Journal of Mathematical Research with Applications Jan., 2018, Vol. 38, No. 1, pp. 1–22 DOI:10.3770/j.issn:2095-2651.2018.01.001 Http://jmre.dlut.edu.cn

Hypergraphs with Spectral Radius between Two Limit Points

Shoudong MAN^{1,*}, Linyuan LU², Shuhua ZHANG¹

1. Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China;

2. Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Abstract In this paper, we set $\rho_r = \sqrt[r]{4}$ and $\rho'_r = \beta^{-1/r}$, where $\beta = -\frac{1}{6} \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}} - \frac{2}{3 \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}}} + \frac{4}{3} \approx 0.2451223338$. We consider connected *r*-uniform hypergraphs with spectral radius between ρ_r and ρ'_r and give a description of such hypergraphs. **Keywords** *r*-uniform hypergraphs; spectral radius; α -normal

MR(2010) Subject Classification 05C50; 05C35; 05C65

1. Introduction

In 1970, Smith classified all connected graphs with the spectral radius at most 2 in [1]. Here the spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In our previous paper [2], we generalized Smith's theorem to hypergraphs and classified all connected *r*-uniform hypergraphs with the spectral radius at most $\rho_r = \sqrt[r]{4}$.

Let us review some basic notation about hypergraphs. An *r*-uniform hypergraph *H* is a pair (V, E) where *V* is the set of vertices and $E \subset {\binom{V}{r}}$ is the set of edges. The degree of vertex v, denoted by d_v , is the number of edges incident to v. If $d_v = 1$, we call v a pendant vertex or a leaf vertex in a tree. An edge e is called a branching edge if every vertex of e is not a leaf vertex. A walk on hypergraph *H* is a sequence of vertices and edges: $v_0e_1v_1e_2\ldots v_l$ satisfying that both v_{i-1} and v_i are incident to e_i for $1 \leq i \leq l$. The vertices v_0 and v_l are called the ends of the walk. The length of a walk is the number of edges on the walk. A walk is called a path if all vertices and edges in the walk are distinct. The walk is closed if $v_l = v_0$. A closed walk is called a cycle if all vertices and edges in the walk are distinct. A hypergraph *H* is called connected if for any pair of vertex (u, v), there is a path connecting u and v. A hypergraph *H* is called a hypertree if it is connected, and acyclic. A hypergraph *H* is called simple if every pair of edges intersects at most one vertex, and a simple hypergraph is usually called a linear hypergraph. In fact, any non-simple hypergraph contains at least a 2-cycle: $v_1F_1v_2F_2v_1$, i.e., $v_1, v_2 \in F_1 \cap F_2$. A hypertree is always simple.

Received May 23, 2016; Accepted September 22, 2017

Supported by the National Natural Science Foundation of China (Grant Nos. 11601368; 11401434; 11771322).

* Corresponding author

E-mail address: manshoudong@163.com (Shoudong MAN)

From [2], given an r-uniform hypergraph H, the polynomial form of H is a function $P_H(\mathbf{x})$: $\mathbb{R}^n \to \mathbb{R}$ defined for any vector $\mathbf{x} := (x_1, \ldots, x_n) \in \mathbb{R}^n$ as

$$P_H(\mathbf{x}) = r \sum_{\{i_1, i_2, \dots, i_r\} \in E(H)} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

For any $p \ge 1$, the largest *p*-eigenvalue of *H* is defined as

$$\lambda_p(H) = \max_{|\mathbf{x}|_p=1} P_H(x).$$

In this paper as in [2], we define the spectral radius of an r-uniform hypergraph H to be $\rho(H) =$ $\lambda_r(H)$. Equivalently, we have

$$\rho(H) = r \max_{\substack{\mathbf{x} \in \mathbb{R}^n_{\ge 0} \\ \mathbf{x} \neq 0}} \frac{\sum_{\{i_1, i_2, \dots, i_r\} \in E(H)} x_{i_1} x_{i_2} \cdots x_{i_r}}{\sum_{i=1}^n x_i^r}.$$
(1.1)

Here $\mathbb{R}^n_{\geq 0}$ denotes the closed orthant in \mathbb{R}^n while $\mathbb{R}^n_{>0}$ denotes the open orthant. This is a special case of p-spectral norm for p = r. The general p-spectral norm has been considered by various authors [3–6].

As we have considered the hypergraphs with spectral radius at most $\rho_r = \sqrt[r]{4}$ in [2], it is natural to ask what the hypergraphs look like with spectral radius slightly greater than ρ_r . Such question has been answered for graphs. Cvetković et al. [7] gave a nearly complete description of all graphs G with $2 < \rho(G) < \sqrt{2 + \sqrt{5}}$. Their description was completed by Brouwer and Neumaier [8]. Namely, the graphs that satisfy this condition are isomorphic to E(1, b, c) for $b \ge 2$, E(2, 2, c) for $c \ge 3$, and $G_{1,a;b;1,c}$ for $a \ge 3$, $c \ge 2$, b > a + c.

Figure 1 The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$.

Observe that $\sqrt{2+\sqrt{5}}$ is the limit of the spectral radii of the sequence of graphs $E_{1,b,c}$ as b, c go to infinity. This motivates us to consider the limit of the spectral radii of the sequence of the following 3-uniform hypergraphs $F_{1,b,c}^{(3)}$

Figure 2 Hypergraphs $F_{1\ h}^{(3)}$

In hypergraphs $F_{1,b,c}^{(3)}$, there is one branching edge, and above the branching edge there is one edge. On the left of the branching edge there are b edges, while on the right of the branching edge there are c edges. Let $\rho'_3 = \lim_{b,c\to\infty} \rho(F_{1,b,c}^{(3)})$. It turns out (see Lemma 2.12) that $\rho'_3 = 2\beta^{-1/3}$ where $\beta = -\frac{1}{6} \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}} - \frac{2}{3 \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}}} + \frac{4}{3} \approx 0.2451223338$ is the real root of the cubic equation $x^3 - 4x^2 + 5x - 1 = 0$. By this cubic equation, we list other remarkable identities satisfied by β with proofs left to the readers. All these identities are sometimes useful for computing the spectral radius.

$$\frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2},\tag{1.2}$$

$$\frac{\beta}{(1-\beta)} = (\frac{1+\sqrt{1-4\beta}}{2})^2,\tag{1.3}$$

$$1 - \sqrt{\beta(1-\beta)} = \sqrt{\frac{\beta}{(1-\beta)}},\tag{1.4}$$

$$(1-\beta)^5 = \beta. \tag{1.5}$$

In this paper, for $r \geq 3$, setting $\rho'_r = \beta^{-1/r}$, we classify almost all *r*-uniform hypergraphs with spectral radius in (ρ_r, ρ'_r) . The paper is organized as follows. In Section 2, we introduce the notation and some important lemmas for computing the spectral radius. In Section 3, we classify all connected 3-uniform hypergraphs with the spectral radius between ρ_3 and ρ'_3 . In Section 4, by the methods of reduction and extension we classify all connected *r*-uniform hypergraphs with the spectral radius between ρ_r and ρ'_r .

2. Notation and lemmas

2.1. Some lemmas of finite hypergraphs

The following lemma has been proved in several papers.

Lemma 2.1 ([4–6]) If G is a connected r-uniform hypergraph, and H is a proper subgraph of G, then

$$\rho(H) < \rho(G).$$

In our previous paper [2], we discovered an efficient way to compute the spectral radius $\rho(H)$, in particular when H is a hypertree. We give the following definitions and lemmas from [2] for the reader's convenience.

Definition 2.2 ([2]) A weighted incidence matrix B of a hypergraph H = (V, E) is a $|V| \times |E|$ matrix such that for any vertex v and any edge e, the entry B(v, e) > 0 if $v \in e$ and B(v, e) = 0 if $v \notin e$.

Definition 2.3 ([2]) A hypergraph H is called α -normal if there exists a weighted incidence matrix B satisfying

- (1) $\sum_{e: v \in e} B(v, e) = 1$, for any $v \in V(H)$.
- (2) $\prod_{v \in e} B(v, e) = \alpha$, for any $e \in E(H)$.

Moreover, the incidence matrix B is called consistent if for any cycle $v_0e_1v_1e_2...v_l$ ($v_l = v_0$)

$$\prod_{i=1}^{l} \frac{B(v_i, e_i)}{B(v_{i-1}, e_i)} = 1.$$

In this case, we call H consistently α -normal.

The following important lemma was proved in [2].

Lemma 2.4 ([2, Lemma 3]) Let H be a connected r-uniform hypergraph. Then the spectral radius of H is $\rho(H)$ if and only if H is consistently α -normal with $\alpha = (/\rho(H))^r$.

Often we need compare the spectral radius with a particular value.

Definition 2.5 ([2]) A hypergraph H is called α -subnormal if there exists a weighted incidence matrix B satisfying

(1) $\sum_{e: v \in e} B(v, e) \leq 1$, for any $v \in V(H)$.

(2) $\prod_{v \in e} B(v, e) \ge \alpha$, for any $e \in E(H)$.

Moreover, H is called strictly α -subnormal if it is α -subnormal but not α -normal.

We have the following lemma.

Lemma 2.6 ([2, Lemma 4]) Let H be an r-uniform hypergraph. If H is α -subnormal, then the spectral radius of H satisfies $\rho(H) \leq \alpha^{-\frac{1}{r}}$. Moreover, if H is strictly α -subnormal, then $\rho(H) < \alpha^{-\frac{1}{r}}$.

Definition 2.7 ([2]) A hypergraph H is called α -supernormal if there exists a weighted incidence matrix B satisfying

(1) $\sum_{e: v \in e} B(v, e) \ge 1$, for any $v \in V(H)$.

(2) $\prod_{v \in e} B(v, e) \leq \alpha$, for any $e \in E(H)$.

Moreover, H is called strictly α -supernormal if it is α -supernormal but not α -normal.

Lemma 2.8 ([2, Lemma 5]) Let H be an r-uniform hypergraph. If H is strictly and consistently α -supernormal, then the spectral radius of H satisfies $\rho(H) > \alpha^{-\frac{1}{r}}$.

2.2. Spectral radius of infinite hypergraphs with bounded degrees

Often, we need to consider the spectral radius of infinite hypergraph on countably many vertices. An infinite and connected r-uniform hypergraph H is said to have bounded-degree if there exists an M such that $d_v \leq M$ for any vertex v. Given a bounded-degree r-uniform hypergraph H with countably many vertices, we can order the vertices v_1, v_2, \ldots , so that the induced graph $H_n := H[v_1, v_2, \ldots, v_n]$ is still connected. Notice that $\rho(H_n)$ is an increasing function of n and is bounded by M. Thus the limit $\lim_{n\to\infty} \rho(H_n)$ always exists, and is called the spectral radius of H.

Lemma 2.9 For any connected infinite r-uniform hypergraph H with bounded degree, the definition of the spectral radius above is independent of the choice of the order of the vertices.

Proof Suppose v_1, v_2, \ldots and v'_1, v'_2, \ldots , are the lists of two orderings of the vertices. There are two injective maps $\phi_i \colon \mathbb{N} \to \mathbb{N}$ (for i = 1, 2) such that

$$\{v_1, v_2, \dots, v_n\} \subset \{v'_1, v'_2, \dots, v'_{\phi_1(n)}\};$$
$$\{v'_1, v'_2, \dots, v'_n\} \subset \{v_1, v_2, \dots, v_{\phi_2(n)}\}.$$

Let $H_n := H[v_1, v_2, \ldots, v_n]$ and $H'_n = H[v'_1, v'_2, \ldots, v'_n]$. We have $H_n \subseteq H'_{\phi_1(n)}$ and $H'_n \subseteq H_{\phi_2(n)}$. This implies that $\rho(H_n) \leq \rho(H'_{\phi(n)})$ and $\rho(H'_n) \leq \rho(H_{\phi(n)})$. Thus $\lim_{n\to\infty} \rho(H_n) \leq \lim_{n\to\infty} \rho(H'_n)$ and $\lim_{n\to\infty} \rho(H'_n) \leq \lim_{n\to\infty} \rho(H_n)$. Hence the two limits are equal. \Box

We can extend the definition of α -normal labellings to infinite hypergraphs H.

Lemma 2.10 Suppose
$$0 < \beta < \frac{1}{4}$$
, let $f(x) = \frac{\beta}{1-x}$ and $f_n(x) = f(f_{n-1}(x))$ for $n \ge 2$.
(1) If $0 < x \le \frac{1-\sqrt{1-4\beta}}{2}$, then $f_n(x)$ is increasing with respect to n , and $\lim_{n\to\infty} f_n(x) = \frac{1-\sqrt{1-4\beta}}{2}$. Moreover, when $x = \frac{1-\sqrt{1-4\beta}}{2}$, $f_n(x) = \frac{1-\sqrt{1-4\beta}}{2}$, $\forall n \ge 1$.
(2) If $\frac{1-\sqrt{1-4\beta}}{2} < x < \frac{1+\sqrt{1-4\beta}}{2}$, then $f_n(x)$ is decreasing with respect to n , and $\lim_{n\to\infty} f_n(x) = \frac{1-\sqrt{1-4\beta}}{2}$.

$$\lim_{n \to \infty} f_n(x) = \frac{1 - \sqrt{1 - 4\beta}}{2}.$$

Since $0 < x < \frac{1 - \sqrt{1 - 4\beta}}{2}$ the fur

Proof We first prove item (1). Since $0 < x \leq \frac{1-\sqrt{1-4\beta}}{2}$, the function $f(x) = \frac{\beta}{1-x}$ attains its maximum when $x = \frac{1-\sqrt{1-4\beta}}{2}$. So, $0 < f(x) \leq \frac{1-\sqrt{1-4\beta}}{2}$. Similarly, $f_2(x) = \frac{\beta}{1-f(x)}$ attains its maximum when $f(x) = \frac{1-\sqrt{1-4\beta}}{2}$, so we get $0 < f_2(x) \leq \frac{1-\sqrt{1-4\beta}}{2}$. In the same way, we get $0 < f_n(x) \leq \frac{1-\sqrt{1-4\beta}}{2}$, for all $n \geq 3$. On the other hand, if $0 < f_{n-1}(x) \leq \frac{1-\sqrt{1-4\beta}}{2}$, we can see $\beta - f_{n-1}(x) + (f_{n-1}(x))^2$ attains its minimum when $f_{n-1}(x) = \frac{1-\sqrt{1-4\beta}}{2}$, and thus $\beta - f_{n-1}(x) + (f_{n-1}(x))^2 > 0$. So when $0 < f_n(x) < \frac{1-\sqrt{1-4\beta}}{2}$, we can get that $f_n(x) - f_{n-1}(x) = \frac{\beta}{1-f_{n-1}(x)} - f_{n-1}(x) = \frac{\beta-f_{n-1}(x)+(f_{n-1}(x))^2}{1-f_{n-1}(x)} > 0$ for all $n \geq 2$. So, $f_{n-1}(x) < f_n(x)$ for all $n \geq 2$. Thus, we let $\lim_{n\to\infty} f_n(x) = f_0(x)$, and since $f_n(x) = \frac{\beta}{1-f_{n-1}(x)}$, we get $f_0(x) = \frac{1-\sqrt{1-4\beta}}{2}$. The proof of item (2) is very similar to the proof of item (1), so we omit the proof here. \Box

Lemma 2.11 Let the following graph denote $D_{1,1,m}F_{1,n}^{(3)}$,

Figure 3 Hypergraphs $D_{1,1,m}F_{1,n}^{(3)}$

and the spectral radius of $D_{1,1,m}F_{1,n}^{(3)}$ be $\rho(D_{1,1,m}F_{1,n}^{(3)})$. Then,

- (1) If $\rho(D_{1,1,m}F_{1,n}^{(3)}) > \rho'_3$, then $\rho(D_{1,1,m+1}F_{1,n+1}^{(3)}) > \rho'_3$;
- (2) If $\rho(D_{1,1,m}F_{1,n}^{(3)}) < \rho'_3$, then $\rho(D_{1,1,m+1}F_{1,n+1}^{(3)}) < \rho'_3$.

Proof First, we prove the fact that if $0 < x \cdot y < \frac{\beta}{1-\beta}$, then $(1 - \frac{\beta}{x})(1 - \frac{\beta}{y}) < \frac{\beta}{1-\beta}$. In fact,

$$(1-\frac{\beta}{x})(1-\frac{\beta}{y}) = 1-\beta \cdot \frac{x+y}{xy} + \frac{\beta^2}{xy} \le (1-\frac{\beta}{\sqrt{xy}})^2.$$

Since $0 < x \cdot y < \frac{\beta}{1-\beta}$, we can easily check that $-\sqrt{\frac{\beta}{1-\beta}} < 1 - \frac{\beta}{\sqrt{xy}} < 1 - \sqrt{\beta(1-\beta)} = \sqrt{\frac{\beta}{1-\beta}}$. So, we have $(1 - \frac{\beta}{x})(1 - \frac{\beta}{y}) < \frac{\beta}{1-\beta}$.

We label this hypergraph as follows

Figure 4 The labelling of hypergraphs $D_{1,1,m}F_{1,n}^{(3)}$

In order to guarantee all the edges except for the black one satisfy Definition 2.3, we set $x_0 = x'_0 = y_1 = z_0 = \beta$, $w_0 = 1 - x_0 - x'_0 = 1 - 2\beta$, $w_1 = 1 - x_1$, $z_3 = 1 - \beta$, $x_1 = f(2\beta)$, $x_m = f_m(2\beta)$, $y_n = f_{n-1}(\beta)$. $z_1 = 1 - f_m(2\beta)$, $z_2 = 1 - f_{n-1}(\beta)$. Setting $x = z_1 = 1 - f_m(2\beta)$, $y = z_2 = 1 - f_{n-1}(\beta)$, if $xy = (1 - f_m(2\beta))(1 - f_{n-1}(\beta)) < \frac{\beta}{1-\beta}$, then we get $(1 - \frac{\beta}{x})(1 - \frac{\beta}{y}) = (1 - f_m(2\beta))(1 - f_{n-1}(\beta)) < \frac{\beta}{1-\beta}$, that is, if $\rho(D_{1,1,m}F_{1,n}^{(3)}) < \rho'_3$, then $\rho(D_{1,1,m+1}F_{1,n+1}^{(3)}) < \rho'_3$. The proof of item (2) is very similar to the proof of item (1), so we omit the proof here. \Box

Finally, we show that ρ'_r is the limit value of the spectral radii of $F_{1,n,m}^{(3)}$.

Lemma 2.12 Let the following graph denote $F_{1,n,m}^{(r)}$,

Figure 5 Hypergraphs $F_{1,n,m}^{(r)}$

and the spectral radius of $F_{1,n,m}^{(r)}$ be $\rho(F_{1,n,m}^{(r)})$. Then, when $n, m \to \infty$, $\lim_{n,m\to\infty} \rho(F_{1,n,m}^{(r)}) = \rho'_r = \beta^{-\frac{1}{r}}$, where $\beta = -\frac{1}{6} \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}} - \frac{2}{3 \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}}} + \frac{4}{3} \approx 0.2451223338$.

Proof We label this graph as follows

Figure 6 The labelling of hypergraphs $F_{1,n,m}^{(r)}$

Set $x_1 = z_0 = \beta$, $z_3 = 1 - \beta$, $x_2 = f(\beta)$, $x_n = f_{n-1}(\beta)$, $z_1 = 1 - x_n = 1 - f_{n-1}(\beta)$. By the symmetry, we set $z_2 = 1 - f^{m-1}(\beta)$. When $m, n \to \infty$, by the first item of Lemma 2.10, we have $z_1 = z_2 = 1 - f_{n-1}(\beta) = \frac{1 + \sqrt{1 - 4\beta}}{2}$. Set $z_1 \cdot z_2 \cdot z_3 = \beta$, that is $(\frac{1 + \sqrt{1 - 4\beta}}{2})^2 \cdot (1 - \beta) = \beta$. Solving this equality with maple program, we get $\beta = -\frac{1}{6} \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}} - \frac{2}{3 \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}}} + \frac{4}{3} \approx 0.2451223338$. By Lemma 2.4, we get $\lim_{n,m\to\infty} \rho(F_{1,n,m}^{(r)}) = \rho'_r = \beta^{-\frac{1}{r}}$. \Box

3. 3-uniform hypergraphs

Set $\beta = -\frac{1}{6} \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}} - \frac{2}{3 \cdot (100 + 12 \cdot \sqrt{69})^{\frac{1}{3}}} + \frac{4}{3}$, $\rho'_3 = 2\beta^{-\frac{1}{3}}$ and $\rho_3 = 2\sqrt[3]{4}$. Then we have the following theorem.

Theorem 3.1 Let $\rho(H)$ be the spectral radius of a connected 3-uniform hypergraph H. If $\rho_3 < \rho(H) \le \rho'_3$, then H must be one of the following hypergraphs:

Figure 7 The hypergraphs with spectral radius between ρ_3 and ρ_3'

In $E_{1,1:m:1,n}^{(3)}$, (m,n) can be of the following types: (0,3), (1,3), (2,3), (2,4), (3,3), (3,4), (4,n) (3 \le n \le 5), (5,n) (3 \le n \le 6), (m,n) (m \ge 6, 3 \le n \le m).

In $F_{i,j,k}^{(3)}$, (i, j, k) can be of the following types:

 $(1, j, \infty)$ $(j \ge 1), (2, 2, k)$ $(k \ge 8), (2, 3, k)$ $(k \ge 5), (2, 4, k)$ $(3 \le k \le 6), (3, 3, k)$ (k = 3, 4).In $G_{i,j;m;l,k}^{(3)}$, when $i \ne 1$ and $l \ne 1$, (i, j, m, l, k) can have the following choices:

 $(2,3,m,1,1) \ (m\geq 0), \ (2,2,m,2,2) \ (0\leq m<9), \ (2,2,m,1,3) \ (0\leq m<9), \ (2,2,m,1,2) \ (m\geq 2).$

When i = 1 and l = 1, there is not obvious rule.

Proof We first show that all 3-graphs listed in Theorem 3.1 have spectral radius $\rho(H)$ satisfying $\rho_3 < \rho(H) \le \rho'_3$. We will first show that they are β -normal or β -subnormal.

Suppose that H is a hypergraph with spectral radius $\rho(H)$ satisfying $\rho_3 < \rho(H) \le \rho'_3$, but not on the list.

Case 1 If H contains the following graph $C_2^{(3+)}$ or $C_2^{'(3+)}$

Figure 8 Hypergraphs $C_2^{(3+)}$ and $C_2^{'(3+)}$

we label the above two graphs as follows

Figure 9 The labellings of hypergraphs $C_2^{(3+)}$ and $C_2^{'(3+)}$

In graph $C_2^{(3)+}$, we set $x_1 = \beta$, $x_2 = 1 - \beta$, $x_3 = x_6 = \sqrt{\frac{\beta}{1-\beta}}$, $x_4 = x_5 = \sqrt{\beta}$. In graph $C_2^{'(3)+}$, we set $y_1 = \beta$, $y_2 = y_3 = \frac{1-\beta}{2}$, $y_4 = x_5 = \frac{2\beta}{1-\beta}$. We can check that $x_3 + x_4 \approx 1.0649 > 1$ and $y_4 + y_5 \approx 1.2989 > 1$. So, by Lemma 2.8, we get $\rho(C_2^{(3)+}) > \rho'_3$ and $\rho(C_2^{'(3)+}) > \rho'_3$. If H contains $C_2^{(3)+}$ or $C_2^{'(3)+}$, by Lemma 2.1, we get $\rho(H) > \rho'_3$. Therefore, if $\rho(H) \le \rho'_3$, then in graph H, any two edges intersect at most one vertex. Thus H must be a simple hypergraph.

Case 2 If H has a cycle, and H contains the following graph $C_n^{(3+)}$ or $C_n^{'(3+)}$

Figure 10 Hypergraphs $C_n^{(3)+}$ and $C_n^{'(3)+}$

we label this graph as follows

Figure 11 The labellings of $C_n^{(3)+}$ and $C_n^{'(3)+}$

Set $h_1 = x_0 = z_2 = y_1 = \beta$, $h_2 = 1 - \beta$. By Lemma 2.10, we set $x_1 = f(\beta)$. By the first item of Lemma 2.10, we have $x_n = f_n(\beta) = \frac{1 - \sqrt{1 - 4\beta}}{2} - \varepsilon$. In the same way, we get $y_n = \frac{1 - \sqrt{1 - 4\beta}}{2} - \varepsilon$. Setting $x_{n+1} = 1 - x_n = \frac{1 + \sqrt{1 - 4\beta}}{2} + \varepsilon$, $z_1 = 1 - y_n - z_2 = \frac{1 + \sqrt{1 - 4\beta}}{2} - \beta + \varepsilon$, we can check $x_0 \cdot h_2 \cdot x_{n+1} < x_0 \cdot h_2 \cdot \frac{1 + \sqrt{1 - 4\beta}}{2} \approx 0.1054 < \beta$, and $y_1 \cdot z_1 \cdot 1 < \beta \cdot (\frac{1 + \sqrt{1 - 4\beta}}{2} - \beta) \approx 0.0796 < \beta$ So, by Lemma 2.8, we get $\rho(C_n^{(3)+}) > \rho'_3$ and $\rho(C_n^{'(3)+}) > \rho'_3$. Therefore, if H contains $C_n^{(3)+}$ or $C_n^{'(3)+}$, by Lemma 2.1, we get $\rho(H) > \rho'_3$. Thus, we can assume that H is a hypertree.

Case 3 If $\exists v \in V(H)$, such that $d_v \ge 5$, then H contains $S_5^{(3)}$.

Figure 12 Hypergraph $S_5^{(3)}$

We label this graph as follows

Figure 13 The partial labelling of $S_5^{(3)}$

By the symmetry, we only label one branching. We can check $5\beta \approx 1.225611667 > 1$, so, by Lemmas 2.1 and 2.8, we get $\rho(H) > \rho'_3$. Thus we can assume that every vertex in H has degree at most 4.

Case 4 If $\exists v \in V(H)$, such that $d_v = 4$, and H contains the following graph $S_4^{(3)+}$.

Figure 14 Hypergraph $S_4^{(3)+}$

We label this graph as follows

Figure 15 The labelling of $S_A^{(3)+}$

where $x_1 = \beta$, $x_2 = 1 - \beta$, $x_3 = \frac{\beta}{1-\beta}$, $x_4 = x_5 = x_6 = \beta$. We can check that $x_3 + x_4 + x_5 + x_6 \approx 1.0601 > 1$, so, by Lemmas 2.1 and 2.8, we get $\rho(H) > \rho(S_4^{(3)+}) > \rho'_3$. Thus, since $\rho(S_4^{(3)}) = \rho_3$ and $\rho(S_4^{(3)+}) > \rho'_3$, we can assume that every vertex in H has degree at most 3.

Case 5 If there exists at least three vertexes v_i , such that $d_{v_i} = 3, i = 1, 2, 3$, then H contains the following graph $D_{1,1:k:1,2}^{(3)}$ as a subgraph.

Figure 16 Hypergraphs $D_{1,1:k:1,2}^{(3)}$

We label the graph as follows.

Figure 17 The labelling of $D_{1,1:k:1,2}^{(3)}$

Set $x_0 = x'_0 = \beta$. Since $\frac{1-\sqrt{1-4\beta}}{2} < 2\beta < \frac{1+\sqrt{1-4\beta}}{2}$, by the second item of Lemma 2.10, we set $x_1 = f(2\beta)$, and get $x_n = f_n(2\beta) = \frac{1-\sqrt{1-4\beta}}{2} + \varepsilon$. We also set $y_1 = y_4 = \beta$, $y_2 = 1-\beta$, $y_3 = \frac{\beta}{1-\beta}$. We can check that $y_3 + y_4 + x_n = 1.0 + \varepsilon > 1$. So, by Lemmas 2.1 and 2.8, we get $\rho(H) > \rho'_3$.

If there exist at least two vertexes v_i , such that $d_{v_i} = 3, i = 1, 2$, and H contains the graph $D_{1,1:k:1,2}^{(3)}$ or the following graph as a subgraph,

Figure 18 Hypergraphs $D_{1,1:h:1:w:1,1}^{(3)}$

we label the graph as follows.

Figure 19 The labelling of $D_{1,1:h:1:w:1,1}^{(3)}$

Let $w_1 = w_2 = z_0 = \beta$, $z_3 = 1 - \beta$. Since $\frac{1-\sqrt{1-4\beta}}{2} < 2\beta < \frac{1+\sqrt{1-4\beta}}{2}$. By the second item of Lemma 2.10, we set $x_1 = f(2\beta)$, and get $x_m = f_m(2\beta) = \frac{1-\sqrt{1-4\beta}}{2} + \varepsilon$. So, $z_1 = 1 - x_m = \frac{1+\sqrt{1-4\beta}}{2} - \varepsilon$. By the symmetry, $z_2 = \frac{1+\sqrt{1-4\beta}}{2} - \varepsilon$. We can check that $z_1 \cdot z_2 \cdot z_3 < (1-\beta) \cdot (\frac{1+\sqrt{1-4\beta}}{2})^2 = \beta$. So, by Lemmas 2.1 and 2.8, we get $\rho(H) > \rho'_3$. Thus, we can assume that there exists at most one vertex v with degree $d_v = 3$.

Case 6 Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2. We denote by $E_{i,j,k}^{(3)}$ the 3-uniform hypergraphs obtained by attaching three paths of length i, j, k to the vertex v.

Figure 20 Hypergraphs $E_{i.i.k}^{(3)}$

10

Consider the three branches attached to v.

(1) Since $\rho(E_{2,2,2}^{(3)}) = \rho_3$, we consider $E_{2,2,3}^{(3)}$.

Figure 21 Hypergraphs $E_{2,2,3}^{(3)}$

We label the above graphs as follows

Figure 22 The labelling of $E_{2,2,3}^{(3)}$

Setting $x_1 = x_8 = x_{11} = \beta$, $x_2 = x_7 = x_{10} = 1 - \beta$, $x_3 = x_6 = x_9 = \frac{\beta}{1-\beta}$, $x_5 = \frac{1-2\beta}{1-\beta}$, $x_4 = \frac{\beta(1-\beta)}{1-2\beta}$, we can check that $x_3 + x_4 + x_9 \approx 1.0124 > 1$. So, by Lemmas 2.1 and 2.8, if H contains $E_{2,2,3}^{(3)}$, we get $\rho(H) > \rho'_3$. Thus we can assume that the first branch consists of only one edge.

(2) An edge e is called a branching edge if every vertex of e is not a leaf vertex. When i = 1, j = 2 and the third branch consists of a branching edge, then H consists of a subgraph $D_{1,2,k}F_{1,1}^{(3)}$ shown below.

Figure 23 Hypergraphs $D_{1,2,k}F_{1,1}^{(3)}$ and the labellings

Setting $x_1 = x_4 = w_1 = w_2 = \beta$, $x_2 = z_2 = z_3 = 1 - \beta$, $x_3 = \frac{\beta}{1-\beta}$, $z_1 = \frac{\beta}{(1-\beta)^2}$, we can prove $\frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2}$. Let $y_1 = \frac{\beta}{1-z_1} = \frac{1-\sqrt{1-4\beta}}{2}$. By Lemma 2.10, we get $y_k = \frac{1-\sqrt{1-4\beta}}{2}$. We can check that $x_3 + x_4 + y_k = 1$. So, $D_{1,2,k}F_{1,1}^{(3)}$ has a β -normal labeling, and we have $\rho(D_{1,2,k}F_{1,1}^{(3)}) = \rho'_3$. Therefore, when $i \ge 1, j \ge 2, k \ge 2$ and there is at least one branching edge in graph H, by Lemma 2.1, we get $\rho(H) \ge \rho'_3$, and the equality holds iff H is the same as $D_{1,2,k}F_{1,1}^{(3)}, k \ge 0$.

(3) When i = 1, j = 2, k = n+1, and there is no branching edge, then, the graph $H = E_{1,2,k}^{(3)}$ is as follows.

Figure 24 Hypergraphs $E_{1,2,k}^{(3)}$ and the labellings

Setting $x_0 = \beta$, n = k - 1, then when $n \to \infty$, by Lemma 2.10, we get $x_n = f_n(\beta) = \frac{1 - \sqrt{1 - 4\beta}}{2} - \varepsilon$. Set $y_1 = y_4 = \beta$, $y_2 = 1 - \beta$, $y_3 = \frac{\beta}{1 - \beta}$. We can check that $y_3 + y_4 + x_n = 1 - \varepsilon < 1$. So, we get $\rho(H) < \rho'_3$. Since $\rho(E^3_{1,2,5}) = \rho_3$, thus, when n > 5, $\rho_3 < \rho(H) < \rho'_3$.

(4) The first branch consists of only one edge, while the second branch consists of three edges, and the third branch consists of k edges. There is no branching edge. When k = 3, $\rho(H) = \rho_3$. When k = 4, the graph is as follows.

Figure 25 Hypergraphs $E_{1,3,4}^{(3)}$ and the labellings

Setting $x_1 = x_{12} = x_{13} = \beta$, $x_2 = x_{11} = 1 - \beta$, $x_3 = x_{10} = \frac{\beta}{1-\beta}$, $x_4 = x_9 = \frac{1-2\beta}{1-\beta}$, $x_5 = x_8 = \frac{\beta(1-\beta)}{1-2\beta}$, $x_7 = \frac{\beta^2 - 3\beta + 1}{1-2\beta}$, $x_6 = \frac{\beta(1-2\beta)}{\beta^2 - 3\beta + 1}$, we can check that $x_5 + x_6 + x_{13} \approx 0.9929 < 1$. So, $\rho_3 < \rho(E_{1,3,4}^{(3)}) < \rho'_3$. When k = 5, the graph is as follows.

Figure 26 Hypergraphs $E_{1,3,5}^{(3)}$ and the labellings

Setting $x_1 = x_{14} = x_{15} = \beta$, $x_2 = x_{13} = 1 - \beta$, $x_3 = x_{12} = \frac{\beta}{1-\beta}$, $x_4 = x_{11} = \frac{1-2\beta}{1-\beta}$, $x_5 = x_{10} = \frac{\beta(1-\beta)}{1-2\beta}$, $x_6 = \frac{\beta(\beta^2 - 3\beta + 1)}{3\beta^2 - 4\beta + 1}$, we can check that $x_5 + x_6 + x_{15} \approx 1.0066 > 1$. So, $\rho(E_{1,3,5}^{(3)}) > \rho'_3$.

(5) The first branch consists of only one edge, while the second and the third branches each consist of at least four edges. There is no branching edge. The graph $E_{1.4.4}^{(3)}$ is as follows.

Figure 27 Hypergraphs $E_{1,4,4}^{(3)}$ and the labellings

Setting $x_1 = x_{14} = x_{15} = \beta$, $x_2 = x_{13} = 1 - \beta$, $x_3 = x_{12} = \frac{\beta}{1-\beta}$, $x_4 = x_{11} = \frac{1-2\beta}{1-\beta}$, $x_5 = x_{10} = \frac{\beta(1-\beta)}{1-2\beta}$, $x_6 = \frac{\beta(\beta^2-3\beta+1)}{3\beta^2-4\beta+1}$, we can check that $x_7 + x_8 + x_{15} \approx 1.0147 > 1$. So, $\rho(E_{1,4,4}^{(3)}) > \rho'_3$. Thus, if H contains $E_{1,4,4}^{(3)}$ as a proper subgraph, $\rho(H) > \rho(E_{1,4,4}^{(3)}) > \rho'_3$.

(6) The first branch and the second branch each consist of only one edge, while the third branch consists of k edges. When there is no branching edge in the third branch, for any $k \geq 1$, $\rho(H) < \rho_3$. When there are two branching edges in the third branch, and the graph $D_{1,1,m}G_{0,1:n:1,1}$ is as follows.

Figure 28 Hypergraphs $D_{1,1,m}G_{0,1:n:1,1}$

We label this graph as follows.

Figure 29 The labelling of $D_{1,1,m}G_{0,1:n:1,1}$

Set $x_0 = x'_0 = y_1 = y_3 = z_1 = \beta$, $z_2 = y_2 = y_4 = 1 - \beta$, $x_1 = f(2\beta)$, $x_m = f_m(2\beta)$, $z_3 = 1 - f_m(2\beta)$, $y_5 = \frac{\beta}{(1-\beta)^2}$. Since $\frac{1-\sqrt{1-4\beta}}{2} < 2\beta < \frac{1+\sqrt{1-4\beta}}{2}$, by Lemma 2.10, we get that x_m is decreasing with respect to m. Thus, $z_3 = 1 - x_m$ is increasing with respect to m. So, when $m \to \infty$, we get $x_m = \frac{1-\sqrt{1-4\beta}}{2} + \varepsilon$ and $z_3 = 1 - x_m = \frac{1+\sqrt{1-4\beta}}{2} - \varepsilon$. Since $\frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2}$, we get $z_4 = \frac{1-\sqrt{1-4\beta}}{2}$. We can check that $z_2 \cdot z_3 \cdot z_4 < \beta \cdot (1-\beta) < \beta$, so $D_{1,1,m}G_{0,1:n:1,1}$ is β -supernormal and we have $\rho(D_{1,1,m}G_{0,1:n:1,1}) > \rho'_3$. Therefore, if H contains at least two branching edges in the third branch, then H contains graph $D_{1,1,m}G_{0,1:n:1,1}$ as a subgraph, thus $\rho(H) > \rho(D_{1,1,m}G_{0,1:n:1,1}) > \rho'_3$. So, we may assume that there is only one branching edge in the third branch in graph H.

When there is one branching edge in the third branch, and the graph $D_{1,1,m}F_{1,n}^{(3)}$ is as follows.

Figure 30 Hypergraphs $D_{1,1,m}F_{1,n}^{(3)}$

We label this graph as follows.

Figure 31 The labelling of $D_{1,1,m}F_{1,n}^{(3)}$

Set $x_0 = x'_0 = y_1 = z_1 = \beta$, $z_2 = 1 - \beta$, $x_1 = f(2\beta)$, $x_m = f_m(2\beta)$, $y_n = f_{n-1}(\beta)$. $z_3 = 1 - f_m(2\beta)$, $z_4 = 1 - f_{n-1}(\beta)$. Since $\frac{1-\sqrt{1-4\beta}}{2} < 2\beta < \frac{1+\sqrt{1-4\beta}}{2}$, $0 < \beta < \frac{1-\sqrt{1-4\beta}}{2}$, by Lemma 2.10, we get that x_m is decreasing with respect to m, and y_n is increasing with respect to n. Thus, $z_3 = 1 - x_m$ is increasing with respect to m, and $z_4 = 1 - y_n$ is decreasing with respect to n. Moreover, we have $\rho(\widetilde{BD}_n^3) = \rho(D_{1,1,m}F_{1,2}^{(3)}) = \rho_3$, $\rho(D_{1,1,m}F_{1,1}^{(3)}) < \rho_3$, where $m \ge 0$, so if $\rho_3 < \rho(D_{1,1,m}F_{1,n}^{(3)}) \le \rho'_3$, we only need consider $n \ge 3$. Let us consider the following cases:

(a) When m = 0, n = 3, we set $z_3 = 1 - 2\beta$, $z_4 = 1 - f_2(\beta) = 1 - \frac{\beta(1-\beta)}{1-2\beta}$. We can check that $z_2 \cdot z_3 \cdot z_4 = \beta$, so $\rho(D_{1,1,0}F_{1,3}^{(3)}) = \rho'_3$. When n > 3, since $z_4 = 1 - y_n$ is decreasing with respect to n, we have $z_2 \cdot z_3 \cdot z_4 < \beta$, so we get $\rho(D_{1,1,0}F_{1,n}^{(3)}) > \rho'_3$.

(b) When m = 1, if n = 3, we can check that $z_2 \cdot z_3 \cdot z_4 \approx 0.2496 > \beta$, so $D_{1,1,1}F_{1,3}^{(3)}$ is strictly β -subnormal; if n = 4, we can check that $z_2 \cdot z_3 \cdot z_4 \approx 0.2410 < \beta$, so $D_{1,1,1}F_{1,3}^{(3)}$ is strictly β -supernormal. Therefore, when $m = 1, n = 3, \rho_3 < \rho(D_{1,1,1}F_{1,3}^{(3)}) < \rho'_3$; when $n \ge 4$, $\rho(D_{1,1,1}F_{1,n}^{(3)}) > \rho'_3$.

(c) When m = 2, n = 4, we can check that $z_2 \cdot z_3 \cdot z_4 = \beta$, so $D_{1,1,2}F_{1,4}^{(3)}$ is β -normal and we have $\rho(D_{1,1,2}F_{1,4}^{(3)}) = \rho'_3$. By Lemma 2.1, when n = 3, we get $\rho_3 < \rho(D_{1,1,2}F_{1,3}^{(3)}) < \rho'_3$; when $n > 4, \rho(D_{1,1,2}F_{1,n}^{(3)}) > \rho'_3$.

(d) When m = 3, if n = 4, since $D_{1,1,2}F_{1,4}^{(3)}$ is β -normal, by Lemma 2.10, we get $D_{1,1,3}F_{1,4}^{(3)}$ is strictly β -subnormal, so, $\rho_3 < \rho(D_{1,1,3}F_{1,4}^{(3)}) < \rho'_3$; if n = 5, we can check that $z_2 \cdot z_3 \cdot z_4 \approx 0.2432$, so $D_{1,1,3}F_{1,5}^{(3)}$ is β -supernormal and we have $\rho(D_{1,1,3}F_{1,5}^{(3)}) > \rho'_3$. So, when m = 3, n = 3, 4, we get $\rho_3 < \rho(D_{1,1,2}F_{1,n}^{(3)}) < \rho'_3$; when $n \ge 5$, $(D_{1,1,2}F_{1,n}^{(3)}) > \rho'_3$.

(e) When m = 4, if n = 5, we can check that $z_2 \cdot z_3 \cdot z_4 \approx 0.2462$, so $D_{1,1,4}F_{1,5}^{(3)}$ is β -subnormal and we have $\rho(D_{1,1,4}F_{1,5}^{(3)}) < \rho'_3$; if n = 6, we can check that $z_2 \cdot z_3 \cdot z_4 \approx 0.2425$, so $D_{1,1,4}F_{1,5}^{(3)}$ is β -supernormal and we have $\rho(D_{1,1,4}F_{1,6}^{(3)}) > \rho'_3$. So, by Lemmas 2.6 and 2.1, when m = 4, n = 3, 4, 5, we get $\rho_3 < \rho(D_{1,1,4}F_{1,n}^{(3)}) < \rho'_3$; when $n \ge 6$, we have $\rho(D_{1,1,4}F_{1,n}^{(3)}) > \rho'_3$.

(f) When m = 5, if n = 6, we can check that $z_2 \cdot z_3 \cdot z_4 = \beta$, so $D_{1,1,5}F_{1,6}^{(3)}$ is β -normal and we have $\rho(D_{1,1,5}F_{1,6}^{(3)}) = \rho'_3$; if n = 3, 4, 5, by Lemma 2.1, $\rho_3 < \rho(D_{1,1,4}F_{1,n}^{(3)}) < \rho'_3$; if $n \ge 7$, by Lemma 2.1, we have $\rho(D_{1,1,5}F_{1,n}^{(3)}) > \rho'_3$.

(g) When m = 6, if n = 6, since $D_{1,1,5}F_{1,6}^{(3)}$ is β -normal, by Lemma 2.10 we get $D_{1,1,6}F_{1,6}^{(3)}$ is strictly β -subnormal, so, $\rho_3 < \rho(D_{1,1,6}F_{1,6}^{(3)}) < \rho'_3$; if n = 7, we can check that $z_2 \cdot z_3 \cdot z_4 \approx 0.2246$, so $D_{1,1,6}F_{1,7}^{(3)}$ is β -supernormal and we have $\rho(D_{1,1,6}F_{1,7}^{(3)}) > \rho'_3$. Therefore, by Lemma 2.1, when m = 6, if $3 \le n \le 6$, we have $\rho_3 < \rho(D_{1,1,6}F_{1,n}^{(3)}) < \rho'_3$; if $n \ge 7$, we have $\rho(D_{1,1,6}F_{1,n}^{(3)}) > \rho'_3$.

(h) For any $m = n \ge 7$, since $\rho_3 < \rho(D_{1,1,6}F_{1,6}^{(3)}) < \rho'_3$, by Lemma 2.11, we have $\rho_3 < \rho(D_{1,1,n}F_{1,n}^{(3)}) < \rho'_3$. By Lemma 2.1, when $m \ge 7$ and $3 \le n < m$, we have $\rho_3 < \rho(D_{1,1,n}F_{1,n}^{(3)}) < \rho'_3$. On the other hand, since $\rho(D_{1,1,6}F_{1,7}^{(3)}) > \rho'_3$, by Lemmas 2.11 and 2.1, when $m \ge 7$ and n > m, we have $\rho(D_{1,1,m}F_{1,n}^{(3)}) > \rho'_3$.

Case 7 We denote by $F_{i,j,k}^{(3)}$ the 3-uniform hypergraphs obtained by attaching three paths of length i, j, k to each vertex of one edge.

We denote by $G_{i,j:m:l,k}^{(3)}$ the 3-uniform hypergraphs obtained by attaching four paths of length i, j, l, k to four ending vertices of path of length m + 2 as shown in the following figure:

Now we can assume that vertices in H have degrees at most 2. We will divide it into the following subcases according to the number of branching edges.

- (1) If H has no branching edge, then H is a path, we have $\rho(H) < \rho_3$.
- (2) If H has exactly one branching edge, then $H = F_{i,j,k}^{(3)}$. We label this graph as follows.

Figure 34 Hypergraphs $F_{i,j,k}^{(3)}$ and the labellings

Set $x_1 = y_1 = w_1 = \beta$, $x_j = f^{j-1}(\beta)$, $y_k = f^{k-1}(\beta)$, $w_i = f^{i-1}(\beta)$, $z_1 = 1 - x_j = 1 - f^{j-1}(\beta)$, $z_2 = 1 - y_k = 1 - f^{k-1}(\beta)$, $z_3 = 1 - w_i = 1 - f^{i-1}(\beta)$. Then, we consider the following cases. (a) When $i = 1, j, k \to \infty$, by Lemma 2.12, we get $\rho(F_{1,\infty,\infty}) = \rho'_3$. Since $\rho(F_{1,5,6}) = \rho(F_{1,4,8}) = \rho(F_{1,3,14}) = \rho_3$, when i = 1, j = 5, k > 6, or $i = 1, j > 5, k \ge 6$, or i = 1, j = 4, k > 8, or $i = 1, j > 4, k \ge 8$, or i = 1, j = 3, k > 14, or $i = 1, j > 3, k \ge 14$, we have $\rho_3 < \rho(F_{i,j,k}) < \rho'_3$.

(b) When $i = j = 2, k \to \infty$, by Lemma 2.10, we set $y_k = \frac{1-\sqrt{1-4\beta}}{2} - \varepsilon$ and $z_2 = 1 - y_k = \frac{1+\sqrt{1-4\beta}}{2} + \varepsilon$. We can check that $z_1 \cdot z_2 \cdot z_3 > z_1 \cdot z_3 \cdot \frac{1+\sqrt{1-4\beta}}{2} \approx 0.2599 > \beta$, so, we get $\rho(F_{2,2,\infty}) < \rho'_3$. Thus, since $\rho(F_{2,2,7}) = \rho_3$, we get that $\rho_3 < \rho(F_{2,2,k}) < \rho'_3$ for any $k \ge 8$.

When i = 2, j = 3, we consider $\rho(F_{2,3,k})$. When $k \to \infty$, we set $z_2 = 1 - y_k = = \frac{1 + \sqrt{1 - 4\beta}}{2} + \varepsilon$, and we can check that $z_1 \cdot z_2 \cdot z_3 > z_1 \cdot z_3 \cdot \frac{1 + \sqrt{1 - 4\beta}}{2} = \beta$. Since $\rho(F_{2,3,4}) = \rho_3$, we get $\rho_3 < \rho(F_{2,3,k}) < \rho'_3$ for any $k \ge 5$.

When i = 2, j = 4, if k = 6, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2462 > \beta$; if k = 7, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2436 < \beta$. Since $\rho(F_{2,3,4}) = \rho_3$, we get $\rho_3 < \rho(F_{2,4,k}) < \rho'_3$ for any $4 \le k \le 6$.

When i = 2, j = 5, if k = 5, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2444 < \beta$. So, we get $\rho(F_{2,5,5}) > \rho'_3$. Thus, when $i = 2, k \ge j \ge 5$, by Lemma 2.1, we have $\rho(F_{2,j,k}) > \rho'_3$.

(c) When i = 3, if j = 3, k = 4, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2496 > \beta$; if j = 3, k = 5, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2441 < \beta$. Since $\rho(F_{3,3,3}) > \rho_3$, we get $\rho_3 < \rho(F_{3,3,k}) < \rho'_3$ for any k = 3, 4, and $\rho(F_{3,3,k}) > \rho'_3$ for any $k \ge 5$.

When i = 3, if j = 4, k = 4, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2411 < \beta$. So, when i = 3, if $k \ge j \ge 4$, we have $\rho(F_{3,j,k}) > \rho'_3$.

(d) When i = 4, if j = 4, k = 4, we can check that $z_1 \cdot z_2 \cdot z_3 \approx 0.2328 < \beta$. So, when $k \ge j \ge i \ge 4$, we have $\rho(F_{i,j,k}) > \rho'_3$.

(3) If H has exactly two branching edges, then $H = G_{i,j:m:l,k}^{(3)}$ $(i \leq j, l \leq k)$. We label this graph as follows.

Figure 35 Hypergraphs $G_{i,j:m:l,k}^{(3)}$ and the labellings

We set $x_1 = y_1 = w_1 = q_1 = \beta$, $x_j = f^{j-1}(\beta)$, $y_k = f^{k-1}(\beta)$, $w_i = f^{i-1}(\beta)$, $q_l = f^{l-1}(\beta)$, $z_1 = 1 - x_j = 1 - f^{j-1}(\beta)$, $h_1 = \frac{\beta}{1-z_4}$, $h_s = \frac{\beta}{1-h_{s-1}}$ for any $2 \le s \le m$, $z_2 = 1 - h_m$, $z_3 = 1 - w_i = 1 - f^{i-1}(\beta)$, $z_5 = 1 - y_k = 1 - f^{k-1}(\beta)$, $z_6 = 1 - q_l = 1 - f^{l-1}(\beta)$, $z_4 = \frac{\beta}{z_5 \cdot z_6}$.

Firstly, we assume that $i \neq 1$ and $l \neq 1$ at the same time and consider the following cases.

(a) When i + j = 5 and l + k = 3, that is i = 2, j = 3, l = 1, k = 2. We can compute that $z_4 = \frac{\beta}{1-2\beta} = f(2\beta)$. So, we set $h_1 = f_2(2\beta)$, $h_m = f_{m+1}(2\beta)$. Since $\frac{1-\sqrt{1-4\beta}}{2} < 2\beta < \frac{1+\sqrt{1-4\beta}}{2}$, by Lemma 2.10, we get that h_m is decreasing with respect to m, and $z_2 = 1 - h_m$ is increasing with respect to m. So, when $m \to \infty$, we get $h_m = \frac{1-\sqrt{1-4\beta}}{2} + \varepsilon$ and $z_2 = 1 - h_m = \frac{1+\sqrt{1-4\beta}}{2} - \varepsilon$. We can check that $z_1 \cdot z_2 \cdot z_3 < z_1 \cdot z_3 \cdot \frac{1+\sqrt{1-4\beta}}{2} = \beta$. So, for any $m \ge 0$, we get $\rho(G_{2,3:m:1,2}) > \rho'_3$. Thus, for any $m \ge 0, i + j \ge 5$, and $l + k \ge 3$, we have $\rho(G_{i,j:m:l,k}) > \rho'_3$.

(b) When i + j = 5 and l + k = 2, that is i = 2, j = 3, l = 1, k = 1. We can compute that $z_4 = \frac{\beta}{(1-\beta)^2}$. Since $\frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2}$, we get $h_m = \frac{1-\sqrt{1-4\beta}}{2}$. So, $z_2 = \frac{1+\sqrt{1-4\beta}}{2}$. We can check that $z_1 \cdot z_2 \cdot z_3 = \beta$. Thus, for any $m \ge 0$, we have $\rho(G_{2,3:m:1,1}) = \rho'_3$.

(c) When i + j = 4 and l + k = 4, if i = 2, j = 2, l = 2, k = 2, we get $z_4 = \frac{\beta(1-\beta)^2}{(1-2\beta)^2}$ and we can compute that $\frac{1-\sqrt{1-4\beta}}{2} \approx 0.4302 < z_4 \approx 0.5375 < \frac{1+\sqrt{1-4\beta}}{2} \approx 0.5698$. By Lemma 2.10, we get h_m is decreasing with respect to m. We can check that when $m = 8, z_1 \cdot z_2 \cdot z_3 \approx 0.2433 < \beta$, while when $m = 9, z_1 \cdot z_2 \cdot z_3 \approx 0.2465 > \beta$. So, for any $m \ge 9$, we get $\rho(G_{2,2:m:2,2}) < \rho'_3$, and for any $0 \le m < 9, \rho(G_{2,2:m:2,2}) > \rho'_3$.

If i = 2, j = 2, l = 1, k = 3, since $z_4 = 0.5098$, we can get the same results as $\rho(G_{2,2:m:2,2})$, that is, for any $m \ge 9$, we get $\rho(G_{2,2:m:1,3}) < \rho'_3$, and for any $0 \le m < 9, \rho(G_{2,2:m:1,3}) > \rho'_3$.

(d) When i + j = 4 and l + k = 3, that is i = 2, j = 2, l = 1, k = 2, since $z_4 = \frac{\beta}{1-2\beta} = f(2\beta)$, we get $h_m = f_{m+1}(2\beta)$. By Lemma 2.10, we get that h_m is decreasing with respect to m, and $z_2 = 1 - h_m$ is increasing with respect to m. So, we can check that when m = 1 $z_1 \cdot z_2 \cdot z_3 \approx 0.2442 < \beta$, while when $m = 2 z_1 \cdot z_2 \cdot z_3 \approx 0.2473 > \beta$. So, for any $m \ge 2$, we get $\rho(G_{2,2:m:1,2}) < \rho'_3$, and for any $0 \le m < 2, \rho(G_{2,2:m:1,2}) > \rho'_3$.

(e) When i + j = 4 and l + k = 2, that is i = 2, j = 2, l = 1, k = 1, since $\rho(G_{2,3:m:1,1}) = \rho'_3$, by Lemma 2.1, we get $\rho(G_{2,2:m:1,1}) < \rho'_3$.

When $i + j \leq 3$ and $l + k \leq 3$, that is a special case of the following cases.

Now, we consider i = l = 1. When j = 1, we set $x_1 = y_1 = w_1 = q_1 = \beta, z_1 = z_3 = z_6 = 1 - \beta, z_2 = \frac{\beta}{(1-\beta)^2}$. Since $\frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2}$, we get $z_4 = \frac{1+\sqrt{1-4\beta}}{2}$. When $k \to \infty$, $z_5 = 1 - y_k = 1 - f^{k-1}(\beta) = \frac{1+\sqrt{1-4\beta}}{2} + \varepsilon$. We can check that $z_4 \cdot z_5 \cdot z_6 < (1-\beta)(\frac{1+\sqrt{1-4\beta}}{2})^2 = \beta$. Therefore, for any $m \ge 0, k \ge 1$, we have $\rho(G_{1,1:m:1,k}) < \rho'_3$. Since $\rho(G_{1,1:0:1,4}) = \rho_3$ and $\rho(G_{1,1:6:1,3}) = \rho_3$, so, if $\rho_3 < \rho(G_{1,1:m:1,k}) < \rho'_3$, we have $m \ge 0, k \ge 5$, or m > 0, k = 4, or $m \ge 7, k \ge 3$. When j = 2, since $z_2 = \frac{\beta}{1-2\beta} = f(2\beta)$, we have the same results as in the sixth item of Case 6 when there is one branching edge in the third branch.

	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
3	2	4	6	7	9	10	11	12	13	14	15	16	17	18	19	20	20	21	22	22	23	23	24
4		6	8	9	11	12	13	14	15	16	17	18	19	20	21	22	22	23	24	24	25	25	26
5			10	11	12	14	15	16	17	18	19	20	21	22	22	23	24	25	25	26	27	27	27
6				12	14	15	16	17	18	19	20	21	22	23	24	25	25	26	27	27	28	28	29

Table 1 The values of j,k and m

When $j \ge 3$, if $\rho(G_{1,j:m:1,k}) < \rho'_3$, we have the following table. In the first column of the

table we set j = 3, 4, 5, 6, and in the first row we set k = 3, 4, ..., 25. In the table, the left values denote the minimum that m can get corresponding to the values that j and k get.

But from Table 1, we cannot get obvious rules that j, k and m can follow.

(4) H contains at least three branching edges. Since all degrees of vertices are at most 2, any branching edges lie in a path. We consider the following graph $G_{1,1:m:1:n:1,1}$

Figure 36 Hypergraphs $G_{1,1:m:1:n:1,1}$

We label this graph as follows.

Figure 37 The labelling of $G_{1,1:m:1:n:1,1}$

Set $h_1 = h_2 = z_0 = \beta$, $x_0 = \frac{\beta}{(1-\beta)^2}$, $z_3 = 1-\beta$. Since $\frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2}$, we get $x_m = \frac{1-\sqrt{1-4\beta}}{2}$. So, $z_1 = 1 - x_m = \frac{1+\sqrt{1-4\beta}}{2}$. By the symmetry, we set $z_2 = \frac{1+\sqrt{1-4\beta}}{2}$. We can check that $z_1 \cdot z_2 \cdot z_3 = \beta$. Thus, for any $m \ge 0, n \ge 0$, $\rho(G_{1,1:m:1:n:1,1}) = \rho'_3$. If *H* contains $G_{1,1:m:1:n:1,1}$ as a subgraph, then $\rho(H) > \rho(G_{1,1:m:1:n:1,1}) = \rho'_3$.

Therefore, all hypergraphs with spectral radius $\rho(H)$ satisfying $\rho_3 < \rho(H) \le \rho'_3$ are in the list of Theorem 3.1.

4. General k-uniform hypergraphs

For any integer $r \ge 2$, let $\rho'_r = \beta^{-\frac{1}{r}}$. In this section, we will classify all *r*-uniform connected hypergraphs with spectral radius at most ρ'_r for all $r \ge 4$.

A hypergraph H = (V, E) is called *reducible* if every edge e contains at least one leaf vertex v_e . In this case, we can define an (r-1)-uniform multi-hypergraph H' = (V', E') by removing v_e from each edge e, i.e., $V' = V \setminus \{v_e : e \in E\}$ and $E' = \{e - v_e : e \in E\}$. We say that H' is reduced from H while H extends H'.

From [2] we have the following lemma and corollary.

Lemma 4.1 If *H* extends *H'*, then *H* is consistently β -normal if and only of *H'* is consistently β -normal for the same value of β .

Corollary 4.2 If *H* extends *H'*, then $\rho(H) = \rho'_r$ if and only if $\rho(H') = \rho'_{r-1}$, and $\rho(H') < \rho'_{r-1}$ if and only if $\rho(H) < \rho'_r$.

We will use a similar notion for those special r-uniform hypergraphs with spectral radius at most ρ'_r . We can extend the graphs in Theorem 3.1 by Corollary 4.2. Are there any new hypergraphs not extended from the list of Theorem 3.1 **Theorem 4.3** For $r \ge 5$, every r-uniform hypergraph with spectral radius at most ρ'_r is reducible. For r = 4, irreducible hypergraphs with spectral radius at most ρ'_r are the following hypergraphs.

Figure 38 Irreducible 4-uniform hypergraphs

Proof Let *H* be an *r*-uniform hypergraph with $\rho_r < \rho(H) \leq \rho'_r$.

(1) If *H* is not simple, then *H* contains a subgraph that consists of two edges intersecting on $s \ge 2$ vertices. Call this subgraph $G_s^{(r)}$. Define a weighted incident matrix *B* of $G_s^{(r)}$ as follows: for any vertex *v* and edge *e* (called the other edge *e'*),

$$B(v,e) = \begin{cases} \frac{1}{2}, & \text{if } v \in e \cap e', \\ 1, & \text{if } v \in e \setminus e', \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to check that when $s \ge 3$ we have $(\frac{1}{2})^s < \beta$, so $G_s^{(r)}$ is consistently β -supernormal and $\rho(H) > \rho'_r$. When s = 2, $G_s^{(r)}$ is reducible to $C_n^{(3)+}$. So, if H contains $G_s^{(r)}$, $\rho(H) > \rho'_r$.

(2) Now we assume that H is simple. If H is not a simple hypertree, then H contains a cycle. Let $C_l = v_0 e_1 v_1 e_1 \cdots v_{l-1} e_l v_0$ be a cycle of the minimum length in H. Observe that any vertex in e_i other than v_{i-1} and v_i must be a leaf vertex in C_l . This cycle must be equal to $C_l^{(r)+}$, which is β -supernormal. We have $\rho(H) > \rho(C_l^{(r)+}) > \rho'_r$.

(3) Finally, we assume that H is a simple hypertree. Now assume that H is irreducible. Following the proof in [2], we take an edge, saying $F_0 = \{v_1, v_2, \ldots, v_r\}$ so that each vertex v_i is in another edge F_i , for $i = 1, 2, \ldots, r$. The subgraph consisting of edges F_0, F_1, \ldots, F_r is called an edge-star, denoted by $S_r^{(r)}$. Now we define $B(v_i, F_i) = \frac{1}{4}$, $B(v_i, F_0) = \frac{3}{4}$, and $B(v, F_i) = 1$ for each vertex $v \neq v_i$ in F_i . Note $\prod_{i=1}^r B(e_i, F_0) = (\frac{3}{4})^r \leq 0.2373 < \beta$ if $r \geq 5$. Thus $S_r^{(r)}$ is β -supernormal for $r \geq 5$. We have $\rho(H) \geq \rho(S_r^{(r)}) > \rho'_r$. Contradiction. Thus, every *r*-uniform hypergraph for $r \geq 5$ with spectral radius at most ρ'_r is reducible.

Figure 39 Hypergraphs H'_1 and H'_2

(4) It remains to consider the case r = 4. Firstly, if there is a branch containing either a branching vertex or a branching edge, then H contains one of the following subgraphs H'_1 and H'_2 .

We label H'_1 and H'_2 as follows.

Figure 40 The labellings of H'_1 and H'_2

In both H'_1 and H'_2 , setting $x_1 = x_5 = x_6 = y_1 = y_2 = \beta$, $x_2 = x_3 = x_4 = h_1 = h_2 = 1 - \beta$, $h_3 = \frac{\beta}{(1-\beta)^2} = \frac{1-\sqrt{1-4\beta}}{2} z_0 = \frac{\beta}{(1-\beta)^3}$, we can check $\frac{\beta}{(1-\beta)^3} = \frac{1+\sqrt{1-4\beta}}{2}$. By Lemma 2.10, we get $z_m = \frac{1+\sqrt{1-4\beta}}{2}$. In H'_1 , we can check that $y_1 + y_2 + z_m \approx 1.0601 > 1$, while in H'_2 , $h_3 + z_m = \frac{1-\sqrt{1-4\beta}}{2} + \frac{1+\sqrt{1-4\beta}}{2} = 1$. Thus, for any $m \ge 0$, $\rho(H'_1) > \rho'_r$, $\rho(H'_2) = \rho'_r$. If H contains H'_1 or H'_2 as a proper subgraph, then $\rho(H) > \rho'_r$.

Now, we consider that all four branches of F_0 are paths. We denote H by $H_{i,j,k,l}^{(4)}$, where i, j, k, and l ($i \leq j \leq k \leq l$) are the length of the four paths. We will first show that $H_{1,2,2,2}$ is strictly β -supernormal. We label this graph as follows.

Figure 41 Hypergraphs $H_{1,2,2,2}$ and the labellings

Set $x_1 = z_0 = \beta$, $x_2 = f(\beta)$, $z_1 = \frac{1-2\beta}{1-\beta}$, by the symmetry, $z_2 = z_3 = z_4 = \frac{1-2\beta}{1-\beta}$. We can check that $z_1 \cdot z_2 \cdot z_3 \cdot z_4 = \approx 0.2325 < \beta$. So, $\rho(H_{1,2,2,2}) > \rho'_r$.

When i = j = 1, k = 2, let the following graph denote $H_{1,1,2,l}$.

Figure 42 Hypergraphs $H_{1,1,2,l}$

We label this graph as follows.

Figure 43 The labelling of $H_{1,1,2,l}$

Setting $x_1 = y_1 = z_0 = z_5 = \beta$, $x_2 = f(\beta)$, $z_1 = \frac{1-2\beta}{1-\beta}$, $z_2 = z_3 = 1-\beta$, $y_l = f^{l-1}(\beta)$, $z_4 = 1 - y_l$. When l = 3, we can check that $z_1 \cdot z_2 \cdot z_3 \cdot z_4 = \beta$. So, $\rho(H_{1,1,2,3}) = \rho'_3$. When l = 4, we can check that $z_1 \cdot z_2 \cdot z_3 \cdot z_4 \approx 0.2367 < \beta$. So, $\rho(H_{1,1,2,4}) > \rho'_r$. Since $\rho(H_{1,1,2,2}) = \rho_r$, we have that only when l = 3, $\rho_r < \rho(H_{1,1,2,3}) = \rho'_r$.

When i = j = k = 1, let the following graph denote $H_{1,1,1,l}$,

Figure 44 Hypergraphs $H_{1,1,2,l}$

We label this graph as follows.

Figure 45 The labelling of $H_{1,1,2,l}$

Set $x_1 = y_1 = z_0 = z_5 = \beta$, $z_1 = z_2 = z_3 = 1 - \beta$, $y_l = f^{l-1}(\beta), z_4 = 1 - y_l$. When $l \to \infty$, by Lemma 2.12, we set $y_l = \frac{1 - \sqrt{1 - 4\beta}}{2} - \varepsilon$ and $z_4 = 1 - y_l = \frac{1 + \sqrt{1 - 4\beta}}{2} + \varepsilon$. We can check that $z_1 \cdot z_2 \cdot z_3 \cdot z_4 > z_1 \cdot z_2 \cdot z_3 \cdot \frac{1 + \sqrt{1 - 4\beta}}{2} = \beta$. Since $\rho(H_{1,1,1,4}) < \rho_4$ and $\rho(H_{1,1,1,5}) > \rho_4$, we have that for any $l \ge 5$, $\rho_r < \rho(H_{1,1,1,l}) < \rho'_r$.

Therefore, all irreducible hypergraphs with spectral radius between at most ρ'_r are classified in the list of Theorem 4.3. \Box

From Corollary 4.2, Theorems 4.3 and 3.1, we have the following theorem.

Theorem 4.4 Let $r \ge 4$, $\rho_r = \sqrt[r]{4}$ and $\rho'_r = \beta^{-1/r}$. If the spectral radius of a connected *r*-uniform hypergraph *H* is in (ρ_r, ρ'_r) , then *H* must be one of the following hypergraphs:

(1) r-uniform hypergraphs obtained by extending the hypergraphs on the list of Theorem 3.1 by r-3 times.

(2) r-uniform hypergraphs obtained by extending the hypergraphs on the list of Theorem 4.3 by r - 4 times.

Acknowledgements We thank the referees for their time and comments.

References

- [1] J. H. SMITH. Some Properties of the Spectrum of a Graph. Combinatorial Structures and Their Applications, 1970.
- [2] Linyuan LU, Shoudong MAN. Connected hypergraphs with small spectral radius. Linear Algebra Appl., 2016, 509: 206–227.
- [3] K. C. CHANG, K. PEARSON, Tan ZHANG. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci., 2008, 6(2): 507–520.
- [4] J. COOPER, A. DUTLE. Spectra of uniform Hypergraphs. Linear Algebra Appl., 2012, **436**(9): 3268–3292.
- [5] P. KEEVASH, J. LENZ, D. MUBAYI. Spectral extremal problems for hypergraphs. SIAM J. Discrete Math., 2014, 28(4): 1838–1854.
- [6] V. NIKIFOROV. Analytic methods for uniform hypergraphs. Linear Algebra Appl., 2014, 457: 455–535.
- [7] D. M. CVETKOVIĆ, M. DOOB, I. GUTMAN. On graphs whose spectral radius does not exceed (2+√5)^{1/2}. Ars Combin., 1982, 14: 225–239.
- [8] A. E. BROUWER, A. NEUMAIER. The graphs with spectral radius between 2 and √2 + √5. Linear Algebra Appl., 1989, 115: 273–276.

22