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Abstract In this paper, we prove that two-parameter Volterra multifractional process can be
approximated in law in the topology of the anisotropic Besov spaces by the family of processes
{Bn(8,t)}nen defined by

s t
B, (s,t) = / / Koy (8, u)Kp()(t, v)0n (u, v)dudo,
o Jo

where {6, (u, v) }nen is a family of processes, converging in law to a Brownian sheet as n — oo,
based on the well known Donsker’s theorem.
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1. Introduction

B2 of Hurst parameter (Hy, Hy) € (0,1)% is a two-

parameter centered Gaussian process, starting from (0,0), with the covariance function given
by

The fractional Brownian sheet Bftl’

1
E[Bftlenglthﬂ _ Z(SZHI +752H1 o |S o t‘ZHl) ((S/)2H2 + (t/)QHg N |$/ B t/|2H2) ) (1)

Note that this process can be also defined by a Wiener integral with respect to the Brownian
sheet W (see [1])

s t
Btz = /0 /0 K, (s,u) K, (t,0)dW (u,v), (2)

where for i = 1,2

S

K (5:0) = dn (s = )" i (12 = ) [ (o= )02 (0= ()2 s,

w T
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and dg, is a positive constant depending only on H;,¢ = 1,2. One property of fractional Browni-
an sheet is that the regularity may be prescribed by its Hurst parameters (Hy, H2). However the
main limitation of fractional Brownian sheet is that the Holder regularity is constant along the
paths. In order to consider phenomena which have more intricate structures with variations in
irregularities, Mendy [2] extended fractional Brownian sheet to two-parameter Volterra multifrac-
tional process by replacing the constant exponent (Hy, Hz) by (a(s), 5(t)), where o : Ry — (0,1)
and B : Ry — (0,1). This time-varying exponent («(s),(t)) describes the local variations of
the irregularity of two-parameter Volterra multifractional process.

Let M and M be two real numbers satisfying 1/2 < M < M < 1. Throughout the paper,
we consider two functions a(-) : Ry — [M, M] and B(:) : Ry — [M, M]. Moreover, we suppose
that «(-) is a a;-Holder function and 5(-) is a as-Holder function with 0 < a1, as < 1 where a4

and oo are real numbers.

Definition 1.1 The two-parameter Volterra multifractional process ngs)*ﬁ(tl (t,s) €10,T] is

the centered Gaussian process given by the following Volterra-type representation

s t
BP® = /O /O Ko (s)(8,w) Ky (£, 0) W (du, dv), (3)
where

Kao(svu) = ut/2e60) [ @12y - uye-3/2gy,

u
Kpp)(t,0) = 0'/27F0 /t y O (y — )P O3 2qy,
v
and W is a Brownian sheet.

If a(-) = Hy and 3(-) = Ha are two constants, B1:12ig a fractional Brownian sheet up to a
multiplicative constant. The two-parameter Volterra multifractional process has properties anal-
ogous to those of fractional Brownian sheet, such as self-similarity and Holder paths. Therefore,
it seems interesting to study the two-parameter Volterra multifractional process.

On the other hand, weak convergence to fractional Brownian motion, fractional Brownian
sheet and related processes have been studied extensively since the works of Taqqu [3] and
Delgado and Jolis [4]. The classical framework for this kind of limit theorems is in C([0, 1]), the
Banach space of continuous processes on [0, 1], and the Skorohod space D(][0, 1]), for discontinuous
ones. For example, Bardina et al.[1,5-7] gave a weak approximation of the Brownian sheet
in d-parameter case (d > 2). Sottinen [8], Nieminen [9], Li and Dai [10] investigated weak
approximation of fractional Brownian motion. Bardina et al [11], Boufoussi and Hajji [12],
Mellall and Ouknine [13] considered weak approximation of stochastic differential equation driven
by fractional noise. More works for the fields can be found in Shen et al. [14], Bardina et al. [15],
Dai and Li [16], Wang et al. [17] and the references therein.

In recent years, many results of this kind of limit theorems have been obtained with stronger
topologies. For example, Tudor [18] showed that fractional Brownian sheet can be approximated

in law by Kac-Stroock type process in a class of Besov spaces. Dai [19] shown that multifractional
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Brownian motion of Riemann-Liouville type can be approximated in law in Besov spaces. More
works for the fields can be found in Boufoussi and Guerbaz [20], Boufoussi and Lakhel [21] and
the references therein.

From representation (3), a natural way to approximate in law two-parameter Volterra mul-

tifractional process is to define the sequence of processes B, (s,t) by

S t
Bulsst) = [ [ Bt (500K (800 (0,0)duc, (4)
0 0

where {0, (u,v)}nen is a “weak approximation of a Brownian sheet”, i.e., {0, (u,v)}nen is a

family of processes, defined on some probability space, such that for

s t
Xn(s,t)z/ / 0., (u, v)dudv,
o Jo

{X.(s,1), (s,t) € [0,1]?},en converges in law to the standard Brownian sheet in plane as n — oc.
In this paper we consider {6,,(u,v)} which comes from the well-known Donsker’s theorem.
It states that the Brownian sheet can be approximated in law by a sequence of random variables.
More precisely, let {Z;, k € N?} be an independent family of identically distributed and centered
random variables, with E(Z2) = 1 for all k € N2, and such that E(|Zx|™) < +oc for all k € N?
and some sufficiently large m € N. For any n € N, we define the kernels

0, (u,v) =n Z Z - 1 —1 k) x k2 —1,62) (un, vn),  (u,v) € [0, 1]?, (5)

k=(k!,k?)eN?

then o

n/ / 0, (u,v)dudv = Brownian Sheet.
0o Jo

where the symbol “ =7 denotes convergence in law and 14(-) denotes the indicator function of
set A.

The rest of this paper is organized as follows. In Section 2, we begin by making some
notations and by recalling some basic preliminaries which will be needed later. In Section 3,
we will prove weak limit theorems for two-parameter Volterra multifractional process given by
Eq. (3) in Besov spaces. Most of the estimates of this paper contain unspecified constants. An
unspecified positive and finite constant will be denoted by C, which may not be the same in each

occurrence. Sometimes we shall emphasize the dependence of these constants upon parameters.

2. Preliminaries

In this section, we briefly recall some basic elements in two-dimensional Besov spaces. We
refer to Kamont [22], for some complete descriptions of two-dimensional Besov spaces.

Suppose T? = [0,1]? and D = {1,2}. For a function f: T? — R,i € D,h € R, e; = (1,0)
and es = (0,1) unit vectors, let
flx+ hey) — f(x), if x,x+ he; € T?
0, otherwise

Apif(z) = {

denote the progressive difference of f in the direction e;.
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Let
Ahthf = Ah,l o Ah’g, for (hl, hg) S R2.

If A = {7} is a subset of D with one element, then we put A, p,).af = Ap, i f and A, py),af =
fifA=g2.
Now, for f € LP(T?) if 1 <p < oo or f € C(T?) (the space of continuous functions on 7?)

if p = oo, we define its LP-modulus of continuity by

wp,A(f, (51,82)) = sup A 1y ha),aflp for (s1,s2) € RY.
0<hy<s1,0<hs <s2

Let b be real and @ = (ay,az),a1,as > 0. We consider the real valued application on T2
given by

wab((s1,52), A) = H(Si)a"’ (1 + Zlog s%)b

icA i€A
for any A C D with wg((s1,2),9) = 1.

Definition 2.1 Suppose a = (a1, a2),a1,a2 >0, b € R and 1 < p < oco. The anisotropic Besov
space Lip,(a, b) is defined by

Lipy(@.b) = {f € L(@?); Y sup “pAllor52)

< oo}
Acp 51:52>0 wa,b((s1,52), 4)

and this space is endowed with the norm

I1£1l5° = Z sup wp,a(f; (s1,52))
P

ACD $1,82>0 W&,b((sly 82)a )

In this way Lip,,(a,b) becomes a non-separable Banach space.

We also introduce the subspace Lip,(a, b) of Lip,(a,b) by
Lip(a,b) = {f € M)W £ AC E, lim paAlGns) _,
py(a,b) = {/ (T7): w0 # Sa(s1,82) Wab((s1,52), 4) )
where d4(s1,$2) = min{s;,7 € A}. Similar to [2, Lemma 2.1], one can get
Lemma 2.2 (i) There exists a function ® €2 ((0,1]?,R%) such that for every (u,v) € (0,1]?
aQ[K)\(S,U)K)\/(t7U

)]
sup < ®(u,v
W) €la,b]2,(t,5)€(0,1]2 | AN <o)

(ii) For every (s,t) € [0,1]* and every (X\;, X,

(2

) € [M,M]?, i = 1,2, there exists a constant
C > 0 satisfying

1 1
/ / [Kk’l(sau)KXz(tarU) - K>\1 (Svu)K)\2(t7v)]2dUdv < C‘)‘/l - )‘1‘2|/\/2 - )\2‘2'
0 0

(iii) For every (s,t) € [0,1]?, (s + h,t + k) € [0,1]? and every (A\1,X2) € [M, M]?, there

exists a constant C' > 0 satifying

11
/ / (K, (5 + hyu) Ky, (t + k,v) — Ky, (5,u) Ky, (t,v)]*dudv < C|h[* k|22
o Jo
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Furthermore, one can follow the similar proof in [2, Proposition 2.5] to conclude the following

Lemma 2.3 For any 2 < p < oo and t, s € [0,1], there holds

P(Ba(s)’ﬁ(t) € Lipp((al,ag),O)) =1 and P(B?,gs)’ﬁ(t) IS Lip;((al,ag),O)) =0,

s,t

where (aq,az) € (0, M)2.

Remark 2.4 The similar results on fractional Brownian motion and fractional Brownian sheet

have been proved in in Kamont [22] and Tudor [18], respectively.

3. Main result and its proof

The purpose of this section is to prove that the laws of {B,(s,t), (s,t) € [0,1]?} given by
(4) converge weakly to the law of two-parameter Volterra multifractional process Ba(g) A given

by (3) in a class of Besov spaces as n — co. The main result is stated as follows.

Theorem 3.1 Let (a1, a2) € (0, M]?. For any b > 0 and p > a% \ 0%2 vV %, the law of processes
{B,(s,1t),(s,t) € [0,1]?} given by (4) with donsker kernels, converges weakly, as n — oo, in the

a( ):B(t)

space Lip, (a1, az), to the multifractional Liouville process By given by (3).

In order to prove Theorem 3.1, we need to check the followmg two points:
(i) We firstly need to check that the family of {B,,(s,t), (s,t) € [0,1]?} is tight in the space
fk : 1 V2
Lip,(a,b) with p > a Vv (72 for any b > 0.
(ii) We secondly need to prove the convergence of the finite dimensional distribution of
{By(s,1), (s,t) € [0,1]%} to those of ngs)’ﬁ(” as n tends to infinity.

The first point is a consequence of the following lemma.

Lemma 3.2 Let (ay,a2) € (0,M)?. Then, for any (s1,t1), (s2,t2) € [0,1) such that s; <

So2,t1 <ty and every even m € N
supE IAsl,tan(827t2)|m S Cm|81 — 52|ma1 . |t1 — t2|mo¢2. (6)
m

Proof Here we use the similar method shown in Bardina and Florit [7] to prove this lemma.
For (s1,t1), (s2,t2) € [0,1]? such that s; < so,t1 < ta, we have

Ag, 1, Br(s2,t2)

/ / a(sl) 81, ) — KQ(SQ)(SQ,U)) (Kg(tl)(tl,v) — Kﬁ(t,z)(tz,’l))) Gn(um)dudv.

Following the ideas in Tudor [18], we know that the Besov norms are increasing in m, it suffices

to prove that the result is true for m even. Then for every even m € N, we obtain

E‘Ashh 82,t2)|

m
— E’/ / Kos,)(s1,u) — Ka(SQ)(SQ,u)) (Kg(tl)(tl,v) — KB(tQ)(tg,v)) Gn(uw)dudv‘

- /o 1]2m H (Kags) (51, us) = Ko(sy) (s2,1)) (Kg(ey)(t1,vi) — Kpey) (t2,v5)) -
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m

E [ H 0, (u;, vl)} duidog - - - duy,doy,. (7)

i=1

Note that

E[ﬁQn(uuvz)} = nmE{H ( Z Zkl[kl_l,kl)(uin)l[kz_Lkg)(vin))}

i=1  k=(k!,k2)EN2

=n" Z E(Zy, - H [k1—1,k1) )1[k2_17k2)(vin)). (8)

k1,....km €N? i=1

3

Since the sequences Zy, - -- Zj, ~are L.I.D., one can get

E‘(Zk1 ...ka) =0,

if for some ¢ € {1,...,m}, we have that k; # k; for all j € {1,...,m} /{i}; that is, for some
variable Zj, appears only once in the product Zy, - - Zj, .
On the other hand, since E(|Z;|™) < oo for all k € N2, then E(Zy, - -+ Zy,, ) is bounded for

all ki,...,k,, € N2, Hence, we have

E{H@n(u“vl)} S C’mnm Z (1[k1_17k1)(uin)l[k2_17k2)(vin)),
i=1

(kl,i..,km)eIB%m

where

By = {(k1,. .., km) € N*™; for all j € {1,...,m},
there exists ¢ € {1,...,m}/{j} such that k; = k;}.

In addition,

m
Z H L — 1) (uwin) Lpgz—1 g2y (vn)) < 1gm (U1, ..., Ums V1, ... s V),
(15l ) EB™ i=1
where E™ denotes the set of (uy, ..., Um;v1,...,0n) € [0,1]>™ satisfying the following property:
for all j € {1,...,m}, there exists i € {1,...,m}/{j} such that |u; — u;| < * and [v; —v;| < %
and, moreover, if there is some [ # 4, j verifying |u; —u| < % and |v; —v| < %, then Ju; —u| < +
and |v; —v| < +.

Next, we should note that 1gm (u, ..., Um;v1,...,0y,) can be bounded by a finite sum of
products of indicators, where in each product of indicators appear all the m variables u1, ..., U,
and all the m variables vy,...,v,,, but each indicator concerns only two or three of them, and
each variable appears only in one of the indicators of each product. Then Eq. (7) can be bounded
by the following two kinds of terms:

(i) For some j,i € {1,...,m} such that j # 4, one obtains

Cran® /[0 . (Kas)(s1,u:) = Ka(sy) (52,u:)) (Kpey) (t1,v:) — Ky (t2,07)) -

(Ka(s)(51,45) = Kas) (52:1)) (Kp(ey) (t1,05) — Kp(a) (t2,v5)) -
10,2 (I — 4310, 1 (101 — v sy . )
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(ii) For some i # j #1, 4,5,l € {1,...,m}, one gets
Cn® /[0 o (Eags)(51,u) = Kasy)(s2,u)) (Kpey) (t1,0:) — Kp(y) (t2,v)) -
(Ka(s) (51,15) = Ka(sy) (s2,u7)) (Kp(e,) (t1,05) — Kp(ey) (t2,v5)) -
(Kasy) (s1,w) — Kogsy) (s2,w)) (Kgey) (tr,vi) — Kgey) (t2,v1)) -
Lo, 1y (Jui = us[) 1o, 1y (Jvi = v )10, 1) (Jus — wi|) Lo, 1y (Jvi — vi)-
Lo, 1y (Juj = wi|)1o, 2y (Jv; — vi])duidu;dvidv;dudu;. (10)
Then, in order to conclude the proof, it suffices to prove that
A=Cpn® /[0 " (Ka(s) (51, us) = Ko(sy) (s2,u)) (Kp(ey) (t1,vi) — Kpey) (t2,v5)) -
(Easy) (51,15) = Ka(sy)(52,15)) (Kpeey) (t1,05) = Kp(eg) (2, 05)) -
Lo, 1y(lus = w;[)1p, 1) (lvi — v;])dusdu;jdvidu;
<Cp(s1 — $2)°™ (t1 — t2)%2, (11)
and
B =Cpn® /[O » (Ka(sy) (51, us) = Ka(ey) (s2,u:)) (Kpey) (t1,v:) — Kgey) (2, 0:)) -
(Easy)(s1,u5) = a<52)(82>ug)) (Ep(e1) (t1,05) — Kpea) (t2,v)) -
(Ka(s)(s1,w) = Ko(sy) (52,w)) (Kpey) (t1, v1) — Kpeg) (2, v1)) -

Lo,y (Jus — uz[)1po, 1y (Jvi Uj|)1[o,%)(|ui —wi|) 1o, 1y(Jvi — wvi)-
v

Lo, 2y (Juj — wl)1p 1) (Jvj — vif)duidu;jdvidv;dude
) 2

<O(s1 — 82)3Y1 (t) — t9)32. (12)
Now we show Eq. (11) holds. By the fact that 2ab < (a? + b%) for any a,b € R,
Aot [ (om0 = Kalo00) (Kb, = Ko t2:0)))*
Lo, 1y (Jui = w;[) 1o, 1y (Jos — vj|)dusdu;dv;du;+
" /[0 1 (o (51,15) = Kagon) (52.18)) (Kao) (b1, 05) = Kpiaa) (t2,7)) )
Lo, 1y (Jui — uj[) 1o, 1y (Jvi — vj|)dusdu;dv;do;
= Ap + A (13)

The two terms A; and As can be done in the similar way. Then we only need deal with A;. In

fact, following the similar lines in the proof of [2, Proposition 2.5], we obtain

2
A < /[ . ((Kags)(s1, 1) = Ka(sy) (s2,u3)) (Kpey) (t1,v:) — Kpgey) (t2,v:))) " dugdu;
0,1

1 1
2 2

:/ (Kasy)(51,1:) — Ko(sy)(s2, ) dui/ (Kg(ty) (t1,v5) — Ky (t2, ;)" doy

0 0

S 0(81 - 52)2a1 (tl — t2)2a2.
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We now proceed to prove the inequality (12). Actually, we have

B =n’ /[071]4 [(Fas) (s1:ui) = Kasn) (52,0)) (K (b, 00) = Kggaa) (£2,00)))
Lo, 1) (Jui = uj) 1,1 (lvs — v;])]-
[/[0)1]2 (Kagsn) (51,15) = Kaay) (52,15)) (Kper) (b1, v) = Kpea) (£2,v5))) -
((Kags)(s1,w) = Kasy) (s2,w)) (Kpe (t101) = Kiey) (t2, 1)) )
1[0,%)(\% — ul|)1[0,%)(\vi - vl|)1[07% (Juj — ul|)1[07%)(|vj — vl|)duldvl}duidujdvidvj. (14)
Then using the Holder inequality, Eq. (14) can be bounded by n?’Bl1 /2. B;/ 2, where
o /[0,1]4 ((Bangor) (51, 43) = Kangan) (52, 2)) (gt (b1, 00) = Kopiun (£2.0:))
Lo, 1y (Jui — uz[)1po, 1y (Jvi — vj|)dusdu;dvido;.
and
" /[0,1]4 U[O’IP ((Kagon) (31,15) = Kagop) (52,15)) (Ka(eo) (t1,05) = Kiggas) (t2,v5))) -
(Ko (s1:1) = Kagsy) (52, w)) (Kpen) (tr 1) = Kara (f2,01))) -
1[0’%)(\% - ul|)1[0’%)(\vi - vl\)l[o’%)ﬂuj - ul|)1[0’%)(|vj - vl|)duldvl}Zduidujdvidvj.
Uing the similar method as the proof of inequality (11), we can get
By < C%(sl — 52)2M (ty — t2)?*2.
Now let us estimate the second term Bs. In fact, we have

2
e 0,118 (Koo (31:15) = Kooy (52,15)) (Ko (t1,05) = Kpes) (t2,05))) "
2
(Ko (s1,m) = Kaso)(s2,m)) (Kaer) (b1, 01) = Kpie) (B2,01))) " -
Lo, 1y (Jui — wf) 1, 1y (v — wil)-
1[0’%)(|uj - ul|)1[0’%)(|vj — vur])du;dv;dujdvdudy

<C(B21 + B22),
where
2
B2,1 :/[0 1o ((Ka(sl)(slauj) - Ka(sz)($27uj)) (Kﬁ(h)(tl?l}j) - Kﬁ(tz)(t27vj))) ’

2
(Kags)(s1,w) = Kagsy) (52, w)) (Kpgen)(t1,v1) — Kpgaa)(t2,01))) " -
1[07%)(|ui - ul|)1[07%)(|vi — vy|)du;dv;dujdvjdudy
1 2

S0z /[0 12 (Kats) (51, ) Kpa) (t1,v5) = Kagsa) (52, u5) Kpay) (2, v5)) " duydoy-

2
/[ - (Ka(s) (51, w) Kpey) (b1, v1) — Kagsy) (82, w) Kgy) (ta, vp)) " duy, duy,
0,1
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1
<ﬁ(81 — 82)4a1 (tl — t2)4a2.

and

Bs s =/[0 . ((Kasr)(51:15) = Kasn) (52,17)) (s (t1,9)) — Kpea) (t2,07)))

2
((Kagon) (51, 1) = Kaay) (52, w)) (Kpia,) (b1, 00) = Kgiao (b2, 00)) )
Lo, 1y (Juj = wi|) 1o, 1) (lv; — vi])duidvidu;dvjdudu;.

We also can get

1
By o < ﬁ(& — 89) () — tg)to2,

with the similar arguments. This completes the proof of this lemma. [
Then, with the tightness criterion in Bosev spaces given by Boufoussi and Dozzi [23] and

Lemma 3.2, we obtain the tightness of the sequences {B,,(s1,%1) }nen in a class of Besov spaces.

Lemma 3.3 Let (a1, a2) € (0,M). For any b >0 and p > - -V L -V 2, then the sequence
{B,(s,t),(s,t) € [0,1]?} given by Eq. (4) with Donsker kernels is t1ght in the separable Banach
space Lip,((a1, az),b).

Secondly, let us prove the second point in order to complete the proof of Theorem 3.1. In
fact, we claim that, for any ai,...,a, € R and (s1,t1),..., (Sm,tm) € [0,1]%, the law of linear

combination
E : a;Bn(sj,t

converges weakly to the law of a random variable defined by

Z ajB?j(;_;)ﬁ(tj)7
j=1

as n tends to infinity. This will be done by proving the convergence of the corresponding char-

acteristic functions, i.e.,

{exp {zfz% (sj,t; }] %E[exp {szaJ i(ysjj)ﬁ(tj H, (15)

as n tends to infinity. Since for any fixed (s,t) € [0,1]%, Kus)(s, u)Kg)(t,v) € L2([0,1]?), then
for any (s;,t;) € [0,1]%, j € {1,2,...,m}, there exits a sequence (Kq(s,)(s5, u)Kpt,)(tj,v)), of
simple functions such that (Ka(sj)(sj,u)KB(tj)(tj, v))k converges to (Ka(sj)(sj,u)KB(tj)(tj, v))
in L2([0,1]?) as k — oc.

To simplify notation, we define

1 1
_ /0 /0 (Kae,) (52 0)Kis(e,) (5, ) B (1, v) i,
and

// Koo,y (55, u)Ks(e,) (15, ) AW (11, 0).
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Then

Hexp{,gz% st} - Efexp {i€ Y ;B 7 ]|
j=1

< | B[ exp {zﬁZaj (551 }] - B[ exp {igiajBﬁ,k}”Jr
=1
E[exp {igji:;ajB%’k}] — E[exp {iféajBﬁkH )+
E[exp {igéaijvk}] — E[exp {ifiang(ﬁ;),ﬁ(%)}”
=1+J+ K.

We will proceed to prove (15) in three steps.

Step 1. By the mean value theorem, there exists a constant C' > 0 such that

I<C  max {E|B sj,tj) — BIF|}

(Ka(sj)(sj, u)Kﬁ(t].) (t5, v))k] 0. (u, v)dudv’ }

Using the same method as the proof of Lemma 3.2, by Hélder inequality we can get

E‘/ / y(55,u) Kp,)(ts,0)) — (Ka(sj)(sj,u)Kﬂ(tj)(tj,v))k}ﬁn(u,v)dudv

N

<of // Koo, (3550 K1, (t5:0)) = (o) (550 K (e,) (t,0)) ] “dudo)

So I uniformly converges to 0 with respect to n.

Step 2. We proceed to deal with J. Using the mean value theorem again,

J <C max {B|B}" — B}
1<5<

1<j<m

/01 /01 (Kas,) (55, u) K, (t5, v))k AW (u, v) ‘ }

Thanks to Donsker’s theorem, as n — oo, the laws of processes

11
/0/0(Koé(sj)(sj,u)Kg(t].)(tj,v))kﬁn(u,u)dudv

converge weakly to the law of

1 01
/0 /0 (Koé(sj)(sj’u)Kﬁ(tj)(tj’U))de(uvv>v

since (Kq(s;) (85, u) Kp(1;)(tj,v))x is a simple function. So we can get J — 0, as n — 0.

1
=C max {E‘/O /0 (Ka(s;) (55, u) Kge,) (t5,v)) 0 (u, v)dudo—
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Step 3. Finally we deal with K. Using the mean value theorem again, one can get

1 1
K <C max {E’/O /0 (Ka(sj)(sj,U)Kg(tj)(tj,v))de(u’v)—

1<j<m

/1/1 (Ka<sj>(3ij)K6(tj>(tj7U))dW(“av)‘}
0 0

Then by the Holder inequality and the variance for a stochastic integral, we get
11
E‘ /0 /0 (Ka(sj)(sj,u)KB(tj)(tj,v))de(u,v)—
1 .1
/0 /0 (Ka(sj)(sjaU)Kﬂ(tj)(tjvv))dw(uvv)‘

1 1 ) 1/2
< ( /0 /0 (Ko (552 0) e, (15, 0)), — Koy (5720 K (15, 0)Pduce)

So, K — 0, for all 1 < j <m, as n — oco. Then we can conclude the proof of the second point.

Finally, let us make several comments.

Remark 3.4 As stated in Theorem 3.1, we prove that two-parameter Volterra multifractional
process introduced in Mendy [2] can be approximated in law in the topology of the anisotropic
Besov spaces which is different from the results proved in Dai [19], because they studied the
weak convergence of multifractional Brownian motion of Riemann-Liouville type in Besov spaces.
Moreover Theorem 3.1 is also different from the results in Dai and Li [16] where the authors
proved approximations of multifractional Brownian motions with moving-average representations

in the space of continuous functions on [0, 1] based on Poisson processes.
Acknowledgements We thank the referees for their time and comments.
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