Coefficient Estimates for the Subclasses of Analytic Functions and Bi-Univalent Functions Associated with the Strip Domain

Shuhai LI* ${ }^{*}$, Huo TANG, Li-na MA, Xiaomeng NIU
School of Mathematics and Statistics, Chifeng University, Inner Mongolia 024000, P. R. China

Abstract

The Sǎlăgean operator is used here to introduce a new subclass of analytic functions associated with the strip domain. We obtain the bounds of coefficients and Fekete-szegö inequality for functions in this class and coefficient estimates of bi-univalent functions for certain subclasses of this class. The results presented here extend some of the earlier results.

Keywords analytic functions; strip domain; Sălăgean operator; subordination
MR(2010) Subject Classification 30C45; 30C50; 26D15

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also, let \mathcal{S} denote the subclass of \mathcal{A} consisting of all functions which are univalent in \mathbb{U} (see [1]).

It is well known that every function $f \in \mathcal{S}$ of the form (1.1) has an inverse f^{-1}, defined by $f^{-1}(f(z))=z(z \in \mathbb{U})$ and $f^{-1}(f(\omega))=\omega\left(|\omega|<r ; r \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{2}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions defined in the open unit disk \mathbb{U}. Recently, the bounds of coefficients of analytic and bi-univalent functions have been studied by many authors [2-7].

Let $u(z)$ and $v(z)$ be analytic in \mathcal{A}. We say that the function $u(z)$ is subordinate to $v(z)$ in \mathbb{U}, and write $u(z) \prec v(z)$, if there exists a Schwarz function $\omega(z)$, which is analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ such that $u(z)=v(\omega(z))(z \in \mathbb{U})$.

Furthermore, if the function v is univalent in \mathbb{U}, then we have the following equivalence:

$$
u(z) \prec v(z) \quad(z \in \mathbb{U}) \Longleftrightarrow u(0)=v(0) \text { and } u(\mathbb{U}) \subset v(\mathbb{U})
$$

[^0]Let \mathcal{P} denote the class of functions $p(z)$ of the form:

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{1.3}
\end{equation*}
$$

which are analytic in \mathbb{U}. If $\Re(p(z))>0(z \in \mathbb{U})$, we say that $p(z)$ is the Caratheodory function [1].

Let $S^{*}(\alpha)$ and $K(\alpha)(0 \leq \alpha<1)$ denote the subclass consisting of all functions, which are defined, respectively, by

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha
$$

and

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad f(z) \in \mathcal{A}
$$

The classes $S^{*}(\alpha)$ and $K(\alpha)$ were introduced by Robertson [8]. Obviously, for $\alpha=0$, we have the well-known classes S^{*} and K, respectively.

Also, let $M(\beta)$ and $N(\beta)(\beta>1)$ denote the subclasses consisting of all functions, which are defined, respectively, by

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\beta
$$

and

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\beta, \quad f(z) \in \mathcal{A}
$$

The classes $M(\beta)$ and $N(\beta)$ were investigated by Uralegaddi, Ganigi and Sarangi [9] (see also [10]).

In [11], Kuroki and Owa defined an analytic function $S_{\alpha, \beta}(z): \mathbb{U} \rightarrow \mathbb{C}$ as follows.
Definition 1.1 ([11]) Let α and β be real numbers with $\alpha<1$ and $\beta>1$. Then the function $S_{\alpha, \beta}(z)$ defined by

$$
\begin{equation*}
S_{\alpha, \beta}(z)=1+\frac{\beta-\alpha}{\pi} i \log \left(\frac{1-e^{\frac{2 \pi i(1-\alpha)}{\beta-\alpha}} z}{1-z}\right), \quad z \in \mathbb{U} \tag{1.4}
\end{equation*}
$$

is analytic and univalent in \mathbb{U} with $S_{\alpha, \beta}(0)=1$. In addition, $S_{\alpha, \beta}(z)$ maps \mathbb{U} onto the strip domain ω with $\alpha<\Re\{\omega\}<\beta$.

We note that the function $S_{\alpha, \beta}(z)$ defined by (1.4) has the form [11]

$$
\begin{equation*}
S_{\alpha, \beta}(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}=\frac{\beta-\alpha}{n \pi} i\left(1-e^{\frac{2 n \pi i(1-\alpha)}{\beta-\alpha}}\right), \quad n \in \mathbb{N} \tag{1.6}
\end{equation*}
$$

Definition 1.2 ([12]) Let $-1 \leq B<A \leq 1, C \neq D$ and $-1 \leq D \leq 1$. Then the analytic function $p(z) \in P(A, B ; C, D)$ if and only if $p(z)$ satisfies each of the following two subordination relationships:

$$
\begin{equation*}
p(z) \prec h_{1}(z)=\frac{1+A z}{1+B z} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
p(z) \prec h_{2}(z)=\frac{1+C z}{1+D z} . \tag{1.8}
\end{equation*}
$$

For $A=1-2 \alpha(0 \leq \alpha<1), B=-1, C=1-2 \beta(\beta>1)$ and $D=-1$ in $P(A, B ; C, D)$, we obtain the following relationship:

$$
\begin{equation*}
p(z) \in P(\alpha, \beta)=P(1-2 \alpha,-1 ; 1-2 \beta,-1) \Longleftrightarrow \alpha<\Re\{p(z)\}<\beta \tag{1.9}
\end{equation*}
$$

From (1.4) and (1.9), we have

$$
\begin{equation*}
p(z) \in P(\alpha, \beta) \Longleftrightarrow p(z) \prec S_{\alpha, \beta}(z) \tag{1.10}
\end{equation*}
$$

Also, from Definition 1.2, we introduce the following subclass of $p(z) \in P(A, B ; C, D)$.
Definition 1.3 Let

$$
\begin{gathered}
\tilde{P}\left(\rho_{1}\right)=\left\{p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}: \Re(p(z))>\rho_{1}\right\}, \\
\tilde{P}\left(\rho_{2}\right)=\left\{p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}: \Re(p(z))<\rho_{2}\right\}, \\
\tilde{P}\left(\rho_{1}, \rho_{2}\right)=\left\{p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}: \rho_{1}<\Re(p(z))<\rho_{2}\right\}
\end{gathered}
$$

and

$$
\tilde{P}\left(\rho_{3}, \rho_{4}\right)=\left\{p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}: \rho_{3}<\Re\{p(z)\}, \Re\{2-p(z)\}<1+\rho_{4}\right\}
$$

where

$$
\begin{cases}\rho_{1}=\max \left\{\frac{1-A}{1-B}, \frac{1+C}{1+D}\right\}, & -1<B<A \leq 1,-1<C<D<1, \tag{1.11}\\ \rho_{2}=\min \left\{\frac{1+A}{1+B}, \frac{1-C}{1-D}\right\}, & -1<B<A \leq 1,-1<C<D<1, \\ \rho_{3}=\left\{\frac{1-A}{2}\right\}, & B=-1, \\ \rho_{4}=\left\{\frac{1-C}{2}\right\}, & D=1 .\end{cases}
$$

In [13], Sălăgean defined the operator $D^{m} f(z): \mathcal{A} \rightarrow \mathcal{A}$ as follows:

$$
D^{0} f(z)=f(z), D^{\prime} f(z)=D f(z)=z f^{\prime}(z)
$$

in general,

$$
\begin{equation*}
D^{m} f(z)=D\left(D^{m-1} f(z)\right)=z+\sum_{n=2}^{\infty} n^{m} a_{n} z^{n}, \quad m \in \mathbb{N}_{0}=\mathbb{N} \bigcup\{0\} \tag{1.12}
\end{equation*}
$$

By using the operator D^{m}, we introduce the following two new subclasses of \mathcal{A}.
Definition 1.4 Let $m \in \mathbb{N}_{0}, 0 \leq \lambda,-1 \leq B<A \leq 1,-1<C<D \leq 1$, and $f(z) \in \mathcal{A}$. Then the function $f(z) \in S_{m, \lambda}(A, B ; C, D)$ if and only if $f(z)$ satisfies the following condition:

$$
\begin{equation*}
\psi(f ; m, \lambda)=\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)} \in P(A, B ; C, D) . \tag{1.13}
\end{equation*}
$$

From the class $S_{m, \lambda}(A, B ; C, D)$, we obtain the following subclasses which were studied in many earlier works:
(i) $S_{0,0}(1-2 \alpha,-1 ; 1-2 \beta,-1)=S(\alpha, \beta)(0 \leq \alpha<1, \beta>1)($ see $[11,14])$.
(ii) $S_{1,0}(1-2 \alpha,-1 ; 1-2 \beta,-1)=K(\alpha, \beta)(0 \leq \alpha<1, \beta>1)$ (see [15]).
(iii) $S_{0, \lambda}(1-2 \alpha,-1 ; 1-2 \beta,-1)=K(\lambda ; \alpha, \beta)$ (see [16]).
(iv) $S_{m, 0}(A, B ; C, D)=S_{m}(A, B ; C, D)$ (see [12]).

Definition 1.5 Let $m \in \mathbb{N}_{0}, 0 \leq \lambda$, $-1 \leq B<A \leq 1,-1<C<D \leq 1$, and $f(z) \in \mathcal{A}$. We denote by $S \Sigma_{m, \lambda}(A, B ; C, D)$ the class of bi-univalent functions consisting of the functions in \mathcal{A} such that $f \in S \Sigma_{m, \lambda}(A, B ; C, D)$ and $f^{-1} \in S \Sigma_{m, \lambda}(A, B ; C, D)$, where f^{-1} is the inverse function of f.

This paper is organized as follows. We start with the function $p(z) \in P(A, B ; C, D)$ if and only if $p(z)$ satisfies each of the two conditions. We obtain the bounds of coefficients and Feketeszegö inequality for functions in this class and coefficient estimates of bi-univalent functions for certain subclasses of this class. The results presented here extend some of the earlier results.

2. Preliminary results

To prove the main results in the paper, we need the following lemmas.
Lemma 2.1 ([12]) The function $p(z) \in P(A, B ; C, D)$ if and only if $p(z)$ satisfies each of the following two conditions:

$$
\left\{\begin{array}{l}
\left|p(z)-\sigma_{i}\right|<r_{i}, \quad i=1,2 ;-1<B<A \leq 1 ;-1<C<D<1 \tag{2.1}\\
\rho_{3}<\Re\{p(z)\}, \quad B=-1, \quad \Re\{2-p(z)\}<1+\rho_{4}, D=1
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
\sigma_{1}=\frac{1-A B}{1-B^{2}} \quad \text { and } \quad r_{1}=\frac{A-B}{1-B^{2}}, \tag{2.2}\\
\sigma_{2}=\frac{1-C D}{1-D^{2}} \quad \text { and } r_{2}=\frac{D-C}{1-D^{2}},
\end{array}\right.
$$

and ρ_{3}, ρ_{4} are given by (1.11).
Lemma 2.2 ([12]) Let $j=1,2,3,4 ;-1<B<A \leq 1$ and $-1<C<D<1 ; S_{\alpha, \beta}(z)$ is defined by (1.4). If $p(z) \in P(A, B ; C, D)$, then

$$
p(z) \prec p_{j}(z)= \begin{cases}p_{1}(z)=S_{\frac{1-A}{1-B}, \frac{1-C}{1-D}}(z), & B C-A D \geq|A-B+C-D|, \quad j=1, \tag{2.3}\\ p_{2}(z)=S_{\frac{1+C}{1+D}, \frac{1+A}{1+B}}(z), & A D-B C \geq|A-B+C-D|, \quad j=2, \\ p_{3}(z)=S_{\frac{1-A}{1-B}, \frac{1+A}{1+B}}(z), & |A D-B C| \leq B-A+D-C, \\ p_{4}(z)=S_{\frac{1+C}{1+D}, \frac{1-C}{1-D}}(z), & |A D-B C| \leq A-B+C-D, \\ & j=4,\end{cases}
$$

where $p_{j}(0)=1$ and

$$
p_{j}(z)= \begin{cases}p_{1}(z)=1+\sum_{n=1}^{\infty} B_{n, 1} z^{n}, & j=1 \tag{2.4}\\ p_{2}(z)=1+\sum_{n=1}^{\infty} B_{n, 2} z^{n}, & j=2 \\ p_{3}(z)=1+\sum_{n=1}^{\infty} B_{n, 3} z^{n}, & j=3 \\ p_{4}(z)=1+\sum_{n=1}^{\infty} B_{n, 4} z^{n}, & j=4\end{cases}
$$

for

$$
B_{n, j}= \begin{cases}B_{n, 1}=\frac{\frac{1-C}{1-D}-\frac{1-A}{1-B}}{n \pi} i\left(1-e^{2 n \pi i\left(1-\frac{1-A}{1-B}\right) /\left(\frac{1-C}{1-D}-\frac{1-A}{1-B}\right)}\right), j=1 \tag{2.5}\\ B_{n, 2}=\frac{\frac{1+A}{1+B}-\frac{1+C}{1+D}}{n \pi} i\left(1-e^{2 n \pi i\left(1-\frac{1+C}{1+D}\right) /\left(\frac{1+A}{1+B}-\frac{1+C}{1+D}\right)}\right), j=2 \\ B_{n, 3}=\frac{\frac{1+A}{1+B}-\frac{1-A}{1-B}}{n \pi} i\left(1-e^{2 n \pi i\left(1-\frac{1-A}{1-B}\right) /\left(\frac{1+A}{1+B}-\frac{1-A}{1-B}\right)}\right), j=3 \\ B_{n, 4}=\frac{\frac{1-C}{1-D}-\frac{1+C}{1+D}}{n \pi} i\left(1-e^{2 n \pi i\left(1-\frac{1+C}{1+D}\right) /\left(\frac{1-C}{1-D}-\frac{1+C}{1+D}\right)}\right), j=4\end{cases}
$$

Proof (i) Let $p(z) \in P(A, B ; C, D)$ with $B C-A D \geq|A-B+C-D|$. Let $p(z)=1+c_{1} z+$ $c_{2} z^{2}+\cdots \in P(A, B ; C, D)$. Then, from Definition 1.2 and the definition of subordination, we get

$$
\begin{cases}p(0)=h_{1}(0), & p(\mathbb{U}) \subset h_{1}(\mathbb{U}), \tag{2.6}\\ p(0)=h_{2}(0), & p(\mathbb{U}) \subset h_{2}(\mathbb{U}),\end{cases}
$$

where $h_{1}(z)$ and $h_{2}(z)$ are given by (1.7) and (1.8), respectively. Therefore, we have

$$
\begin{cases}p(z)=h_{1}\left(\omega_{1}(z)\right), & \omega_{1}(0)=0, \\ p(z)=h_{2}\left(\omega_{2}(z)\right), & \omega_{2}(0)=0, \\ \left|\omega_{2}(z)\right|<1\end{cases}
$$

We also deduce that

$$
\begin{cases}\left|\omega_{1}(z)\right|=\left|\frac{p(z)-1}{A-B p(z)}\right|<1, & p(z)=u+i v \tag{2.7}\\ \left|\omega_{2}(z)\right|=\left|\frac{p(z)-1}{C-D p(z)}\right|<1, & p(z)=u+i v\end{cases}
$$

From (2.7), we find that

$$
\left\{\begin{array}{l}
2 u(1-A B)>1-A^{2}+\left(1-B^{2}\right)\left(u^{2}+v^{2}\right) \tag{2.8}\\
2 u(1-C D)>1-C^{2}+\left(1-D^{2}\right)\left(u^{2}+v^{2}\right)
\end{array}\right.
$$

Since

$$
\begin{equation*}
|p(z)|^{2} \geq[\Re(p(z))]^{2}, \tag{2.9}
\end{equation*}
$$

from (2.8) and (2.9) we have

$$
\left\{\begin{array}{l}
\frac{1-A}{1-B}<u=\Re(p(z))<\frac{1+A}{1+B}, \tag{2.10}\\
\frac{1+C}{1+D}<u=\Re(p(z))<\frac{1-C}{1-D} .
\end{array}\right.
$$

Then, from (2.10) we obtain

$$
\frac{1-A}{1-B}<\Re\{p(z)\}<\frac{1-C}{1-D}
$$

By using (1.9), we get

$$
p(z) \prec p_{1}(z)=S_{\frac{1-A}{1-B}, \frac{1-C}{1-D}}(z), \quad B C-A D \geq|A-B+C-D| .
$$

Also, similarly as the proof in (i), it is easy to prove that
(ii) $p(z) \prec p_{2}(z)=S_{\frac{1+C}{1+D}, \frac{1+A}{1+B}}(z), A D-B C \geq|A-B+C-D|$,
(iii) $p(z) \prec p_{3}(z)=S_{\frac{1-A}{1-B}, \frac{1+A}{1+B}}(z),|A D-B C| \leq B-A+D-C$
and
(iv) $p(z) \prec p_{4}(z)=S_{\frac{1+C}{1+D, \frac{1-C}{1-D}}}(z),|A D-B C| \leq A-B+C-D$.

Therefore, we complete the proof of Lemma 2.2.
The functions $p_{j}(j=1,2,3,4)$ maps \mathbb{U} onto the strip domain (see Figures 1-1, 1-2, 1-3 and 1-4).

Figure 1-1 The image of \mathbb{U} under $p_{1}(z)$ for $A=0.1, B=-0.5, C=-0.5, D=0.2$

Figure 1-3 The image of \mathbb{U} under $p_{3}(z)$ for $A=0.7, B=0.4, C=-0.1, D=0.8$

Figure 1-2 The image of \mathbb{U} under $p_{2}(z)$ for $A=0.7, B=0.4, C=0.1, D=0.8$

Figure 1-4 The image of \mathbb{U} under $p_{4}(z)$ for $A=0.9, B=0.1, C=0.1, D=0.4$

Lemma 2.3 ([20]) Let $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$ be analytic and univalent in \mathbb{U}, and suppose that $p(z)$ maps \mathbb{U} onto a convex domain. If $q(z)=1+q_{1} z+q_{2} z^{2}+\cdots$ is analytic in \mathbb{U} and satisfies the following subordination:

$$
q(z) \prec p(z), \quad z \in \mathbb{U}
$$

then

$$
\left|q_{n}\right| \leq\left|c_{1}\right|, \quad n=1,2, \ldots
$$

Using Definition 1.1, Lemma 2.3 and the definition of subordination, we can obtain the following lemma.

Lemma 2.4 ([12]) Let $-1 \leq B<A \leq 1,-1<C<D \leq 1, i=1,2 ; j=1,2,3,4$ and
$\tilde{P}\left(\rho_{1}\right), \tilde{P}\left(\rho_{2}\right), \tilde{P}\left(\rho_{1}, \rho_{2}\right)$ and $\tilde{P}\left(\rho_{3}, \rho_{4}\right)$ are given by Definition 1.3. If $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in$ $P(A, B ; C, D)$, then

$$
\left|c_{n}\right| \leq \chi\left(\delta_{i} ; \rho_{j}\right)= \begin{cases}2 \delta_{1}, & p \in \tilde{P}\left(\rho_{1}\right) \tag{2.11}\\ 2 \delta_{2}, & p \in \tilde{P}\left(\rho_{2}\right) \\ 2 \min \left\{\delta_{1}, \delta_{2}\right\}, & p \in \tilde{P}\left(\rho_{1}, \rho_{2}\right) \\ 2 \min \left\{\frac{1+A}{2}, \frac{1-C}{2}\right\}, & p \in \tilde{P}\left(\rho_{3}, \rho_{4}\right)\end{cases}
$$

where

$$
\left\{\begin{array}{l}
\delta_{1}=\min \left\{\frac{A-B}{1-B}, \frac{D-C}{1+D}\right\}, \tag{2.12}\\
\delta_{2}=\min \left\{\frac{A-B}{1+B}, \frac{D-C}{1-D}\right\},
\end{array}\right.
$$

and ρ_{j} are given by (1.11).
Lemma 2.5 ([21]) Let the function $p(z)$ be given by (1.3). If $p(z) \in \mathcal{P}$, then for any complex number γ,

$$
\left|c_{2}-\gamma c_{1}^{2}\right| \leq 2 \max \{1,|2 \gamma-1|\}
$$

and the result is sharp for the functions given by $p(z)=\frac{1+z^{2}}{1-z^{2}}, p(z)=\frac{1+z}{1-z}$.

3. Main results

Using Lemma 2.1 and Definition 1.4, we easily get
Theorem 3.1 Let $\psi(f ; m, \lambda)$ be defined by (1.13). The function $f(z) \in S_{m, \lambda}(A, B ; C, D)$ if and only if $f(z)$ satisfies each of the following two conditions:

$$
\left\{\begin{array}{l}
\left|\psi(f ; m, \lambda)-\sigma_{i}\right|<r_{i}, \quad i=1,2 ;-1<B<A \leq 1 ;-1<C<D<1 \\
\rho_{3}<\Re\{\psi(f ; m, \lambda)\}, \quad B=-1, \quad \Re\{2-\psi(f ; m, \lambda)\}<1+\rho_{4}, D=1
\end{array}\right.
$$

where σ_{i} and $r_{i}(i=1,2)$ are given by (2.2) and $\rho_{k}(k=3,4)$ are given by (1.11).
Theorem 3.2 Let $m \in \mathbb{N}_{0}, \lambda \geq 0,\left|a_{1}\right|=1$ and the function $f(z)$ be given by (1.1). If $f(z) \in S_{m, \lambda}(A, B ; C, D)$, then

$$
\left|a_{n}\right| \leq M_{n, j}(m, \lambda)= \begin{cases}\frac{\left|B_{1, j}\right|}{2^{m}(2 \lambda+1)}, & n=2, \tag{3.1}\\ \frac{\left|B_{1, j}\right|}{(n-1)(n \lambda+1) n^{m}} \prod_{k=2}^{n-1}\left(1+\frac{\left|B_{1, j}\right|}{(k-1)(k \lambda+1)}\right), & n \geq 3,\end{cases}
$$

where $\left|B_{1, j}\right|(j=1,2,3,4)$ are defined by (2.5).
Proof According to Definition 1.2 and the subordination relationship, we have

$$
\begin{equation*}
\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)} \in h_{1}(\mathbb{U}) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)} \in h_{2}(\mathbb{U}), \tag{3.3}
\end{equation*}
$$

where the functions $h_{1}(z)$ and $h_{2}(z)$ are given by (1.7) and (1.8), respectively.

Applying (3.2) and (3.3), we get

$$
\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)}=p(z), \quad \exists p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in P(A, B ; C, D)
$$

or, equivalently,

$$
\begin{equation*}
D^{m+1} f(z)+\lambda z^{2}\left(D^{m} f(z)\right)^{\prime \prime}=p(z) D^{m} f(z), \quad \exists p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \in P(A, B ; C, D) \tag{3.4}
\end{equation*}
$$

Then, comparing the coefficients of z^{n} in the both sides of (3.4), we have

$$
\begin{equation*}
(n-1)(n \lambda+1) n^{m} a_{n}=\left(c_{n-1}+c_{n-2} 2^{m} a_{2}+\cdots+c_{1}(n-1)^{m} a_{n-1}\right) \tag{3.5}
\end{equation*}
$$

Using Lemma 2.2, Lemma 2.3 and (3.5), we obtain

$$
\begin{aligned}
\left|a_{n}\right| & \leq \frac{1}{(n-1)(n \lambda+1) n^{m}}\left(\left|c_{n-1}\right|+\left|c_{n-2}\right| 2^{m}\left|a_{2}\right|+\cdots+\left|c_{1}\right|(n-1)^{m}\left|a_{n-1}\right|\right) \\
& \leq \frac{\left|B_{1, j}\right|}{(n-1)(n \lambda+1) n^{m}} \sum_{k=1}^{n-1} k^{m}\left|a_{k}\right|
\end{aligned}
$$

Hence, we have $\left|a_{2}\right| \leq M_{2, j}(m, \lambda)$. To prove the remaining part of the theorem, we need to show that

$$
\begin{equation*}
\sum_{k=1}^{n-1} k^{m}\left|a_{k}\right| \leq \prod_{k=2}^{n-1}\left(1+\frac{\left|B_{1, j}\right|}{(k-1)(k \lambda+1)}\right) \tag{3.6}
\end{equation*}
$$

for $n=3,4,5, \ldots$ We use induction to prove (3.6). The case $n=3$ is clear. Next, assume that the inequality (3.6) holds for $n=p$. Then, a straightforward calculation gives

$$
\begin{aligned}
\sum_{k=1}^{p} k^{m}\left|a_{k}\right| & =\sum_{k=1}^{p-1} k^{m}\left|a_{k}\right|+p^{m}\left|a_{p}\right| \\
& \leq\left(1+\frac{\left|B_{1, j}\right|}{(p-1)(p \lambda+1)}\right) \sum_{k=1}^{p-1} k^{m}\left|a_{k}\right| \\
& \leq\left(1+\frac{\left|B_{1, j}\right|}{(p-1)(p \lambda+1)}\right) \prod_{k=2}^{p-1}\left(1+\frac{\left|B_{1, j}\right|}{(k-1)(k \lambda+1)}\right) \\
& =\prod_{k=2}^{p}\left(1+\frac{\left|B_{1, j}\right|}{(k-1)(k \lambda+1)}\right)
\end{aligned}
$$

which implies that the inequality (3.6) holds for $n=p+1$. Hence, the desired estimate for $\left|a_{n}\right|(n \geq 3)$ follows, as asserted in (3.1). This completes the proof of Theorem 3.2.

Remark 3.3 Taking $m=0, A=1-2 \alpha(0 \leq \alpha \leq 1), B=-1 ; C=1-2 \beta(1<\alpha), D=-1$, we obtain the improved result of Theorem 3.1 in the paper [16]. Also, setting $m=0, \lambda=0$, we obtain the improved result of Theorem 3.2 in the paper [12].

Also, using Lemma 2.4 and Definition 1.4, we get
Theorem 3.4 Let $m \in \mathbb{N}_{0}, \lambda \geq 0,\left|a_{1}\right|=1$ and the function $f(z)$ be given by (1.1). If
$f(z) \in S_{m, \lambda}(A, B ; C, D)$, then

$$
\left|a_{n}\right| \leq \Psi_{n, j}(m, \lambda)= \begin{cases}\frac{\chi\left(\delta_{i} ; \rho_{j}\right)}{2^{m}(2 \lambda+1)}, & n=2 \tag{3.7}\\ \frac{\chi\left(\delta_{i} ; \rho_{j}\right)}{(n-1)(n \lambda+1) n^{m}} \prod_{k=2}^{n-1}\left(1+\frac{\chi\left(\delta_{i} ; \rho_{j}\right)}{(k-1)(k \lambda+1)}\right), & n \geq 3\end{cases}
$$

where $\chi\left(\delta_{i} ; \rho_{j}\right)(i=1,2 ; j=1,2,3,4)$ are defined by (2.11).
Remark 3.5 Setting $m=0, \lambda=0$, we obtain the improved result of Theorem 3.1 in [12].
Theorem 3.6 Let $m \in \mathbb{N}_{0}, \lambda \geq 0,-1<B<A \leq 1,-1<C<D<1,0 \leq \mu \leq 1$ and $p_{j}(z)=1+\sum_{n=1}^{\infty} B_{n, j} z^{n}(j=1,2,3,4)$. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S_{m}(A, B ; C, D)$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|B_{1, j}\right|}{2 \cdot 3^{m}(3 \lambda+1)} \max \left\{1,\left|\frac{B_{2, j}}{B_{1, j}}-\frac{2(3 \lambda+1)\left(\frac{3}{4}\right)^{m} \mu-(2 \lambda+1)}{(2 \lambda+1)^{2}} B_{1, j}\right|\right\}, \tag{3.8}
\end{equation*}
$$

where $\left|B_{i, j}\right|(i=1,2 ; j=1,2,3,4)$ are defined by (2.5).
Proof If $f(z) \in S_{m}(A, B ; C, D)$, then there exists a Schwarz function $\omega(z)$ in \mathbb{U} such that

$$
\begin{equation*}
\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)}=p_{j}(\omega(z)), \quad z \in \mathbb{U} \tag{3.9}
\end{equation*}
$$

where $p_{j}(z)(j=1,2,3,4)$ are defined by (2.3).
Let the function $p(z)$ be given by

$$
\begin{equation*}
p(z)=\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)} \tag{3.10}
\end{equation*}
$$

Then, from (3.9) and (3.10) we have $p(z) \prec p_{j}(z)$. Let

$$
\begin{equation*}
q(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+q_{1} z+q_{2} z^{2}+\cdots \tag{3.11}
\end{equation*}
$$

Then $q(z)$ is analytic and has positive real part in \mathbb{U}. From (3.11), we get

$$
\begin{equation*}
\omega(z)=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left[q_{1} z+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) z^{2}+\cdots\right] . \tag{3.12}
\end{equation*}
$$

We see from (3.12) that

$$
\begin{equation*}
p(z)=p_{j}\left(\frac{q(z)-1}{q(z)+1}\right)=1+\frac{1}{2} B_{1, j} q_{1} z+\left[\frac{1}{2} B_{1, j}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{B_{2, j} q_{1}^{2}}{4}\right] z^{2}+\cdots . \tag{3.13}
\end{equation*}
$$

Using (3.10) and (3.13), we obtain

$$
\begin{aligned}
(2 \lambda+1) 2^{m} a_{2} & =\frac{B_{1, j} q_{1}}{2}, \\
2(3 \lambda+1) 3^{m} a_{3}-(2 \lambda+1) 4^{m} a_{2}^{2} & =\frac{B_{1, j} q_{2}}{2}-\frac{q_{1}^{2}}{4}\left(B_{1, j}-B_{2, j}\right),
\end{aligned}
$$

which imply that

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1, j}}{4 \cdot 3^{m}(3 \lambda+1)}\left[q_{2}-\gamma_{j} q_{1}^{2}\right] \tag{3.14}
\end{equation*}
$$

where, for convenience,

$$
\gamma_{j}=\frac{1}{2}\left[1-\frac{B_{2, j}}{B_{1, j}}+\frac{2(3 \lambda+1)\left(\frac{3}{4}\right)^{m} \mu-(2 \lambda+1)}{(2 \lambda+1)^{2}} B_{1, j}\right] .
$$

Then, applying Lemma 2.5, we have

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{\left|B_{1, j}\right|}{4 \cdot 3^{m}(3 \lambda+1)}\left|q_{2}-\gamma_{j} q_{1}^{2}\right| \leq \frac{\left|B_{1, j}\right|}{2 \cdot 3^{m}(3 \lambda+1)} \max \left\{1,\left|1-2 \gamma_{j}\right|\right\} \\
& \leq \frac{\left|B_{1, j}\right|}{2 \cdot 3^{m}(3 \lambda+1)} \max \left\{1,\left|\frac{B_{2, j}}{B_{1, j}}-\frac{2(3 \lambda+1)\left(\frac{3}{4}\right)^{m} \mu-(2 \lambda+1)}{(2 \lambda+1)^{2}} B_{1, j}\right|\right\}
\end{aligned}
$$

The estimate is sharp for the function $f_{j}(z)(j=1,2,3,4)$ defined by

$$
\begin{equation*}
f_{j}(z)=D^{-m}\left[\int_{0}^{z}\left(\exp \left(\int_{0}^{\eta} \frac{p_{j}(\xi)-1}{\xi} \mathrm{~d} \xi\right)\right) \mathrm{d} \eta\right] \tag{3.15}
\end{equation*}
$$

where the function $p_{j}(z)(j=1,2,3,4)$ are given by (2.3) (see Figures 2-1, 2-2, 2-3 and 2-4). Hence we complete the proof of Theorem 3.6.

Figure 2-1 The image of \mathbb{U} under $f_{1}(z)$ for $A=0.1, B=-0.5, C=-0.5, D=0.2, m=0$

Figure 2-3 The image of \mathbb{U} under $f_{3}(z)$ for $A=0.7, B=0.4, C=-0.1, D=0.8, m=0$

Figure 2-2 The image of \mathbb{U} under $f_{2}(z)$ for $A=0.7, B=0.4, C=0.1, D=0.8, m=0$

Figure 2-4 The image of \mathbb{U} under $f_{4}(z)$ for $A=0.9, B=0.1, C=0.1, D=0.4, m=0$

Remark 3.7 Setting $m=0, A=1-2 \alpha(0 \leq \alpha \leq 1), B=-1 ; C=1-2 \beta(1<\alpha), D=-1$,
we obtain the improved result of Theorem 2 in the paper [16]. Also, taking $m=0, \lambda=0$, we have the improved result of Theorem 3.3 in the paper [12].

Using Theorem 3.6, we can easily get the following result.
Corollary 3.8 Let $m \in \mathbb{N}_{0}, \lambda \geq 0,-1<B<A \leq 1,-1<C<D<1$, and f^{-1} be the inverse function of f. If $f(z) \in S_{m}(A, B ; C, D)$, and

$$
f^{-1}(\omega)=\omega+\sum_{n=2}^{\infty} b_{n} \omega^{n}, \quad|\omega|<r ; r \geq \frac{1}{4}
$$

then

$$
\left|b_{2}\right| \leq \frac{\left|B_{1, j}\right|}{2^{m}(2 \lambda+1)} \text { and }\left|b_{3}\right| \leq \frac{\left|B_{1, j}\right|}{2 \cdot 3^{m}(3 \lambda+1)} \max \left\{1,\left|\frac{B_{2, j}}{B_{1, j}}-\frac{4(3 \lambda+1)\left(\frac{3}{4}\right)^{m}-(2 \lambda+1)}{(2 \lambda+1)^{2}} B_{1, j}\right|\right\}
$$

where $\left|B_{i, j}\right|(i=1,2 ; j=1,2,3,4)$ are defined by (2.5).
Proof The relations (1.2) and $f^{-1}(\omega)=\omega+b_{2} \omega^{2}+\cdots$ yield $b_{2}=-a_{2}$ and $b_{3}=2 a_{2}^{2}-a_{3}$. Thus, in view of (3.1) and the identity $\left|b_{2}\right|=\left|a_{2}\right|$, the estimate for $\left|b_{2}\right|$ follows immediately. Furthermore, applying Theorem 3.6 with $\mu=2$ gives the estimate for $\left|b_{3}\right|$.

Finally, we will estimate some initial coefficients for the bi-univalent functions f.
Theorem 3.9 Let $m \in \mathbb{N}_{0}, \lambda \geq 0,-1<B<A \leq 1,-1<C<D<1$. If $f \in$ $S \Sigma_{m, \lambda}(A, B ; C, D)$, then

$$
\left|a_{2}\right| \leq \frac{\left|B_{1, j}\right| \sqrt{\left|B_{1, j}\right|}}{\sqrt{\left|B_{1, j}^{2}\left[2(3 \lambda+1) 3^{m}-(2 \lambda+1) 4^{m}\right]+4^{m}(2 \lambda+1)^{2}\left(B_{1, j}-B_{2, j}\right)\right|}}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|B_{1, j}\right|\left\{2\left|4(3 \lambda+1) 3^{m}-(2 \lambda+1) 4^{m}\right|+2(2 \lambda+1) 4^{m}\right\}+8(3 \lambda+1) 3^{m}\left|B_{1, j}-B_{2, j}\right|}{4(3 \lambda+1) 3^{m}\left|4(3 \lambda+1) 3^{m}-2(2 \lambda+1) 4^{m}\right|} \tag{3.16}
\end{equation*}
$$

where $\left|B_{i, j}\right|(i=1,2 ; j=1,2,3,4)$ are defined by (2.5).
Proof If $f(z) \in S \Sigma_{m}(A, B ; C, D)$, then $f(z) \in S_{m, \lambda}(A, B ; C, D)$ and $g=f^{-1} \in S_{m, \lambda}(A, B ; C, D)$.
Hence

$$
G(z)=\frac{D^{m+1} f(z)}{D^{m} f(z)}+\lambda \frac{z^{2}\left(D^{m} f(z)\right)^{\prime \prime}}{D^{m} f(z)} \prec p_{j}(z), \quad z \in \mathbb{U} ; j=1,2,3,4
$$

and

$$
H(z)=\frac{D^{m+1} g(z)}{D^{m} g(z)}+\lambda \frac{z^{2}\left(D^{m} g(z)\right)^{\prime \prime}}{D^{m} g(z)} \prec p_{j}(z), \quad z \in \mathbb{U} ; j=1,2,3,4
$$

where the function $p_{j}(z)$ is given by (2.3). Let

$$
\varsigma(z)=\frac{1+p_{j}^{-1}(G(z))}{1-p_{j}^{-1}(G(z))}=1+\varsigma_{1} z+\varsigma_{2} z^{2}+\cdots, \quad z \in \mathbb{U} ; j=1,2,3,4
$$

and

$$
\tau(z)=\frac{1+p_{j}^{-1}(H(z))}{1-p_{j}^{-1}(H(z))}=1+\tau_{1} z+\tau_{2} z^{2}+\cdots, \quad z \in \mathbb{U} ; j=1,2,3,4
$$

Then ς and τ are analytic and have positive real part in \mathbb{U}, and satisfy the estimates

$$
\begin{equation*}
\left|\varsigma_{n}\right| \leq 2 \text { and }\left|\tau_{n}\right| \leq 2, \quad n \in \mathbb{N} \tag{3.17}
\end{equation*}
$$

Therefore, we have

$$
G(z)=p_{j}\left(\frac{\varsigma(z)-1}{\varsigma(z)+1}\right) \text { and } H(z)=p_{j}\left(\frac{\tau(z)-1}{\tau(z)+1}\right), \quad z \in \mathbb{U} ; j=1,2,3,4 .
$$

By comparing the coefficients, we get

$$
\begin{align*}
(2 \lambda+1) 2^{m} a_{2} & =\frac{B_{1, j} \varsigma_{1}}{2}, \tag{3.18}\\
2(3 \lambda+1) 3^{m} a_{3}-(2 \lambda+1) 2^{2 m} a_{2}^{2} & =\frac{B_{1, j} \varsigma_{2}}{2}-\frac{\varsigma_{1}^{2}}{4}\left(B_{1, j}-B_{2, j}\right), \tag{3.19}\\
-(2 \lambda+1) 2^{m} a_{2} & =\frac{B_{1, j} \tau_{1}}{2} \tag{3.20}
\end{align*}
$$

and

$$
\begin{equation*}
-2(3 \lambda+1) 3^{m} a_{3}+\left[4(3 \lambda+1) 3^{m}-(2 \lambda+1) 4^{m}\right] a_{2}^{2}=\frac{B_{1, j} \tau_{2}}{2}-\frac{\tau_{1}^{2}}{4}\left(B_{1, j}-B_{2, j}\right) \tag{3.21}
\end{equation*}
$$

where $B_{i, j}(i=1,2 ; j=1,2,3,4)$ are given by (2.5). From (3.18) and (3.20), we obtain

$$
\begin{equation*}
\varsigma_{1}=-\tau_{1} \tag{3.22}
\end{equation*}
$$

Also, from (3.19)-(3.22), we see that

$$
a_{2}^{2}=\frac{B_{1, j}^{3}\left(\varsigma_{2}+\tau_{2}\right)}{4 B_{1, j}^{2}\left[2(3 \lambda+1) 3^{m}-(2 \lambda+1) 4^{m}\right]+4^{m+1}(2 \lambda+1)^{2}\left(B_{1, j}-B_{2, j}\right)}
$$

and

$$
a_{3}=\frac{B_{1, j}\left\{\left[4(3 \lambda+1) 3^{m}-(2 \lambda+1) 4^{m}\right] \varsigma_{2}+(2 \lambda+1) 4^{m} \tau_{2}\right\}-2(3 \lambda+1) 3^{m}\left(B_{1, j}-B_{2, j}\right) \varsigma_{1}^{2}}{4(3 \lambda+1) 3^{m}\left[4(3 \lambda+1) 3^{m}-2(2 \lambda+1) 4^{m}\right]} .
$$

These equations, together with (3.17), give the bounds on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ as asserted in (3.16). This completes the proof of Theorem 3.9.

Remark 3.10 Letting $m=0, A=1-2 \alpha(0 \leq \alpha \leq 1), B=-1 ; C=1-2 \beta(1<\alpha), D=-1$, we get the improved result of Theorem 3.6 in the paper [16].

References

[1] P. L. DUREN. Univalent Functions. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] R. M. ALI, S. K. LEE, V. RAVICHANDRAN, et al. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett., 2012, 25(3): 344-351.
[3] M. CAGLAR, H. ORHAN, N. YAGMUR. Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 2013, 27(7): 1165-1171.
[4] H. M. SRIVASTAVA, A. K. MISHRA, P. GOCHHAYAT. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett., 2010, 23(10): 1188-1192.
[5] Qinghua XU, Yingchun GUI, H. M. SRIVASTAVA. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett., 2012, 25(6): 990-994.
[6] Qinghua XU, Haigen XIAO, H. M. STIVASTAVA. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput., 2012, 218(23): 11461-11465.
[7] Y. J. SIM, O. S. KWON. On certain classes of convex functions. Int. J. Math. Math. Sci. 2013, Art. ID 294378, 1-6.
[8] M. S. ROBERSTON. On the theory of univalent functions. Ann. of Math. (2), 1936, 37(2): 374-408.
[9] B. A. URALEGADDI, M. D. GANIGI, S. M. SARANGI. Univalent functions with positive coefficients. Tamkang J. Math., 1994, 25(3): 225-230.
[10] S. OWA, H. M. SRIVASTAVA. Some generalized convolution properties associated with certain subclasses of analytic functions. JIPAM. J. Inequal. Pure Appl. Math., 2002, 3(3): 1-13.
[11] K. KUROKI, S. OWA. Notes on new class for certain analytic functions. RIMS Kôkyûroku, 2011, 1772: 21-25.
[12] Shuhai LI, Huo TANG, Li-na MA, et al. A new subclass of analytic functions associated with the strip domain. Acta Math. Sci. Ser. A Chin. Ed., 2015, 35(5): 970-986. (in Chinese)
[13] G. S. SALAGEAN. Subclasses of Univalent Functions. Springer, Berlin, 1983.
[14] O. S. KWON, Y. J. SIM, N. E. CHO, et al. Some radius problems related to a certain subclass of analytic functions. Acta Math. Sin. (Engl. Ser.), 2014, 30(7): 1133-1144.
[15] Y. J. SIM, O. S. KWON. On certain classes of convex functions. Int. J. Math. Math. Sci., 2013, Art. ID 294378, 1-6.
[16] Yong SUN, Yueping JIANG, A. RASILA. Coefficient estimates for certain subclasses of analytic and biunivalent functions. Filomat, 2015, 29(2): 351-360.
[17] W. JANOWSKI. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math., 1970, 23: 159-177.
[18] K. KUROKI, S. OWA. Some subordination criteria concerning the Sǎlăgean operator. JIPAM. J. Inequal. Pure Appl. Math., 2009, 10(2): 1-11.
[19] K. KUROKI, S. OWA, H. M. SRIVASTAVA. Some subordination criteria for analytic functions. Bull. Soc. Sci. Lett. Lódź Sér. Rech. Déform., 2007, 52: 27-36.
[20] W. ROGOSINKI. On the coefficients of subordinate functions. Proc. London Math. Soc., 1945, 2(1): 48-82.
[21] V. RAVICHANDRAN, A. GANGADHARAN, M. DARUS. Fekete-Szegö inequality for certain class of Bazilevic functions. Far East J. Math. Sci. (FJMS), 2004, 15(2): 171-180.

[^0]: Received September 29, 2016; Accepted July 20, 2017
 Supported by the National Natural Science Foundation of China (Grant No. 11561001) and the Higher School Research Foundation of Inner Mongolia Province (Grant No. NJZY16251).

 * Corresponding author

 E-mail address: lishms66@163.com (Shuhai LI); thth2009@tom.com (Huo TANG); malina00@163.com (Li-na MA); ndnxm@126.com (Xiaomeng NIU)

