambda \in \Delta} k^{\lambda} \lambda(\mathfrak{h}) E^{\lambda}.$$

Thus $T = ad\mathfrak{h}$. \Box

The Proof of Theorem 3.1 Let T be a 2-local superderivation. Take an element $a \in \Re$ such

532

that $T(h_0) = [a, h_0]$. Set $T_0 = T - ada$. Then $T_0(h_0) = 0$. By Lemma 3.7 there exists $\mathfrak{h} \in H$ such that $T_0 = ad\mathfrak{h}$. Therefore, $T = ad\mathfrak{h} + ada$ is a superderivation. \Box

4. 2-Local superderivation on a subalgebra of Lie superalgebra spl(2,2)

In this section, we give an example of 2-local superderivation on a Lie superalgebra which is not superderivation.

Suppose that L is a Lie superalgebra over \mathbb{F} . Z(L) and [L, L] denote the center and derived algebra of L, respectively. Let $\delta : L \to L$ be a linear map which is homogeneous of degree α such that $\delta|_{[L,L]} \equiv 0$ and $\delta(L) \subseteq Z(L)$. Then δ is a superderivation. Indeed, for every $x \in L_{\beta}, y \in L, \alpha, \beta \in \mathbb{Z}_2$ we have

$$\delta([x, y]) = 0 = [\delta(x), y] + (-1)^{\alpha \beta} [x, \delta(y)].$$

Let S be a subalgebra of Lie superalgebra spl(2,2). S consists of the elements as follows:

$$X = \begin{pmatrix} 0 & 0 & 0 & 0 \\ b_1 & 0 & d_1 & d_2 \\ c_1 & 0 & 0 & b_2 \\ c_2 & 0 & 0 & 0 \end{pmatrix}$$

where $b_i, c_i, d_i \in \mathbb{F}, i = 1, 2$. If

$$X = \begin{pmatrix} 0 & 0 & 0 & 0 \\ b_1 & 0 & d_1 & d_2 \\ c_1 & 0 & 0 & b_2 \\ c_2 & 0 & 0 & 0 \end{pmatrix}, \quad X' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ b'_1 & 0 & d'_1 & d'_2 \\ c'_1 & 0 & 0 & b'_2 \\ c'_2 & 0 & 0 & 0 \end{pmatrix},$$

then

$$[X, X'] = \begin{pmatrix} 0 & 0 & 0 & 0 \\ d_1c'_1 + d_2c'_2 + d'_1c_1 + d'_2c_2 & 0 & 0 & d_1b'_2 - d'_1b_2 \\ b_2c'_2 - b'_2c_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

It is easy to prove that $Z(S) = \mathbb{F}E_{21}$, $[S, S] = \mathbb{F}E_{21} \oplus \mathbb{F}E_{31} \oplus \mathbb{F}E_{24}$, where E_{ij} is a 4×4 matrix with 1 in the (i, j) position and 0 elsewhere. We can give the decomposition of S in the following form

$$S = [S, S] \oplus \mathbb{F}E_{41} \oplus \mathbb{F}E_{23} \oplus \mathbb{F}E_{34}.$$

Let us define a function f on \mathbb{F}^2 as follows

j

$$f(k_1, k_2) = \begin{cases} \frac{k_1^2}{k_2}, & \text{if } k_2 \neq 0, \\ 0, & \text{if } k_2 = 0, \end{cases}$$

where $k_1, k_2 \in \mathbb{F}$. Define a map T on S by

$$T(x) = f(k_1, k_2)E_{21}$$
, for $x = x_1 + k_1E_{41} + k_2E_{23} + k_3E_{34} \in S$,

where $x_1 \in [S, S], k_1, k_2, k_3 \in \mathbb{F}$. The map is not a superderivation since it is not linear.

In the following, we will show that T is a 2-local superderivation of degree $\overline{1}$ on S. Obviously,

$$S_{\overline{0}} = \mathbb{F}E_{21} \oplus \mathbb{F}E_{34}, \quad S_{\overline{1}} = \mathbb{F}E_{31} \oplus \mathbb{F}E_{24} \oplus \mathbb{F}E_{41} \oplus \mathbb{F}E_{23}.$$

Thus $T(S_{\bar{0}}) = 0 \in S_{\bar{1}}, T(S_{\bar{1}}) \subseteq S_{\bar{0}}$, i.e., T is homogeneous map of degree $\bar{1}$.

Define a linear map δ on S by

$$\delta(x) = (ak_1 + bk_2)E_{21}$$
, for $x = x_1 + k_1E_{41} + k_2E_{23} + k_3E_{34} \in S$,

where $a, b \in \mathbb{F}$. Since $\delta|_{[L,L]} \equiv 0$ and $\delta(L) \subseteq Z(L)$, δ is a superderivation. $\delta(S_{\bar{0}}) = 0 \in S_{\bar{1}}$ and $\delta(S_{\bar{1}}) \subseteq S_{\bar{0}}$ imply that δ is a superderivation of degree $\bar{1}$.

Let $x = x_1 + k_1E_{41} + k_2E_{23} + k_3E_{34}$ and $y = y_1 + l_1E_{41} + l_2E_{23} + l_3E_{34}$ be elements of S. We are going to choose the elements a and b such that

$$T(x) = \delta(x), \quad T(y) = \delta(y).$$

Let us rewrite the above equalities as a system equations with respect to unknowns a, b as follows

$$\begin{cases} k_1 a + k_2 b = f(k_1, k_2) \\ l_1 a + l_2 b = f(l_1, l_2). \end{cases}$$

According to the definition of f, we know that the rank of matrix of coefficients equals to the rank of augmented matrix. Therefore the system of equations has a solution. As a result, T is a 2-local superderivation of degree $\overline{1}$. Thus we have the following conclusion:

Proposition 4.1 There exists a 2-local superderivation on S which is not a superderivation.

Acknowledgements The authors would like to thank the referees for their valuable comments, suggestions and corrections.

References

- P. ŠEMERL. Local automorphisms and derivations on B(H). Proc. Amer. Math. Soc., 1997, 125(9): 2677–2680.
- [2] SH. A. AYUPOV, K. K. KUDAYBERGENOV, I. RAKHIMOV. 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl., 2015, 474: 1–11.
- [3] SH. A. AYUPOV, K. K. KUDAYBERGENOV. 2-Local derivations on von Neumann algebras. Positivity, 2015, 19(3): 445–455.
- [4] SH. A. AYUPOV, K. K. KUDAYBERGENOV, B. O. NURJANOV, et al. Local and 2-local derivations on noncommutative Arens algebras. Math. Slovaca, 2014, 64(2): 423–432.
- SH. A. AYUPOV, F. N. ARZIKULOV. 2-Local derivations on semi-finite von Neumann algebras. Glasg. Math. J., 2014, 56(1): 9–12.
- [6] SH. A. AYUPOV, K. K. KUDAYBERGENOV, A. ALAUADINOV. 2-Local derivations on matrix algebras over commutative regular algebras. Linear Algebra Appl., 2013, 439(5): 1294–1311.
- [7] SH. A. AYUPOV, K. K. KUDAYBERGENOV, A. ALAUADINOV. 2-Local derivations on algebras of locally measurable operators. Ann. Funct. Anal., 2013, 4(2): 110–117.
- [8] A. FOŠNER, M. FOŠNER, 2-Local superderivations on a superalgebra $M_n(\mathbb{C})$. Monatsh. Math., 2009, **156**(4): 307–311.
- [9] V. G. KAC. Lie superalgebras. Adv. Math., 1997, 26: 8–96.
- [10] M. SCHEUNERT. The Theory of Lie Superalgebras. Springer-Verlag, Berlin Heidelberg New York, 1979.
- [11] Hongzhou SUN, Qizhi HAN. Lie Algebras and Lie Superalgebras and Their Applications in Physics. Peking University Press, Beijing, 1999. (in Chinese)

534