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Abstract In this paper, we set ρr = r
√
4 and ρ′r = β−1/r, where β = − 1

6
· (100 + 12 ·

√
69)

1

3 − 2

3·(100+12·
√

69)
1

3

+ 4
3
≈ 0.2451223338. We consider connected r-uniform hypergraphs

with spectral radius between ρr and ρ′r and give a description of such hypergraphs.
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1. Introduction

In 1970, Smith classified all connected graphs with the spectral radius at most 2 in [1]. Here

the spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In our previous

paper [2], we generalized Smith’s theorem to hypergraphs and classified all connected r-uniform

hypergraphs with the spectral radius at most ρr = r
√
4.

Let us review some basic notation about hypergraphs. An r-uniform hypergraph H is a

pair (V,E) where V is the set of vertices and E ⊂
(
V
r

)
is the set of edges. The degree of vertex

v, denoted by dv, is the number of edges incident to v. If dv = 1, we call v a pendant vertex or a

leaf vertex in a tree. An edge e is called a branching edge if every vertex of e is not a leaf vertex.

A walk on hypergraph H is a sequence of vertices and edges: v0e1v1e2 . . . vl satisfying that both

vi−1 and vi are incident to ei for 1 ≤ i ≤ l. The vertices v0 and vl are called the ends of the

walk. The length of a walk is the number of edges on the walk. A walk is called a path if all

vertices and edges on the walk are distinct. The walk is closed if vl = v0. A closed walk is called

a cycle if all vertices and edges in the walk are distinct. A hypergraph H is called connected

if for any pair of vertex (u, v), there is a path connecting u and v. A hypergraph H is called a

hypertree if it is connected, and acyclic. A hypergraph H is called simple if every pair of edges

intersects at most one vertex, and a simple hypergraph is usually called a linear hypergraph. In

fact, any non-simple hypergraph contains at least a 2-cycle: v1F1v2F2v1, i.e., v1, v2 ∈ F1 ∩ F2.

A hypertree is always simple.

Received May 23, 2016; Accepted September 22, 2017

Supported by the National Natural Science Foundation of China (Grant Nos. 11601368; 11401434; 11771322).
* Corresponding author

E-mail address: manshoudong@163.com (Shoudong MAN)



2 Shoudong MAN, Linyuan LU and Shuhua ZHANG

From [2], given an r-uniform hypergraph H , the polynomial form of H is a function PH(x) :

R
n → R defined for any vector x := (x1, . . . , xn) ∈ Rn as

PH(x) = r
∑

{i1,i2,...,ir}∈E(H)

xi1xi2 · · ·xir .

For any p ≥ 1, the largest p-eigenvalue of H is defined as

λp(H) = max
|x|p=1

PH(x).

In this paper as in [2], we define the spectral radius of an r-uniform hypergraph H to be ρ(H) =

λr(H). Equivalently, we have

ρ(H) = r max
x∈Rn

≥0

x 6=0

∑
{i1,i2,...,ir}∈E(H) xi1xi2 · · ·xir∑n

i=1 x
r
i

. (1.1)

Here R
n
≥0 denotes the closed orthant in R

n while R
n
>0 denotes the open orthant. This is a

special case of p-spectral norm for p = r. The general p-spectral norm has been considered by

various authors [3–6].

As we have considered the hypergraphs with spectral radius at most ρr = r
√
4 in [2], it is

natural to ask what the hypergraphs look like with spectral radius slightly greater than ρr. Such

question has been answered for graphs. Cvetković et al. [7] gave a nearly complete description

of all graphs G with 2 < ρ(G) <
√
2 +
√
5. Their description was completed by Brouwer and

Neumaier [8]. Namely, the graphs that satisfy this condition are isomorphic to E(1, b, c) for

b ≥ 2, E(2, 2, c) for c ≥ 3, and G1,a:b:1,c for a ≥ 3, c ≥ 2, b > a+ c.

r r r r r r rp p p p p p p p p p p p p p

r

E1,b,c

r r r r r rp p p p p p p

r

r

E2,2,c

r r r r r r r r r rp p p p p p p p p p p p p p p p p p p p p

r r

G1,a:b:1,c

Figure 1 The graphs with spectral radius between 2 and
√

2 +
√
5.

Observe that
√
2 +
√
5 is the limit of the spectral radii of the sequence of graphs E1,b,c as

b, c go to infinity. This motivates us to consider the limit of the spectral radii of the sequence of

the following 3-uniform hypergraphs F
(3)
1,b,c.

· · ·· · ·

Figure 2 Hypergraphs F
(3)
1,b,c

←
b
→c

In hypergraphs F
(3)
1,b,c, there is one branching edge, and above the branching edge there is one

edge. On the left of the branching edge there are b edges, while on the right of the branching edge

there are c edges. Let ρ′3 = limb,c→∞ ρ(F
(3)
1,b,c). It turns out (see Lemma 2.12) that ρ′3 = 2β−1/3
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where β = − 1
6 ·(100+12 ·

√
69)

1

3 − 2

3·(100+12·
√
69)

1

3

+ 4
3 ≈ 0.2451223338 is the real root of the cubic

equation x3−4x2+5x−1 = 0. By this cubic equation, we list other remarkable identities satisfied

by β with proofs left to the readers. All these identities are sometimes useful for computing the

spectral radius.
β

(1 − β)2
=

1−
√
1− 4β

2
, (1.2)

β

(1− β)
= (

1 +
√
1− 4β

2
)2, (1.3)

1−
√
β(1 − β) =

√
β

(1− β)
, (1.4)

(1− β)5 = β. (1.5)

In this paper, for r ≥ 3, setting ρ′r = β−1/r, we classify almost all r-uniform hypergraphs

with spectral radius in (ρr, ρ
′
r). The paper is organized as follows. In Section 2, we introduce the

notation and some important lemmas for computing the spectral radius. In Section 3, we classify

all connected 3-uniform hypergraphs with the spectral radius between ρ3 and ρ′3. In Section 4,

by the methods of reduction and extension we classify all connected r-uniform hypergraphs with

the spectral radius between ρr and ρ′r.

2. Notation and lemmas

2.1. Some lemmas of finite hypergraphs

The following lemma has been proved in several papers.

Lemma 2.1 ([4–6]) If G is a connected r-uniform hypergraph, and H is a proper subgraph of

G, then

ρ(H) < ρ(G).

In our previous paper [2], we discovered an efficient way to compute the spectral radius

ρ(H), in particular when H is a hypertree. We give the following definitions and lemmas from

[2] for the reader’s convenience.

Definition 2.2 ([2]) A weighted incidence matrix B of a hypergraph H = (V,E) is a |V | × |E|
matrix such that for any vertex v and any edge e, the entry B(v, e) > 0 if v ∈ e and B(v, e) = 0

if v 6∈ e.

Definition 2.3 ([2]) A hypergraph H is called α-normal if there exists a weighted incidence

matrix B satisfying

(1)
∑

e : v∈eB(v, e) = 1, for any v ∈ V (H).

(2)
∏

v∈e B(v, e) = α, for any e ∈ E(H).

Moreover, the incidence matrix B is called consistent if for any cycle v0e1v1e2 . . . vl (vl = v0)

l∏

i=1

B(vi, ei)

B(vi−1, ei)
= 1.
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In this case, we call H consistently α-normal.

The following important lemma was proved in [2].

Lemma 2.4 ([2, Lemma 3]) Let H be a connected r-uniform hypergraph. Then the spectral

radius of H is ρ(H) if and only if H is consistently α-normal with α = (/ρ(H))r.

Often we need compare the spectral radius with a particular value.

Definition 2.5 ([2]) A hypergraph H is called α-subnormal if there exists a weighted incidence

matrix B satisfying

(1)
∑

e : v∈eB(v, e) ≤ 1, for any v ∈ V (H).

(2)
∏

v∈e B(v, e) ≥ α, for any e ∈ E(H).

Moreover, H is called strictly α-subnormal if it is α-subnormal but not α-normal.

We have the following lemma.

Lemma 2.6 ([2, Lemma 4]) Let H be an r-uniform hypergraph. If H is α-subnormal, then

the spectral radius of H satisfies ρ(H) ≤ α− 1

r . Moreover, if H is strictly α-subnormal, then

ρ(H) < α− 1

r .

Definition 2.7 ([2]) A hypergraphH is called α-supernormal if there exists a weighted incidence

matrix B satisfying

(1)
∑

e : v∈eB(v, e) ≥ 1, for any v ∈ V (H).

(2)
∏

v∈e B(v, e) ≤ α, for any e ∈ E(H).

Moreover, H is called strictly α-supernormal if it is α-supernormal but not α-normal.

Lemma 2.8 ([2, Lemma 5]) Let H be an r-uniform hypergraph. If H is strictly and consistently

α-supernormal, then the spectral radius of H satisfies ρ(H) > α− 1

r .

2.2. Spectral radius of infinite hypergraphs with bounded degrees

Often, we need to consider the spectral radius of infinite hypergraph on countably many

vertices. An infinite and connected r-uniform hypergraph H is said to have bounded-degree

if there exists an M such that dv ≤ M for any vertex v. Given a bounded-degree r-uniform

hypergraph H with countably many vertices, we can order the vertices v1, v2, . . . , so that the

induced graph Hn := H [v1, v2, . . . , vn] is still connected. Notice that ρ(Hn) is an increasing

function of n and is bounded by M . Thus the limit limn→∞ ρ(Hn) always exists, and is called

the spectral radius of H .

Lemma 2.9 For any connected infinite r-uniform hypergraph H with bounded degree, the

definition of the spectral radius above is independent of the choice of the order of the vertices.

Proof Suppose v1, v2, . . . and v′1, v
′
2, . . . , are the lists of two orderings of the vertices. There are

two injective maps φi : N→ N (for i = 1, 2) such that

{v1, v2, . . . , vn} ⊂ {v′1, v′2, . . . , v′φ1(n)
};

{v′1, v′2, . . . , v′n} ⊂ {v1, v2, . . . , vφ2(n)}.
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Let Hn := H [v1, v2, . . . , vn] and H ′
n = H [v′1, v

′
2, . . . , v

′
n]. We have Hn ⊆ H ′

φ1(n)
and H ′

n ⊆
Hφ2(n). This implies that ρ(Hn) ≤ ρ(H ′

φ(n)) and ρ(H ′
n) ≤ ρ(Hφ(n)). Thus limn→∞ ρ(Hn) ≤

limn→∞ ρ(H ′
n) and limn→∞ ρ(H ′

n) ≤ limn→∞ ρ(Hn). Hence the two limits are equal. �

We can extend the definition of α-normal labellings to infinite hypergraphs H .

Lemma 2.10 Suppose 0 < β < 1
4 , let f(x) =

β
1−x and fn(x) = f(fn−1(x)) for n ≥ 2.

(1) If 0 < x ≤ 1−
√
1−4β
2 , then fn(x) is increasing with respect to n, and limn→∞ fn(x) =

1−
√
1−4β
2 . Moreover, when x = 1−

√
1−4β
2 , fn(x) =

1−
√
1−4β
2 , ∀n ≥ 1.

(2) If 1−√
1−4β
2 < x < 1+

√
1−4β
2 , then fn(x) is decreasing with respect to n, and

lim
n→∞

fn(x) =
1−
√
1− 4β

2
.

Proof We first prove item (1). Since 0 < x ≤ 1−
√
1−4β
2 , the function f(x) = β

1−x attains its

maximum when x = 1−
√
1−4β
2 . So, 0 < f(x) ≤ 1−

√
1−4β
2 . Similarly, f2(x) = β

1−f(x) attains

its maximum when f(x) = 1−
√
1−4β
2 , so we get 0 < f2(x) ≤ 1−

√
1−4β
2 . In the same way, we

get 0 < fn(x) ≤ 1−
√
1−4β
2 , for all n ≥ 3. On the other hand, if 0 < fn−1(x) ≤ 1−

√
1−4β
2 ,

we can see β − fn−1(x) + (fn−1(x))
2 attains its minimum when fn−1(x) =

1−
√
1−4β
2 , and thus

β−fn−1(x)+(fn−1(x))
2 > 0. So when 0 < fn(x) <

1−
√
1−4β
2 , we can get that fn(x)−fn−1(x) =

β
1−fn−1(x)

− fn−1(x) =
β−fn−1(x)+(fn−1(x))

2

1−fn−1(x)
> 0 for all n ≥ 2. So, fn−1(x) < fn(x) for all n ≥ 2.

Thus, we let limn→∞ fn(x) = f0(x), and since fn(x) =
β

1−fn−1(x)
, we get f0(x) =

1−
√
1−4β
2 . The

proof of item (2) is very similar to the proof of item (1), so we omit the proof here. �

Lemma 2.11 Let the following graph denote D1,1,mF
(3)
1,n ,

......

Figure 3 Hypergraphs D1,1,mF
(3)
1,n

→m ←m →n ←n

and the spectral radius of D1,1,mF
(3)
1,n be ρ(D1,1,mF

(3)
1,n). Then,

(1) If ρ(D1,1,mF
(3)
1,n) > ρ′3, then ρ(D1,1,m+1F

(3)
1,n+1) > ρ′3;

(2) If ρ(D1,1,mF
(3)
1,n) < ρ′3, then ρ(D1,1,m+1F

(3)
1,n+1) < ρ′3.

Proof First, we prove the fact that if 0 < x · y < β
1−β , then (1− β

x )(1−
β
y ) <

β
1−β . In fact,

(1− β

x
)(1− β

y
) = 1− β · x+ y

xy
+

β2

xy
≤ (1 − β√

xy
)2.

Since 0 < x · y < β
1−β , we can easily check that −

√
β

1−β < 1 − β√
xy < 1 −

√
β(1− β) =

√
β

1−β .

So, we have (1− β
x )(1−

β
y ) <

β
1−β .

We label this hypergraph as follows
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...... y1ynx0 x′
0
x1

z0

xm z1 z2

z3
w0 w1

Figure 4 The labelling of hypergraphs D1,1,mF
(3)
1,n

In order to guarantee all the edges except for the black one satisfy Definition 2.3, we set x0 =

x′
0 = y1 = z0 = β, w0 = 1 − x0 − x′

0 = 1 − 2β, w1 = 1 − x1, z3 = 1 − β, x1 = f(2β),

xm = fm(2β), yn = fn−1(β). z1 = 1− fm(2β), z2 = 1− fn−1(β). Setting x = z1 = 1 − fm(2β),

y = z2 = 1 − fn−1(β), if xy = (1 − fm(2β))(1 − fn−1(β)) <
β

1−β , then we get (1 − β
x )(1 −

β
y ) =

(1 − fm+1(2β))(1 − fn(β)) <
β

1−β , that is, if ρ(D1,1,mF
(3)
1,n) < ρ′3, then ρ(D1,1,m+1F

(3)
1,n+1) < ρ′3.

The proof of item (2) is very similar to the proof of item (1), so we omit the proof here. �

Finally, we show that ρ′r is the limit value of the spectral radii of F
(3)
1,n,m.

Lemma 2.12 Let the following graph denote F
(r)
1,n,m,

· · ·· · ·

Figure 5 Hypergraphs F
(r)
1,n,m

←n →m

and the spectral radius of F
(r)
1,n,m be ρ(F

(r)
1,n,m). Then, when n,m → ∞, limn,m→∞ ρ(F

(r)
1,n,m) =

ρ′r = β− 1

r , where β = − 1
6 · (100 + 12 ·

√
69)

1

3 − 2

3·(100+12·
√
69)

1

3

+ 4
3 ≈ 0.2451223338.

Proof We label this graph as follows

· · ·· · ·

Figure 6 The labelling of hypergraphs F
(r)
1,n,m

←
n

→
m

x1 x2 xn z1z2

z3

z0

Set x1 = z0 = β, z3 = 1 − β, x2 = f(β), xn = fn−1(β), z1 = 1 − xn = 1 − fn−1(β). By the

symmetry, we set z2 = 1− fm−1(β). When m,n→∞, by the first item of Lemma 2.10, we have

z1 = z2 = 1− fn−1(β) =
1+

√
1−4β
2 . Set z1 · z2 · z3 = β, that is (1+

√
1−4β
2 )2 · (1− β) = β. Solving

this equality with maple program, we get β = − 1
6 · (100 + 12 ·

√
69)

1

3 − 2

3·(100+12·
√
69)

1

3

+ 4
3 ≈

0.2451223338. By Lemma 2.4, we get limn,m→∞ ρ(F
(r)
1,n,m) = ρ′r = β− 1

r . �

3. 3-uniform hypergraphs

Set β = − 1
6 · (100 + 12 ·

√
69)

1

3 − 2

3·(100+12·
√
69)

1

3

+ 4
3 , ρ

′
3 = 2β− 1

3 and ρ3 = 2 3
√
4. Then we

have the following theorem.
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Theorem 3.1 Let ρ(H) be the spectral radius of a connected 3-uniform hypergraph H . If

ρ3 < ρ(H) ≤ ρ′3, then H must be one of the following hypergraphs:

· · ·
E

(3)
1,2:k:1,1 k ≥ 0

· · ·
E

(3)
1,2,n n ≥ 5

E
(3)
1,3,4

......

E
(3)
1,1:m:1,n

... ...

...
i↑

←j →
k

F
(3)
i,j,k

... ... ...

...
...

i↑

←j →m

l↑

←m →
k

G
(3)
i,j:m:l,k

Figure 7 The hypergraphs with spectral radius between ρ3 and ρ′3

In E
(3)
1,1:m:1,n, (m,n) can be of the following types:

(0, 3), (1, 3), (2, 3), (2, 4), (3, 3), (3, 4), (4, n) (3 ≤ n ≤ 5), (5, n) (3 ≤ n ≤ 6), (m,n) (m ≥ 6, 3 ≤
n ≤ m).

In F
(3)
i,j,k, (i, j, k) can be of the following types:

(1, j,∞) (j ≥ 1), (2, 2, k) (k ≥ 8), (2, 3, k) (k ≥ 5), (2, 4, k) (3 ≤ k ≤ 6), (3, 3, k) (k = 3, 4).

In G
(3)
i,j:m:l,k, when i 6= 1 and l 6= 1, (i, j,m, l, k) can have the following choices:

(2, 3,m, 1, 1) (m ≥ 0), (2, 2,m, 2, 2) (0 ≤ m < 9), (2, 2,m, 1, 3) (0 ≤ m < 9), (2, 2,m, 1, 2) (m ≥
2).

When i = 1 and l = 1, there is not obvious rule.

Proof We first show that all 3-graphs listed in Theorem 3.1 have spectral radius ρ(H) satisfying

ρ3 < ρ(H) ≤ ρ′3. We will first show that they are β-normal or β-subnormal.

Suppose that H is a hypergraph with spectral radius ρ(H) satisfying ρ3 < ρ(H) ≤ ρ′3, but

not on the list.

Case 1 If H contains the following graph C
(3+)
2 or C

′(3+)
2

C
(3)+
2 C

′(3)+
2

Figure 8 Hypergraphs C
(3+)
2 and C

′(3+)
2

we label the above two graphs as follows
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x1x2

x3x4

x6x5

y1
y2y3

y4y5

Figure 9 The labellings of hypergraphs C
(3+)
2 and C

′(3+)
2

In graph C
(3)+
2 , we set x1 = β, x2 = 1 − β, x3 = x6 =

√
β

1−β , x4 = x5 =
√
β. In graph

C
′(3)+
2 , we set y1 = β, y2 = y3 = 1−β

2 , y4 = x5 = 2β
1−β . We can check that x3 + x4 ≈ 1.0649 > 1

and y4 + y5 ≈ 1.2989 > 1. So, by Lemma 2.8, we get ρ(C
(3)+
2 ) > ρ′3 and ρ(C

′(3)+
2 ) > ρ′3. If H

contains C
(3)+
2 or C

′(3)+
2 , by Lemma 2.1, we get ρ(H) > ρ′3. Therefore, if ρ(H) ≤ ρ′3 , then in

graph H , any two edges intersect at most one vertex. Thus H must be a simple hypergraph.

Case 2 If H has a cycle, and H contains the following graph C
(3+)
n or C

′(3+)
n

· · ·

C
(3)+
n

· · ·

C
′(3)+
n

Figure 10 Hypergraphs C
(3)+
n and C

′(3)+
n

we label this graph as follows

· · ·

C
(3)+
n

xn

x0
xn+1

x1

h2
h1

· · ·

C
′(3)+
n

yn
z1 z2

y1

Figure 11 The labellings of C
(3)+
n and C

′(3)+
n

Set h1 = x0 = z2 = y1 = β, h2 = 1−β. By Lemma 2.10, we set x1 = f(β). By the first item

of Lemma 2.10, we have xn = fn(β) =
1−

√
1−4β
2 − ε. In the same way, we get yn = 1−

√
1−4β
2 − ε.

Setting xn+1 = 1 − xn = 1+
√
1−4β
2 + ε, z1 = 1 − yn − z2 = 1+

√
1−4β
2 − β + ε, we can check

x0 · h2 · xn+1 < x0 · h2 · 1+
√
1−4β
2 ≈ 0.1054 < β, and y1 · z1 · 1 < β · (1+

√
1−4β
2 − β) ≈ 0.0796 < β

So, by Lemma 2.8, we get ρ(C
(3)+
n ) > ρ′3 and ρ(C

′(3)+
n ) > ρ′3. Therefore, if H contains C

(3)+
n or

C
′(3)+
n , by Lemma 2.1, we get ρ(H) > ρ′3. Thus, we can assume that H is a hypertree.

Case 3 If ∃ v ∈ V (H), such that dv ≥ 5, then H contains S
(3)
5 .
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Figure 12 Hypergraph S
(3)
5

We label this graph as follows

β

Figure 13 The partial labelling of S
(3)
5

By the symmetry, we only label one branching. We can check 5β ≈ 1.225611667 > 1, so, by

Lemmas 2.1 and 2.8, we get ρ(H) > ρ′3. Thus we can assume that every vertex in H has degree

at most 4.

Case 4 If ∃ v ∈ V (H), such that dv = 4, and H contains the following graph S
(3)+
4 .

Figure 14 Hypergraph S
(3)+
4

We label this graph as follows

x1

x2x3

x4
x5
x6

Figure 15 The labelling of S
(3)+
4

where x1 = β, x2 = 1− β, x3 = β
1−β , x4 = x5 = x6 = β. We can check that x3 + x4 + x5 + x6 ≈

1.0601 > 1, so, by Lemmas 2.1 and 2.8, we get ρ(H) > ρ(S
(3)+
4 ) > ρ′3. Thus, since ρ(S

(3)
4 ) = ρ3

and ρ(S
(3)+
4 ) > ρ′3, we can assume that every vertex in H has degree at most 3.

Case 5 If there exists at least three vertexes vi, such that dvi = 3, i = 1, 2, 3, then H contains

the following graph D
(3)
1,1:k:1,2 as a subgraph.

· · ·

Figure 16 Hypergraphs D
(3)
1,1:k:1,2
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We label the graph as follows.

· · ·x0
x′
0

x1 x2
xn y1y2y3
y4

Figure 17 The labelling of D
(3)
1,1:k:1,2

Set x0 = x′
0 = β. Since 1−

√
1−4β
2 < 2β < 1+

√
1−4β
2 , by the second item of Lemma 2.10, we set

x1 = f(2β), and get xn = fn(2β) =
1−

√
1−4β
2 +ε. We also set y1 = y4 = β, y2 = 1−β, y3 = β

1−β .

We can check that y3 + y4 + xn = 1.0 + ε > 1. So, by Lemmas 2.1 and 2.8, we get ρ(H) > ρ′3.

If there exist at least two vertexes vi, such that dvi = 3, i = 1, 2, and H contains the graph

D
(3)
1,1:k:1,2 or the following graph as a subgraph,

· · · · · ·

Figure 18 Hypergraphs D
(3)
1,1:h:1:w:1,1

we label the graph as follows.

· · · · · ·w1
w2

x1
xm ynz2z1

z3

z0

y1 h1
h2

Figure 19 The labelling of D
(3)
1,1:h:1:w:1,1

Let w1 = w2 = z0 = β, z3 = 1 − β. Since 1−
√
1−4β
2 < 2β < 1+

√
1−4β
2 . By the second

item of Lemma 2.10, we set x1 = f(2β), and get xm = fm(2β) = 1−
√
1−4β
2 + ε. So, z1 =

1 − xm = 1+
√
1−4β
2 − ε. By the symmetry, z2 = 1+

√
1−4β
2 − ε. We can check that z1 · z2 · z3 <

(1 − β) · (1+
√
1−4β
2 )2 = β. So, by Lemmas 2.1 and 2.8, we get ρ(H) > ρ′3. Thus, we can assume

that there exists at most one vertex v with degree dv = 3.

Case 6 Suppose that v is the unique vertex with degree 3 and all other vertices have degree

at most 2. We denote by E
(3)
i,j,k the 3-uniform hypergraphs obtained by attaching three paths of

length i, j, k to the vertex v.

↓
i

←
j

→
k

Figure 20 Hypergraphs E
(3)
i,j,k
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Consider the three branches attached to v.

(1) Since ρ(E
(3)
2,2,2) = ρ3, we consider E

(3)
2,2,3.

Figure 21 Hypergraphs E
(3)
2,2,3

We label the above graphs as follows

x1 x3 x5x2 x4 x6 x7 x8

x9

x10

x11

Figure 22 The labelling of E
(3)
2,2,3

Setting x1 = x8 = x11 = β, x2 = x7 = x10 = 1 − β, x3 = x6 = x9 = β
1−β , x5 = 1−2β

1−β ,

x4 = β(1−β)
1−2β , we can check that x3 + x4 + x9 ≈ 1.0124 > 1. So, by Lemmas 2.1 and 2.8, if H

contains E
(3)
2,2,3, we get ρ(H) > ρ′3. Thus we can assume that the first branch consists of only one

edge.

(2) An edge e is called a branching edge if every vertex of e is not a leaf vertex. When

i = 1, j = 2 and the third branch consists of a branching edge, then H consists of a subgraph

D1,2,kF
(3)
1,1 shown below.

x2 ykx1 x3 z1 z2

z3

w2

w1

x4

· · · y1

Figure 23 Hypergraphs D1,2,kF
(3)
1,1 and the labellings

Setting x1 = x4 = w1 = w2 = β, x2 = z2 = z3 = 1 − β, x3 = β
1−β , z1 = β

(1−β)2 , we can

prove β
(1−β)2 = 1−√

1−4β
2 . Let y1 = β

1−z1
= 1−√

1−4β
2 . By Lemma 2.10, we get yk = 1−√

1−4β
2 .

We can check that x3 + x4 + yk = 1. So, D1,2,kF
(3)
1,1 has a β-normal labeling, and we have

ρ(D1,2,kF
(3)
1,1 ) = ρ′3. Therefore, when i ≥ 1, j ≥ 2, k ≥ 2 and there is at least one branching

edge in graph H , by Lemma 2.1, we get ρ(H) ≥ ρ′3, and the equality holds iff H is the same as

D1,2,kF
(3)
1,1 , k ≥ 0.

(3) When i = 1, j = 2, k = n+1, and there is no branching edge, then, the graphH = E
(3)
1,2,k

is as follows.
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y2 xny1 y3 x0

y4

· · ·

Figure 24 Hypergraphs E
(3)
1,2,k and the labellings

Setting x0 = β, n = k−1, then when n→∞, by Lemma 2.10, we get xn = fn(β) =
1−

√
1−4β
2 −ε.

Set y1 = y4 = β, y2 = 1− β, y3 = β
1−β . We can check that y3 + y4 + xn = 1− ε < 1. So, we get

ρ(H) < ρ′3. Since ρ(E3
1,2,5) = ρ3, thus, when n > 5, ρ3 < ρ(H) < ρ′3.

(4) The first branch consists of only one edge, while the second branch consists of three

edges, and the third branch consists of k edges. There is no branching edge. When k = 3,

ρ(H) = ρ3. When k = 4, the graph is as follows.

x1 x3 x5 x7 x9x2 x4 x6 x8 x10

x13

x11 x12

Figure 25 Hypergraphs E
(3)
1,3,4 and the labellings

Setting x1 = x12 = x13 = β, x2 = x11 = 1 − β, x3 = x10 = β
1−β , x4 = x9 = 1−2β

1−β , x5 =

x8 = β(1−β)
1−2β , x7 = β2−3β+1

1−2β , x6 = β(1−2β)
β2−3β+1 , we can check that x5 + x6 + x13 ≈ 0.9929 < 1. So,

ρ3 < ρ(E
(3)
1,3,4) < ρ′3. When k = 5, the graph is as follows.

x1 x3 x5 x7 x9x2 x4 x6 x8 x10

x15

x11 x12x13 x14

Figure 26 Hypergraphs E
(3)
1,3,5 and the labellings

Setting x1 = x14 = x15 = β, x2 = x13 = 1 − β, x3 = x12 = β
1−β , x4 = x11 = 1−2β

1−β ,

x5 = x10 = β(1−β)
1−2β , x6 = β(β2−3β+1)

3β2−4β+1 , we can check that x5 + x6 + x15 ≈ 1.0066 > 1. So,

ρ(E
(3)
1,3,5) > ρ′3.

(5) The first branch consists of only one edge, while the second and the third branches each

consist of at least four edges. There is no branching edge. The graph E
(3)
1,4,4 is as follows.

x1 x3 x5 x7 x9x2 x4 x6 x8 x10

x15

x11 x12x13 x14

Figure 27 Hypergraphs E
(3)
1,4,4 and the labellings
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Setting x1 = x14 = x15 = β, x2 = x13 = 1 − β, x3 = x12 = β
1−β , x4 = x11 = 1−2β

1−β , x5 = x10 =
β(1−β)
1−2β , x6 = β(β2−3β+1)

3β2−4β+1 , we can check that x7 + x8 + x15 ≈ 1.0147 > 1. So, ρ(E
(3)
1,4,4) > ρ′3.

Thus, if H contains E
(3)
1,4,4 as a proper subgraph, ρ(H) > ρ(E

(3)
1,4,4) > ρ′3.

(6) The first branch and the second branch each consist of only one edge, while the third

branch consists of k edges. When there is no branching edge in the third branch, for any

k ≥ 1, ρ(H) < ρ3. When there are two branching edges in the third branch, and the graph

D1,1,mG0,1:n:1,1 is as follows.

... ...

Figure 28 Hypergraphs D1,1,mG0,1:n:1,1

We label this graph as follows.

... ... y1x0
x′
0

x1

z1

xm z3 z4

z2

y2

y3

y4

y5

Figure 29 The labelling of D1,1,mG0,1:n:1,1

Set x0 = x′
0 = y1 = y3 = z1 = β, z2 = y2 = y4 = 1 − β, x1 = f(2β), xm = fm(2β),

z3 = 1− fm(2β), y5 = β
(1−β)2 . Since

1−
√
1−4β
2 < 2β < 1+

√
1−4β
2 , by Lemma 2.10, we get that xm

is decreasing with respect to m. Thus, z3 = 1 − xm is increasing with respect to m. So, when

m → ∞, we get xm = 1−
√
1−4β
2 + ε and z3 = 1 − xm = 1+

√
1−4β
2 − ε. Since β

(1−β)2 = 1−
√
1−4β
2 ,

we get z4 = 1−
√
1−4β
2 . We can check that z2 · z3 · z4 < β · (1 − β) < β, so D1,1,mG0,1:n:1,1

is β-supernormal and we have ρ(D1,1,mG0,1:n:1,1) > ρ′3. Therefore, if H contains at least two

branching edges in the third branch, then H contains graph D1,1,mG0,1:n:1,1 as a subgraph, thus

ρ(H) > ρ(D1,1,mG0,1:n:1,1) > ρ′3. So, we may assume that there is only one branching edge in

the third branch in graph H .

When there is one branching edge in the third branch, and the graph D1,1,mF
(3)
1,n is as

follows.

......

Figure 30 Hypergraphs D1,1,mF
(3)
1,n
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We label this graph as follows.

...... y1ynx0
x′
0

x1

z1

xm z3 z4

z2

Figure 31 The labelling of D1,1,mF
(3)
1,n

Set x0 = x′
0 = y1 = z1 = β, z2 = 1 − β, x1 = f(2β), xm = fm(2β), yn = fn−1(β).

z3 = 1 − fm(2β), z4 = 1 − fn−1(β). Since 1−
√
1−4β
2 < 2β < 1+

√
1−4β
2 , 0 < β < 1−

√
1−4β
2 , by

Lemma 2.10, we get that xm is decreasing with respect to m, and yn is increasing with respect to

n. Thus, z3 = 1− xm is increasing with respect to m, and z4 = 1− yn is decreasing with respect

to n. Moreover, we have ρ(B̃D
3

n) = ρ(D1,1,mF
(3)
1,2 ) = ρ3, ρ(D1,1,mF

(3)
1,1 ) < ρ3, where m ≥ 0, so if

ρ3 < ρ(D1,1,mF
(3)
1,n) ≤ ρ′3, we only need consider n ≥ 3. Let us consider the following cases:

(a) When m = 0, n = 3, we set z3 = 1 − 2β, z4 = 1 − f2(β) = 1 − β(1−β)
1−2β . We can check

that z2 · z3 · z4 = β , so ρ(D1,1,0F
(3)
1,3 ) = ρ′3. When n > 3, since z4 = 1 − yn is decreasing with

respect to n, we have z2 · z3 · z4 < β, so we get ρ(D1,1,0F
(3)
1,n) > ρ′3.

(b) When m = 1, if n = 3, we can check that z2 · z3 · z4 ≈ 0.2496 > β, so D1,1,1F
(3)
1,3

is strictly β-subnormal; if n = 4, we can check that z2 · z3 · z4 ≈ 0.2410 < β, so D1,1,1F
(3)
1,3 is

strictly β-supernormal. Therefore, when m = 1, n = 3, ρ3 < ρ(D1,1,1F
(3)
1,3 ) < ρ′3; when n ≥ 4,

ρ(D1,1,1F
(3)
1,n) > ρ′3.

(c) When m = 2, n = 4, we can check that z2 · z3 · z4 = β , so D1,1,2F
(3)
1,4 is β-normal and

we have ρ(D1,1,2F
(3)
1,4 ) = ρ′3. By Lemma 2.1, when n = 3, we get ρ3 < ρ(D1,1,2F

(3)
1,3 ) < ρ′3; when

n > 4, ρ(D1,1,2F
(3)
1,n) > ρ′3.

(d) When m = 3, if n = 4, since D1,1,2F
(3)
1,4 is β-normal, by Lemma 2.10, we get D1,1,3F

(3)
1,4 is

strictly β-subnormal, so, ρ3 < ρ(D1,1,3F
(3)
1,4 ) < ρ′3; if n = 5, we can check that z2 ·z3 ·z4 ≈ 0.2432,

so D1,1,3F
(3)
1,5 is β-supernormal and we have ρ(D1,1,3F

(3)
1,5 ) > ρ′3. So, when m = 3, n = 3, 4, we

get ρ3 < ρ(D1,1,2F
(3)
1,n) < ρ′3; when n ≥ 5, (D1,1,2F

(3)
1,n) > ρ′3.

(e) When m = 4, if n = 5, we can check that z2 · z3 · z4 ≈ 0.2462, so D1,1,4F
(3)
1,5 is β-

subnormal and we have ρ(D1,1,4F
(3)
1,5 ) < ρ′3; if n = 6, we can check that z2 · z3 · z4 ≈ 0.2425, so

D1,1,4F
(3)
1,5 is β-supernormal and we have ρ(D1,1,4F

(3)
1,6 ) > ρ′3. So, by Lemmas 2.6 and 2.1, when

m = 4, n = 3, 4, 5, we get ρ3 < ρ(D1,1,4F
(3)
1,n) < ρ′3; when n ≥ 6, we have ρ(D1,1,4F

(3)
1,n) > ρ′3.

(f) When m = 5, if n = 6, we can check that z2 · z3 · z4 = β , so D1,1,5F
(3)
1,6 is β-normal and

we have ρ(D1,1,5F
(3)
1,6 ) = ρ′3; if n = 3, 4, 5, by Lemma 2.1, ρ3 < ρ(D1,1,4F

(3)
1,n) < ρ′3; if n ≥ 7, by

Lemma 2.1, we have ρ(D1,1,5F
(3)
1,n) > ρ′3.

(g) When m = 6, if n = 6, since D1,1,5F
(3)
1,6 is β-normal, by Lemma 2.10 we get D1,1,6F

(3)
1,6 is

strictly β-subnormal, so, ρ3 < ρ(D1,1,6F
(3)
1,6 ) < ρ′3; if n = 7, we can check that z2 ·z3 ·z4 ≈ 0.2246,

so D1,1,6F
(3)
1,7 is β-supernormal and we have ρ(D1,1,6F

(3)
1,7 ) > ρ′3. Therefore, by Lemma 2.1, when

m = 6, if 3 ≤ n ≤ 6, we have ρ3 < ρ(D1,1,6F
(3)
1,n) < ρ′3; if n ≥ 7, we have ρ(D1,1,6F

(3)
1,n) > ρ′3.
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(h) For any m = n ≥ 7, since ρ3 < ρ(D1,1,6F
(3)
1,6 ) < ρ′3, by Lemma 2.11, we have ρ3 <

ρ(D1,1,nF
(3)
1,n) < ρ′3. By Lemma 2.1, when m ≥ 7 and 3 ≤ n < m, we have ρ3 < ρ(D1,1,nF

(3)
1,n) <

ρ′3. On the other hand, since ρ(D1,1,6F
(3)
1,7 ) > ρ′3, by Lemmas 2.11 and 2.1, when m ≥ 7 and

n > m, we have ρ(D1,1,mF
(3)
1,n) > ρ′3.

Case 7 We denote by F
(3)
i,j,k the 3-uniform hypergraphs obtained by attaching three paths of

length i, j, k to each vertex of one edge.

... ...

...

i ↑

←
j

→
k

Figure 32 Hypergraphs F
(3)
i,j,k

We denote by G
(3)
i,j:m:l,k the 3-uniform hypergraphs obtained by attaching four paths of length i,

j, l, k to four ending vertices of path of length m+ 2 as shown in the following figure:

... ... ...

...
...

i ↑

←
j

→
m

l ↑

←
m

→
k

Figure 33 Hypergraphs G
(3)
i,j:m:l,k

Now we can assume that vertices in H have degrees at most 2. We will divide it into the following

subcases according to the number of branching edges.

(1) If H has no branching edge, then H is a path, we have ρ(H) < ρ3.

(2) If H has exactly one branching edge, then H = F
(3)
i,j,k. We label this graph as follows.

... ...

...

i ↑

←
j

→
k

x1 x2 xj z1 z2

z3

w1

wi

y1yk

Figure 34 Hypergraphs F
(3)
i,j,k and the labellings
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Set x1 = y1 = w1 = β, xj = f j−1(β), yk = fk−1(β), wi = f i−1(β), z1 = 1 − xj = 1 − f j−1(β),

z2 = 1− yk = 1− fk−1(β), z3 = 1− wi = 1− f i−1(β). Then, we consider the following cases.

(a) When i = 1, j, k→∞, by Lemma 2.12, we get ρ(F1,∞,∞) = ρ′3. Since ρ(F1,5,6) = ρ(F1,4,8) =

ρ(F1,3,14) = ρ3, when i = 1, j = 5, k > 6, or i = 1, j > 5, k ≥ 6 ,or i = 1, j = 4, k > 8, or

i = 1, j > 4, k ≥ 8, or i = 1, j = 3, k > 14, or i = 1, j > 3, k ≥ 14 , we have ρ3 < ρ(Fi,j,k) < ρ′3.

(b) When i = j = 2, k →∞, by Lemma 2.10, we set yk = 1−
√
1−4β
2 − ε and z2 = 1− yk =

1+
√
1−4β
2 + ε. We can check that z1 · z2 · z3 > z1 · z3 · 1+

√
1−4β
2 ≈ 0.2599 > β, so, we get

ρ(F2,2,∞) < ρ′3. Thus, since ρ(F2,2,7) = ρ3, we get that ρ3 < ρ(F2,2,k) < ρ′3 for any k ≥ 8.

When i = 2, j = 3, we consider ρ(F2,3,k). When k→∞, we set z2 = 1−yk == 1+
√
1−4β
2 +ε,

and we can check that z1 · z2 · z3 > z1 · z3 · 1+
√
1−4β
2 = β. Since ρ(F2,3,4) = ρ3, we get

ρ3 < ρ(F2,3,k) < ρ′3 for any k ≥ 5.

When i = 2, j = 4, if k = 6, we can check that z1 · z2 · z3 ≈ 0.2462 > β; if k = 7, we can

check that z1 · z2 · z3 ≈ 0.2436 < β. Since ρ(F2,3,4) = ρ3, we get ρ3 < ρ(F2,4,k) < ρ′3 for any

4 ≤ k ≤ 6.

When i = 2, j = 5, if k = 5, we can check that z1 · z2 · z3 ≈ 0.2444 < β. So, we get

ρ(F2,5,5) > ρ′3. Thus, when i = 2, k ≥ j ≥ 5, by Lemma 2.1, we have ρ(F2,j,k) > ρ′3.

(c) When i = 3, if j = 3, k = 4, we can check that z1 · z2 · z3 ≈ 0.2496 > β; if j = 3,k = 5,

we can check that z1 · z2 · z3 ≈ 0.2441 < β. Since ρ(F3,3,3) > ρ3, we get ρ3 < ρ(F3,3,k) < ρ′3 for

any k = 3, 4, and ρ(F3,3,k) > ρ′3 for any k ≥ 5.

When i = 3, if j = 4, k = 4, we can check that z1 · z2 · z3 ≈ 0.2411 < β. So, when i = 3, if

k ≥ j ≥ 4, we have ρ(F3,j,k) > ρ′3.

(d) When i = 4, if j = 4, k = 4, we can check that z1 · z2 · z3 ≈ 0.2328 < β. So, when

k ≥ j ≥ i ≥ 4, we have ρ(Fi,j,k) > ρ′3.

(3) If H has exactly two branching edges, then H = G
(3)
i,j:m:l,k (i ≤ j, l ≤ k). We label this

graph as follows.

... ... ...

...
...

i ↑

←
j

→
m

l ↑

←
m

→
k

Figure 35 Hypergraphs G
(3)
i,j:m:l,k and the labellings

x1 x2 xj z1 z2

z3

w1

wi

q1

ql

h1hm y1ykz4 z5

z6

We set x1 = y1 = w1 = q1 = β, xj = f j−1(β), yk = fk−1(β), wi = f i−1(β), ql = f l−1(β),

z1 = 1 − xj = 1 − f j−1(β), h1 = β
1−z4

, hs = β
1−hs−1

for any 2 ≤ s ≤ m, z2 = 1 − hm,

z3 = 1− wi = 1− f i−1(β), z5 = 1− yk = 1− fk−1(β), z6 = 1− ql = 1− f l−1(β), z4 = β
z5·z6 .

Firstly, we assume that i 6= 1 and l 6= 1 at the same time and consider the following cases.
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(a) When i+ j = 5 and l + k = 3, that is i = 2, j = 3, l = 1, k = 2. We can compute that

z4 = β
1−2β = f(2β). So, we set h1 = f2(2β), hm = fm+1(2β). Since 1−

√
1−4β
2 < 2β < 1+

√
1−4β
2 ,

by Lemma 2.10, we get that hm is decreasing with respect to m, and z2 = 1 − hm is increasing

with respect to m. So, when m→∞, we get hm = 1−
√
1−4β
2 +ε and z2 = 1−hm = 1+

√
1−4β
2 −ε.

We can check that z1 ·z2 ·z3 < z1 ·z3 · 1+
√
1−4β
2 = β . So, for any m ≥ 0, we get ρ(G2,3:m:1,2) > ρ′3.

Thus, for any m ≥ 0, i+ j ≥ 5, and l + k ≥ 3, we have ρ(Gi,j:m:l,k) > ρ′3.

(b) When i+ j = 5 and l+ k = 2, that is i = 2, j = 3, l = 1, k = 1. We can compute that

z4 = β
(1−β)2 . Since

β
(1−β)2 = 1−

√
1−4β
2 , we get hm = 1−

√
1−4β
2 . So, z2 =

1+
√
1−4β
2 . We can check

that z1 · z2 · z3 = β. Thus, for any m ≥ 0, we have ρ(G2,3:m:1,1) = ρ′3.

(c) When i+ j = 4 and l+ k = 4, if i = 2, j = 2, l = 2, k = 2, we get z4 = β(1−β)2

(1−2β)2 and we

can compute that 1−√
1−4β
2 ≈ 0.4302 < z4 ≈ 0.5375 < 1+

√
1−4β
2 ≈ 0.5698. By Lemma 2.10, we

get hm is decreasing with respect to m. We can check that when m = 8, z1 · z2 · z3 ≈ 0.2433 < β,

while when m = 9, z1 · z2 · z3 ≈ 0.2465 > β. So, for any m ≥ 9, we get ρ(G2,2:m:2,2) < ρ′3, and

for any 0 ≤ m < 9, ρ(G2,2:m:2,2) > ρ′3.

If i = 2, j = 2, l = 1, k = 3, since z4 = 0.5098, we can get the same results as ρ(G2,2:m:2,2),

that is, for any m ≥ 9, we get ρ(G2,2:m:1,3) < ρ′3, and for any 0 ≤ m < 9, ρ(G2,2:m:1,3) > ρ′3.

(d) When i + j = 4 and l + k = 3, that is i = 2, j = 2, l = 1, k = 2, since z4 = β
1−2β =

f(2β), we get hm = fm+1(2β). By Lemma 2.10, we get that hm is decreasing with respect

to m, and z2 = 1 − hm is increasing with respect to m. So, we can check that when m = 1

z1 · z2 · z3 ≈ 0.2442 < β, while when m = 2 z1 · z2 · z3 ≈ 0.2473 > β. So, for any m ≥ 2, we get

ρ(G2,2:m:1,2) < ρ′3, and for any 0 ≤ m < 2, ρ(G2,2:m:1,2) > ρ′3.

(e) When i+ j = 4 and l+k = 2, that is i = 2, j = 2, l = 1, k = 1, since ρ(G2,3:m:1,1) = ρ′3,

by Lemma 2.1, we get ρ(G2,2:m:1,1) < ρ′3.

When i + j ≤ 3 and l + k ≤ 3, that is a special case of the following cases.

Now, we consider i = l = 1. When j = 1, we set x1 = y1 = w1 = q1 = β,z1 = z3 =

z6 = 1 − β, z2 = β
(1−β)2 . Since β

(1−β)2 = 1−
√
1−4β
2 , we get z4 = 1+

√
1−4β
2 . When k → ∞,

z5 = 1−yk = 1−fk−1(β) = 1+
√
1−4β
2 +ε. We can check that z4 ·z5 ·z6 < (1−β)(1+

√
1−4β
2 )2 = β.

Therefore, for any m ≥ 0, k ≥ 1, we have ρ(G1,1:m:1,k) < ρ′3. Since ρ(G1,1:0:1,4) = ρ3 and

ρ(G1,1:6:1,3) = ρ3, so, if ρ3 < ρ(G1,1:m:1,k) < ρ′3, we have m ≥ 0, k ≥ 5, or m > 0, k = 4, or

m ≥ 7, k ≥ 3. When j = 2, since z2 = β
1−2β = f(2β), we have the same results as in the sixth

item of Case 6 when there is one branching edge in the third branch.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

3 2 4 6 7 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 22 23 23 24

4 6 8 9 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 24 25 25 26

5 10 11 12 14 15 16 17 18 19 20 21 22 22 23 24 25 25 26 27 27 27

6 12 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 27 28 28 29

Table 1 The values of j,k and m

When j ≥ 3, if ρ(G1,j:m:1,k) < ρ′3, we have the following table. In the first column of the
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table we set j = 3, 4, 5, 6, and in the first row we set k = 3, 4, . . . , 25. In the table, the left values

denote the minimum that m can get corresponding to the values that j and k get.

But from Table 1, we cannot get obvious rules that j, k and m can follow.

(4) H contains at least three branching edges. Since all degrees of vertices are at most 2,

any branching edges lie in a path. We consider the following graph G1,1:m:1:n:1,1

· · · · · ·
Figure 36 Hypergraphs G1,1:m:1:n:1,1

We label this graph as follows.

· · · · · ·h1 x0

h2

xmz1z2

z3

z0

Figure 37 The labelling of G1,1:m:1:n:1,1

Set h1 = h2 = z0 = β, x0 = β
(1−β)2 , z3 = 1 − β. Since β

(1−β)2 = 1−
√
1−4β
2 , we get

xm = 1−
√
1−4β
2 . So, z1 = 1 − xm = 1+

√
1−4β
2 . By the symmetry, we set z2 = 1+

√
1−4β
2 . We can

check that z1 · z2 · z3 = β. Thus, for any m ≥ 0, n ≥ 0, ρ(G1,1:m:1:n:1,1) = ρ′3. If H contains

G1,1:m:1:n:1,1 as a subgraph, then ρ(H) > ρ(G1,1:m:1:n:1,1) = ρ′3.

Therefore, all hypergraphs with spectral radius ρ(H) satisfying ρ3 < ρ(H) ≤ ρ′3 are in the

list of Theorem 3.1.

4. General k-uniform hypergraphs

For any integer r ≥ 2, let ρ′r = β− 1

r . In this section, we will classify all r-uniform connected

hypergraphs with spectral radius at most ρ′r for all r ≥ 4.

A hypergraph H = (V,E) is called reducible if every edge e contains at least one leaf vertex

ve. In this case, we can define an (r − 1)-uniform multi-hypergraph H ′ = (V ′, E′) by removing

ve from each edge e, i.e., V ′ = V \ {ve : e ∈ E} and E′ = {e − ve : e ∈ E}. We say that H ′ is

reduced from H while H extends H ′.

From [2] we have the following lemma and corollary.

Lemma 4.1 If H extends H ′, then H is consistently β-normal if and only of H ′ is consistently

β-normal for the same value of β.

Corollary 4.2 If H extends H ′, then ρ(H) = ρ′r if and only if ρ(H ′) = ρ′r−1, and ρ(H ′) < ρ′r−1

if and only if ρ(H) < ρ′r.

We will use a similar notion for those special r-uniform hypergraphs with spectral radius

at most ρ′r. We can extend the graphs in Theorem 3.1 by Corollary 4.2. Are there any new

hypergraphs not extended from the list of Theorem 3.1
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Theorem 4.3 For r ≥ 5, every r-uniform hypergraph with spectral radius at most ρ′r is

reducible. For r = 4, irreducible hypergraphs with spectral radius at most ρ′r are the following

hypergraphs.

· · ·

H ′
2 H1,1,2,3

· · ·

H1,1,1,l, l ≥ 5

Figure 38 Irreducible 4-uniform hypergraphs

Proof Let H be an r-uniform hypergraph with ρr < ρ(H) ≤ ρ′r.

(1) If H is not simple, then H contains a subgraph that consists of two edges intersecting

on s ≥ 2 vertices. Call this subgraph G
(r)
s . Define a weighted incident matrix B of G

(r)
s as

follows: for any vertex v and edge e (called the other edge e′),

B(v, e) =





1

2
, if v ∈ e ∩ e′,

1, if v ∈ e \ e′,
0, otherwise.

It is easy to check that when s ≥ 3 we have (12 )
s < β, so G

(r)
s is consistently β-supernormal and

ρ(H) > ρ′r. When s = 2, G
(r)
s is reducible to C

(3)+
n . So, if H contains G

(r)
s , ρ(H) > ρ′r.

(2) Now we assume that H is simple. If H is not a simple hypertree, then H contains a

cycle. Let Cl = v0e1v1e1 · · · vl−1elv0 be a cycle of the minimum length in H . Observe that any

vertex in ei other than vi−1 and vi must be a leaf vertex in Cl. This cycle must be equal to

C
(r)+
l , which is β-supernormal. We have ρ(H) > ρ(C

(r)+
l ) > ρ′r.

(3) Finally, we assume that H is a simple hypertree. Now assume that H is irreducible.

Following the proof in [2], we take an edge, saying F0 = {v1, v2, . . . , vr} so that each vertex vi is

in another edge Fi, for i = 1, 2, . . . , r. The subgraph consisting of edges F0, F1, . . . , Fr is called

an edge-star, denoted by S
(r)
r . Now we define B(vi, Fi) = 1

4 , B(vi, F0) = 3
4 , and B(v, Fi) = 1

for each vertex v 6= vi in Fi. Note
∏r

i=1 B(ei, F0) = (34 )
r ≤ 0.2373 < β if r ≥ 5. Thus S

(r)
r is

β-supernormal for r ≥ 5. We have ρ(H) ≥ ρ(S
(r)
r ) > ρ′r. Contradiction. Thus, every r-uniform

hypergraph for r ≥ 5 with spectral radius at most ρ′r is reducible.

· · ·

H ′
1

· · ·

H ′
2

Figure 39 Hypergraphs H ′
1 and H ′

2
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(4) It remains to consider the case r = 4. Firstly, if there is a branch containing either a

branching vertex or a branching edge, then H contains one of the following subgraphs H ′
1 and

H ′
2.

We label H ′
1 and H ′

2 as follows.

· · ·

H ′
1

x1 x2 z0
x3

x4

x6

x5

y1

y2
zm · · ·

H ′
2H ′
1

x1 x2 z0
x3

x4

x6

x5

y1

y2

zm
h1

h2

h3

Figure 40 The labellings of H ′
1 and H ′

2

In both H ′
1 and H ′

2, setting x1 = x5 = x6 = y1 = y2 = β, x2 = x3 = x4 = h1 = h2 = 1− β,

h3 = β
(1−β)2 = 1−

√
1−4β
2 z0 = β

(1−β)3 , we can check β
(1−β)3 = 1+

√
1−4β
2 . By Lemma 2.10,

we get zm = 1+
√
1−4β
2 . In H ′

1, we can check that y1 + y2 + zm ≈ 1.0601 > 1, while in H ′
2,

h3 + zm = 1−
√
1−4β
2 + 1+

√
1−4β
2 = 1. Thus, for any m ≥ 0, ρ(H ′

1) > ρ′r, ρ(H
′
2) = ρ′r. If H

contains H ′
1 or H ′

2 as a proper subgraph, then ρ(H) > ρ′r.

Now, we consider that all four branches of F0 are paths. We denote H by H
(4)
i,j,k,l, where i,

j, k, and l (i ≤ j ≤ k ≤ l) are the length of the four paths. We will first show that H1,2,2,2 is

strictly β-supernormal. We label this graph as follows.

x1 x2 z1
z3

z0

z2
z4

Figure 41 Hypergraphs H1,2,2,2 and the labellings

Set x1 = z0 = β, x2 = f(β), z1 = 1−2β
1−β , by the symmetry, z2 = z3 = z4 = 1−2β

1−β . We can

check that z1 · z2 · z3 · z4 =≈ 0.2325 < β. So, ρ(H1,2,2,2) > ρ′r.

When i = j = 1, k = 2, let the following graph denote H1,1,2,l.

· · ·

Figure 42 Hypergraphs H1,1,2,l
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We label this graph as follows.

· · ·x1 x2 z1
z3

z0

z2
z4 yl y1

z5

Figure 43 The labelling of H1,1,2,l

Setting x1 = y1 = z0 = z5 = β, x2 = f(β), z1 = 1−2β
1−β , z2 = z3 = 1 − β, yl = f l−1(β),

z4 = 1− yl. When l = 3, we can check that z1 · z2 · z3 · z4 = β. So, ρ(H1,1,2,3) = ρ′3. When l = 4,

we can check that z1 · z2 · z3 · z4 ≈ 0.2367 < β. So, ρ(H1,1,2,4) > ρ′r. Since ρ(H1,1,2,2) = ρr, we

have that only when l = 3, ρr < ρ(H1,1,2,3) = ρ′r.

When i = j = k = 1, let the following graph denote H1,1,1,l,

· · ·

Figure 44 Hypergraphs H1,1,2,l

We label this graph as follows.

· · ·x1 z1
z3

z0

z2
z4 yl y1

z5

Figure 45 The labelling of H1,1,2,l

Set x1 = y1 = z0 = z5 = β, z1 = z2 = z3 = 1 − β, yl = f l−1(β),z4 = 1 − yl. When l → ∞,

by Lemma 2.12, we set yl =
1−√

1−4β
2 − ε and z4 = 1 − yl =

1+
√
1−4β
2 + ε. We can check that

z1 · z2 · z3 · z4 > z1 · z2 · z3 · 1+
√
1−4β
2 = β. Since ρ(H1,1,1,4) < ρ4 and ρ(H1,1,1,5) > ρ4, we have

that for any l ≥ 5, ρr < ρ(H1,1,1,l) < ρ′r.

Therefore, all irreducible hypergraphs with spectral radius between at most ρ′r are classified

in the list of Theorem 4.3. �

From Corollary 4.2, Theorems 4.3 and 3.1, we have the following theorem.

Theorem 4.4 Let r ≥ 4, ρr = r
√
4 and ρ′r = β−1/r. If the spectral radius of a connected

r-uniform hypergraph H is in (ρr, ρ
′
r), then H must be one of the following hypergraphs:
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(1) r-uniform hypergraphs obtained by extending the hypergraphs on the list of Theorem

3.1 by r − 3 times.

(2) r-uniform hypergraphs obtained by extending the hypergraphs on the list of Theorem

4.3 by r − 4 times.
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