Hypergraphs with Spectral Radius between Two Limit Points

Shoudong MAN ${ }^{1, *}$, Linyuan LU ${ }^{2}$, Shuhua ZHANG ${ }^{1}$
1. Department of Mathematics, Tianjin University of Finance and Economics, Tianjin 300222, P. R. China;
2. Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

Abstract

In this paper, we set $\rho_{r}=\sqrt[r]{4}$ and $\rho_{r}^{\prime}=\beta^{-1 / r}$, where $\beta=-\frac{1}{6} \cdot(100+12$. $\sqrt{69})^{\frac{1}{3}}-\frac{2}{3 \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}}+\frac{4}{3} \approx 0.2451223338$. We consider connected r-uniform hypergraphs with spectral radius between ρ_{r} and ρ_{r}^{\prime} and give a description of such hypergraphs.

Keywords $\quad r$-uniform hypergraphs; spectral radius; α-normal
MR(2010) Subject Classification 05C50; 05C35; 05C65

1. Introduction

In 1970, Smith classified all connected graphs with the spectral radius at most 2 in [1]. Here the spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In our previous paper [2], we generalized Smith's theorem to hypergraphs and classified all connected r-uniform hypergraphs with the spectral radius at most $\rho_{r}=\sqrt[r]{4}$.

Let us review some basic notation about hypergraphs. An r-uniform hypergraph H is a pair (V, E) where V is the set of vertices and $E \subset\binom{V}{r}$ is the set of edges. The degree of vertex v, denoted by d_{v}, is the number of edges incident to v. If $d_{v}=1$, we call v a pendant vertex or a leaf vertex in a tree. An edge e is called a branching edge if every vertex of e is not a leaf vertex. A walk on hypergraph H is a sequence of vertices and edges: $v_{0} e_{1} v_{1} e_{2} \ldots v_{l}$ satisfying that both v_{i-1} and v_{i} are incident to e_{i} for $1 \leq i \leq l$. The vertices v_{0} and v_{l} are called the ends of the walk. The length of a walk is the number of edges on the walk. A walk is called a path if all vertices and edges on the walk are distinct. The walk is closed if $v_{l}=v_{0}$. A closed walk is called a cycle if all vertices and edges in the walk are distinct. A hypergraph H is called connected if for any pair of vertex (u, v), there is a path connecting u and v. A hypergraph H is called a hypertree if it is connected, and acyclic. A hypergraph H is called simple if every pair of edges intersects at most one vertex, and a simple hypergraph is usually called a linear hypergraph. In fact, any non-simple hypergraph contains at least a 2 -cycle: $v_{1} F_{1} v_{2} F_{2} v_{1}$, i.e., $v_{1}, v_{2} \in F_{1} \cap F_{2}$. A hypertree is always simple.

[^0]From [2], given an r-uniform hypergraph H, the polynomial form of H is a function $P_{H}(\mathbf{x})$: $\mathbb{R}^{n} \rightarrow \mathbb{R}$ defined for any vector $\mathbf{x}:=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ as

$$
P_{H}(\mathbf{x})=r \sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E(H)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} .
$$

For any $p \geq 1$, the largest p-eigenvalue of H is defined as

$$
\lambda_{p}(H)=\max _{|\mathbf{x}|_{p}=1} P_{H}(x) .
$$

In this paper as in [2], we define the spectral radius of an r-uniform hypergraph H to be $\rho(H)=$ $\lambda_{r}(H)$. Equivalently, we have

$$
\begin{equation*}
\rho(H)=r \max _{\substack{x \in \mathbb{R}_{\begin{subarray}{c}{n} }}^{n}=0}\end{subarray}} \frac{\sum_{\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \in E(H)} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}}{\sum_{i=1}^{n} x_{i}^{r}} . \tag{1.1}
\end{equation*}
$$

Here $\mathbb{R}_{\geq 0}^{n}$ denotes the closed orthant in \mathbb{R}^{n} while $\mathbb{R}_{>0}^{n}$ denotes the open orthant. This is a special case of p-spectral norm for $p=r$. The general p-spectral norm has been considered by various authors [3-6].

As we have considered the hypergraphs with spectral radius at most $\rho_{r}=\sqrt[r]{4}$ in [2], it is natural to ask what the hypergraphs look like with spectral radius slightly greater than ρ_{r}. Such question has been answered for graphs. Cvetković et al. [7] gave a nearly complete description of all graphs G with $2<\rho(G)<\sqrt{2+\sqrt{5}}$. Their description was completed by Brouwer and Neumaier [8]. Namely, the graphs that satisfy this condition are isomorphic to $E(1, b, c)$ for $b \geq 2, E(2,2, c)$ for $c \geq 3$, and $G_{1, a: b: 1, c}$ for $a \geq 3, c \geq 2, b>a+c$.

Figure 1 The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$.
Observe that $\sqrt{2+\sqrt{5}}$ is the limit of the spectral radii of the sequence of graphs $E_{1, b, c}$ as b, c go to infinity. This motivates us to consider the limit of the spectral radii of the sequence of the following 3 -uniform hypergraphs $F_{1, b, c}^{(3)}$.

Figure 2 Hypergraphs $F_{1, b, c}^{(3)}$
In hypergraphs $F_{1, b, c}^{(3)}$, there is one branching edge, and above the branching edge there is one edge. On the left of the branching edge there are b edges, while on the right of the branching edge there are c edges. Let $\rho_{3}^{\prime}=\lim _{b, c \rightarrow \infty} \rho\left(F_{1, b, c}^{(3)}\right.$. It turns out (see Lemma 2.12) that $\rho_{3}^{\prime}=2 \beta^{-1 / 3}$
where $\beta=-\frac{1}{6} \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}-\frac{2}{3 \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}}+\frac{4}{3} \approx 0.2451223338$ is the real root of the cubic equation $x^{3}-4 x^{2}+5 x-1=0$. By this cubic equation, we list other remarkable identities satisfied by β with proofs left to the readers. All these identities are sometimes useful for computing the spectral radius.

$$
\begin{gather*}
\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2}, \tag{1.2}\\
\frac{\beta}{(1-\beta)}=\left(\frac{1+\sqrt{1-4 \beta}}{2}\right)^{2}, \tag{1.3}\\
1-\sqrt{\beta(1-\beta)}=\sqrt{\frac{\beta}{(1-\beta)}}, \tag{1.4}\\
\quad(1-\beta)^{5}=\beta . \tag{1.5}
\end{gather*}
$$

In this paper, for $r \geq 3$, setting $\rho_{r}^{\prime}=\beta^{-1 / r}$, we classify almost all r-uniform hypergraphs with spectral radius in $\left(\rho_{r}, \rho_{r}^{\prime}\right)$. The paper is organized as follows. In Section 2, we introduce the notation and some important lemmas for computing the spectral radius. In Section 3, we classify all connected 3 -uniform hypergraphs with the spectral radius between ρ_{3} and ρ_{3}^{\prime}. In Section 4, by the methods of reduction and extension we classify all connected r-uniform hypergraphs with the spectral radius between ρ_{r} and ρ_{r}^{\prime}.

2. Notation and lemmas

2.1. Some lemmas of finite hypergraphs

The following lemma has been proved in several papers.
Lemma 2.1 ([4-6]) If G is a connected r-uniform hypergraph, and H is a proper subgraph of G, then

$$
\rho(H)<\rho(G) .
$$

In our previous paper [2], we discovered an efficient way to compute the spectral radius $\rho(H)$, in particular when H is a hypertree. We give the following definitions and lemmas from [2] for the reader's convenience.

Definition 2.2 ([2]) A weighted incidence matrix B of a hypergraph $H=(V, E)$ is a $|V| \times|E|$ matrix such that for any vertex v and any edge e, the entry $B(v, e)>0$ if $v \in e$ and $B(v, e)=0$ if $v \notin e$.

Definition 2.3 ([2]) A hypergraph H is called α-normal if there exists a weighted incidence matrix B satisfying
(1) $\sum_{e: v \in e} B(v, e)=1$, for any $v \in V(H)$.
(2) $\prod_{v \in e} B(v, e)=\alpha$, for any $e \in E(H)$.

Moreover, the incidence matrix B is called consistent if for any cycle $v_{0} e_{1} v_{1} e_{2} \ldots v_{l}\left(v_{l}=v_{0}\right)$

$$
\prod_{i=1}^{l} \frac{B\left(v_{i}, e_{i}\right)}{B\left(v_{i-1}, e_{i}\right)}=1
$$

In this case, we call H consistently α-normal.
The following important lemma was proved in [2].
Lemma 2.4 ([2, Lemma 3]) Let H be a connected r-uniform hypergraph. Then the spectral radius of H is $\rho(H)$ if and only if H is consistently α-normal with $\alpha=(/ \rho(H))^{r}$.

Often we need compare the spectral radius with a particular value.
Definition 2.5 ([2]) A hypergraph H is called α-subnormal if there exists a weighted incidence matrix B satisfying
(1) $\sum_{e: v \in e} B(v, e) \leq 1$, for any $v \in V(H)$.
(2) $\prod_{v \in e} B(v, e) \geq \alpha$, for any $e \in E(H)$.

Moreover, H is called strictly α-subnormal if it is α-subnormal but not α-normal.
We have the following lemma.
Lemma 2.6 ([2, Lemma 4]) Let H be an r-uniform hypergraph. If H is α-subnormal, then the spectral radius of H satisfies $\rho(H) \leq \alpha^{-\frac{1}{r}}$. Moreover, if H is strictly α-subnormal, then $\rho(H)<\alpha^{-\frac{1}{r}}$.

Definition 2.7 ([2]) A hypergraph H is called α-supernormal if there exists a weighted incidence matrix B satisfying
(1) $\sum_{e: v \in e} B(v, e) \geq 1$, for any $v \in V(H)$.
(2) $\prod_{v \in e} B(v, e) \leq \alpha$, for any $e \in E(H)$.

Moreover, H is called strictly α-supernormal if it is α-supernormal but not α-normal.
Lemma 2.8 ([2, Lemma 5]) Let H be an r-uniform hypergraph. If H is strictly and consistently α-supernormal, then the spectral radius of H satisfies $\rho(H)>\alpha^{-\frac{1}{r}}$.

2.2. Spectral radius of infinite hypergraphs with bounded degrees

Often, we need to consider the spectral radius of infinite hypergraph on countably many vertices. An infinite and connected r-uniform hypergraph H is said to have bounded-degree if there exists an M such that $d_{v} \leq M$ for any vertex v. Given a bounded-degree r-uniform hypergraph H with countably many vertices, we can order the vertices v_{1}, v_{2}, \ldots, so that the induced graph $H_{n}:=H\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is still connected. Notice that $\rho\left(H_{n}\right)$ is an increasing function of n and is bounded by M. Thus the limit $\lim _{n \rightarrow \infty} \rho\left(H_{n}\right)$ always exists, and is called the spectral radius of H.

Lemma 2.9 For any connected infinite r-uniform hypergraph H with bounded degree, the definition of the spectral radius above is independent of the choice of the order of the vertices.

Proof Suppose v_{1}, v_{2}, \ldots and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots$, are the lists of two orderings of the vertices. There are two injective maps $\phi_{i}: \mathbb{N} \rightarrow \mathbb{N}$ (for $\left.i=1,2\right)$ such that

$$
\begin{aligned}
& \left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{\phi_{1}(n)}^{\prime}\right\} ; \\
& \left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\} \subset\left\{v_{1}, v_{2}, \ldots, v_{\phi_{2}(n)}\right\} .
\end{aligned}
$$

Let $H_{n}:=H\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and $H_{n}^{\prime}=H\left[v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right]$. We have $H_{n} \subseteq H_{\phi_{1}(n)}^{\prime}$ and $H_{n}^{\prime} \subseteq$ $H_{\phi_{2}(n)}$. This implies that $\rho\left(H_{n}\right) \leq \rho\left(H_{\phi(n)}^{\prime}\right)$ and $\rho\left(H_{n}^{\prime}\right) \leq \rho\left(H_{\phi(n)}\right)$. Thus $\lim _{n \rightarrow \infty} \rho\left(H_{n}\right) \leq$ $\lim _{n \rightarrow \infty} \rho\left(H_{n}^{\prime}\right)$ and $\lim _{n \rightarrow \infty} \rho\left(H_{n}^{\prime}\right) \leq \lim _{n \rightarrow \infty} \rho\left(H_{n}\right)$. Hence the two limits are equal.

We can extend the definition of α-normal labellings to infinite hypergraphs H.
Lemma 2.10 Suppose $0<\beta<\frac{1}{4}$, let $f(x)=\frac{\beta}{1-x}$ and $f_{n}(x)=f\left(f_{n-1}(x)\right)$ for $n \geq 2$.
(1) If $0<x \leq \frac{1-\sqrt{1-4 \beta}}{2}$, then $f_{n}(x)$ is increasing with respect to n, and $\lim _{n \rightarrow \infty} f_{n}(x)=$ $\frac{1-\sqrt{1-4 \beta}}{2}$. Moreover, when $x=\frac{1-\sqrt{1-4 \beta}}{2}, f_{n}(x)=\frac{1-\sqrt{1-4 \beta}}{2}, \forall n \geq 1$.
(2) If $\frac{1-\sqrt{1-4 \beta}}{2}<x<\frac{1+\sqrt{1-4 \beta}}{2}$, then $f_{n}(x)$ is decreasing with respect to n, and

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\frac{1-\sqrt{1-4 \beta}}{2}
$$

Proof We first prove item (1). Since $0<x \leq \frac{1-\sqrt{1-4 \beta}}{2}$, the function $f(x)=\frac{\beta}{1-x}$ attains its maximum when $x=\frac{1-\sqrt{1-4 \beta}}{2}$. So, $0<f(x) \leq \frac{1-\sqrt{1-4 \beta}}{2}$. Similarly, $f_{2}(x)=\frac{\beta}{1-f(x)}$ attains its maximum when $f(x)=\frac{1-\sqrt{1-4 \beta}}{2}$, so we get $0<f_{2}(x) \leq \frac{1-\sqrt{1-4 \beta}}{2}$. In the same way, we get $0<f_{n}(x) \leq \frac{1-\sqrt{1-4 \beta}}{2}$, for all $n \geq 3$. On the other hand, if $0<f_{n-1}(x) \leq \frac{1-\sqrt{1-4 \beta}}{2}$, we can see $\beta-f_{n-1}(x)+\left(f_{n-1}(x)\right)^{2}$ attains its minimum when $f_{n-1}(x)=\frac{1-\sqrt{1-4 \beta}}{2}$, and thus $\beta-f_{n-1}(x)+\left(f_{n-1}(x)\right)^{2}>0$. So when $0<f_{n}(x)<\frac{1-\sqrt{1-4 \beta}}{2}$, we can get that $f_{n}(x)-f_{n-1}(x)=$ $\frac{\beta}{1-f_{n-1}(x)}-f_{n-1}(x)=\frac{\beta-f_{n-1}(x)+\left(f_{n-1}(x)\right)^{2}}{1-f_{n-1}(x)}>0$ for all $n \geq 2$. So, $f_{n-1}(x)<f_{n}(x)$ for all $n \geq 2$. Thus, we let $\lim _{n \rightarrow \infty} f_{n}(x)=f_{0}(x)$, and since $f_{n}(x)=\frac{\beta}{1-f_{n-1}(x)}$, we get $f_{0}(x)=\frac{1-\sqrt{1-4 \beta}}{2}$. The proof of item (2) is very similar to the proof of item (1), so we omit the proof here.

Lemma 2.11 Let the following graph denote $D_{1,1, m} F_{1, n}^{(3)}$,

Figure 3 Hypergraphs $D_{1,1, m} F_{1, n}^{(3)}$
and the spectral radius of $D_{1,1, m} F_{1, n}^{(3)}$ be $\rho\left(D_{1,1, m} F_{1, n}^{(3)}\right)$. Then,
(1) If $\rho\left(D_{1,1, m} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$, then $\rho\left(D_{1,1, m+1} F_{1, n+1}^{(3)}\right)>\rho_{3}^{\prime}$;
(2) If $\rho\left(D_{1,1, m} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$, then $\rho\left(D_{1,1, m+1} F_{1, n+1}^{(3)}\right)<\rho_{3}^{\prime}$.

Proof First, we prove the fact that if $0<x \cdot y<\frac{\beta}{1-\beta}$, then $\left(1-\frac{\beta}{x}\right)\left(1-\frac{\beta}{y}\right)<\frac{\beta}{1-\beta}$. In fact,

$$
\left(1-\frac{\beta}{x}\right)\left(1-\frac{\beta}{y}\right)=1-\beta \cdot \frac{x+y}{x y}+\frac{\beta^{2}}{x y} \leq\left(1-\frac{\beta}{\sqrt{x y}}\right)^{2}
$$

Since $0<x \cdot y<\frac{\beta}{1-\beta}$, we can easily check that $-\sqrt{\frac{\beta}{1-\beta}}<1-\frac{\beta}{\sqrt{x y}}<1-\sqrt{\beta(1-\beta)}=\sqrt{\frac{\beta}{1-\beta}}$. So, we have $\left(1-\frac{\beta}{x}\right)\left(1-\frac{\beta}{y}\right)<\frac{\beta}{1-\beta}$.

We label this hypergraph as follows

Figure 4 The labelling of hypergraphs $D_{1,1, m} F_{1, n}^{(3)}$
In order to guarantee all the edges except for the black one satisfy Definition 2.3, we set $x_{0}=$ $x_{0}^{\prime}=y_{1}=z_{0}=\beta, w_{0}=1-x_{0}-x_{0}^{\prime}=1-2 \beta, w_{1}=1-x_{1}, z_{3}=1-\beta, x_{1}=f(2 \beta)$, $x_{m}=f_{m}(2 \beta), y_{n}=f_{n-1}(\beta) . z_{1}=1-f_{m}(2 \beta), z_{2}=1-f_{n-1}(\beta)$. Setting $x=z_{1}=1-f_{m}(2 \beta)$, $y=z_{2}=1-f_{n-1}(\beta)$, if $x y=\left(1-f_{m}(2 \beta)\right)\left(1-f_{n-1}(\beta)\right)<\frac{\beta}{1-\beta}$, then we get $\left(1-\frac{\beta}{x}\right)\left(1-\frac{\beta}{y}\right)=$ $\left(1-f_{m+1}(2 \beta)\right)\left(1-f_{n}(\beta)\right)<\frac{\beta}{1-\beta}$, that is, if $\rho\left(D_{1,1, m} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$, then $\rho\left(D_{1,1, m+1} F_{1, n+1}^{(3)}\right)<\rho_{3}^{\prime}$. The proof of item (2) is very similar to the proof of item (1), so we omit the proof here.

Finally, we show that ρ_{r}^{\prime} is the limit value of the spectral radii of $F_{1, n, m}^{(3)}$.
Lemma 2.12 Let the following graph denote $F_{1, n, m}^{(r)}$,

Figure 5 Hypergraphs $F_{1, n, m}^{(r)}$
and the spectral radius of $F_{1, n, m}^{(r)}$ be $\rho\left(F_{1, n, m}^{(r)}\right)$. Then, when $n, m \rightarrow \infty, \lim _{n, m \rightarrow \infty} \rho\left(F_{1, n, m}^{(r)}\right)=$ $\rho_{r}^{\prime}=\beta^{-\frac{1}{r}}$, where $\beta=-\frac{1}{6} \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}-\frac{2}{3 \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}}+\frac{4}{3} \approx 0.2451223338$.

Proof We label this graph as follows

Figure 6 The labelling of hypergraphs $F_{1, n, m}^{(r)}$
Set $x_{1}=z_{0}=\beta, z_{3}=1-\beta, x_{2}=f(\beta), x_{n}=f_{n-1}(\beta), z_{1}=1-x_{n}=1-f_{n-1}(\beta)$. By the symmetry, we set $z_{2}=1-f^{m-1}(\beta)$. When $m, n \rightarrow \infty$, by the first item of Lemma 2.10, we have $z_{1}=z_{2}=1-f_{n-1}(\beta)=\frac{1+\sqrt{1-4 \beta}}{2}$. Set $z_{1} \cdot z_{2} \cdot z_{3}=\beta$, that is $\left(\frac{1+\sqrt{1-4 \beta}}{2}\right)^{2} \cdot(1-\beta)=\beta$. Solving this equality with maple program, we get $\beta=-\frac{1}{6} \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}-\frac{2}{3 \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}}+\frac{4}{3} \approx$ 0.2451223338. By Lemma 2.4, we get $\lim _{n, m \rightarrow \infty} \rho\left(F_{1, n, m}^{(r)}\right)=\rho_{r}^{\prime}=\beta^{-\frac{1}{r}}$.

3. 3-uniform hypergraphs

Set $\beta=-\frac{1}{6} \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}-\frac{2}{3 \cdot(100+12 \cdot \sqrt{69})^{\frac{1}{3}}}+\frac{4}{3}, \rho_{3}^{\prime}=2 \beta^{-\frac{1}{3}}$ and $\rho_{3}=2 \sqrt[3]{4}$. Then we have the following theorem.

Theorem 3.1 Let $\rho(H)$ be the spectral radius of a connected 3-uniform hypergraph H. If $\rho_{3}<\rho(H) \leq \rho_{3}^{\prime}$, then H must be one of the following hypergraphs:

Figure 7 The hypergraphs with spectral radius between ρ_{3} and ρ_{3}^{\prime}
In $E_{1,1: m: 1, n}^{(3)},(m, n)$ can be of the following types:
$(0,3),(1,3),(2,3),(2,4),(3,3),(3,4),(4, n)(3 \leq n \leq 5),(5, n)(3 \leq n \leq 6),(m, n)(m \geq 6,3 \leq$ $n \leq m$).

In $F_{i, j, k}^{(3)},(i, j, k)$ can be of the following types:
$(1, j, \infty)(j \geq 1),(2,2, k)(k \geq 8),(2,3, k)(k \geq 5),(2,4, k)(3 \leq k \leq 6),(3,3, k)(k=3,4)$.
In $G_{i, j: m: l, k}^{(3)}$, when $i \neq 1$ and $l \neq 1,(i, j, m, l, k)$ can have the following choices:
$(2,3, m, 1,1)(m \geq 0),(2,2, m, 2,2)(0 \leq m<9),(2,2, m, 1,3)(0 \leq m<9),(2,2, m, 1,2)(m \geq$ $2)$.

When $i=1$ and $l=1$, there is not obvious rule.
Proof We first show that all 3-graphs listed in Theorem 3.1 have spectral radius $\rho(H)$ satisfying $\rho_{3}<\rho(H) \leq \rho_{3}^{\prime}$. We will first show that they are β-normal or β-subnormal.

Suppose that H is a hypergraph with spectral radius $\rho(H)$ satisfying $\rho_{3}<\rho(H) \leq \rho_{3}^{\prime}$, but not on the list.

Case 1 If H contains the following graph $C_{2}^{(3+)}$ or $C_{2}^{\prime(3+)}$

Figure 8 Hypergraphs $C_{2}^{(3+)}$ and $C_{2}^{\prime(3+)}$
we label the above two graphs as follows

Figure 9 The labellings of hypergraphs $C_{2}^{(3+)}$ and $C_{2}^{\prime(3+)}$
In graph $C_{2}^{(3)+}$, we set $x_{1}=\beta, x_{2}=1-\beta, x_{3}=x_{6}=\sqrt{\frac{\beta}{1-\beta}}, x_{4}=x_{5}=\sqrt{\beta}$. In graph $C_{2}^{\prime(3)+}$, we set $y_{1}=\beta, y_{2}=y_{3}=\frac{1-\beta}{2}, y_{4}=x_{5}=\frac{2 \beta}{1-\beta}$. We can check that $x_{3}+x_{4} \approx 1.0649>1$ and $y_{4}+y_{5} \approx 1.2989>1$. So, by Lemma 2.8, we get $\rho\left(C_{2}^{(3)+}\right)>\rho_{3}^{\prime}$ and $\rho\left(C_{2}^{\prime(3)+}\right)>\rho_{3}^{\prime}$. If H contains $C_{2}^{(3)+}$ or $C_{2}^{\prime(3)+}$, by Lemma 2.1, we get $\rho(H)>\rho_{3}^{\prime}$. Therefore, if $\rho(H) \leq \rho_{3}^{\prime}$, then in graph H, any two edges intersect at most one vertex. Thus H must be a simple hypergraph.

Case 2 If H has a cycle, and H contains the following graph $C_{n}^{(3+)}$ or $C_{n}^{\prime(3+)}$

Figure 10 Hypergraphs $C_{n}^{(3)+}$ and $C_{n}^{\prime(3)+}$
we label this graph as follows

Figure 11 The labellings of $C_{n}^{(3)+}$ and $C_{n}^{\prime(3)+}$
Set $h_{1}=x_{0}=z_{2}=y_{1}=\beta, h_{2}=1-\beta$. By Lemma 2.10, we set $x_{1}=f(\beta)$. By the first item of Lemma 2.10, we have $x_{n}=f_{n}(\beta)=\frac{1-\sqrt{1-4 \beta}}{2}-\varepsilon$. In the same way, we get $y_{n}=\frac{1-\sqrt{1-4 \beta}}{2}-\varepsilon$. Setting $x_{n+1}=1-x_{n}=\frac{1+\sqrt{1-4 \beta}}{2}+\varepsilon, z_{1}=1-y_{n}-z_{2}=\frac{1+\sqrt{1-4 \beta}}{2}-\beta+\varepsilon$, we can check $x_{0} \cdot h_{2} \cdot x_{n+1}<x_{0} \cdot h_{2} \cdot \frac{1+\sqrt{1-4 \beta}}{2} \approx 0.1054<\beta$, and $y_{1} \cdot z_{1} \cdot 1<\beta \cdot\left(\frac{1+\sqrt{1-4 \beta}}{2}-\beta\right) \approx 0.0796<\beta$ So, by Lemma 2.8, we get $\rho\left(C_{n}^{(3)+}\right)>\rho_{3}^{\prime}$ and $\rho\left(C_{n}^{\prime(3)+}\right)>\rho_{3}^{\prime}$. Therefore, if H contains $C_{n}^{(3)+}$ or $C_{n}^{\prime(3)+}$, by Lemma 2.1, we get $\rho(H)>\rho_{3}^{\prime}$. Thus, we can assume that H is a hypertree.

Case 3 If $\exists v \in V(H)$, such that $d_{v} \geq 5$, then H contains $S_{5}^{(3)}$.

Figure 12 Hypergraph $S_{5}^{(3)}$

We label this graph as follows

Figure 13 The partial labelling of $S_{5}^{(3)}$
By the symmetry, we only label one branching. We can check $5 \beta \approx 1.225611667>1$, so, by Lemmas 2.1 and 2.8, we get $\rho(H)>\rho_{3}^{\prime}$. Thus we can assume that every vertex in H has degree at most 4.

Case 4 If $\exists v \in V(H)$, such that $d_{v}=4$, and H contains the following graph $S_{4}^{(3)+}$.

Figure 14 Hypergraph $S_{4}^{(3)+}$
We label this graph as follows

Figure 15 The labelling of $S_{4}^{(3)+}$
where $x_{1}=\beta, x_{2}=1-\beta, x_{3}=\frac{\beta}{1-\beta}, x_{4}=x_{5}=x_{6}=\beta$. We can check that $x_{3}+x_{4}+x_{5}+x_{6} \approx$ $1.0601>1$, so, by Lemmas 2.1 and 2.8 , we get $\rho(H)>\rho\left(S_{4}^{(3)+}\right)>\rho_{3}^{\prime}$. Thus, since $\rho\left(S_{4}^{(3)}\right)=\rho_{3}$ and $\rho\left(S_{4}^{(3)+}\right)>\rho_{3}^{\prime}$, we can assume that every vertex in H has degree at most 3 .

Case 5 If there exists at least three vertexes v_{i}, such that $d_{v_{i}}=3, i=1,2,3$, then H contains the following graph $D_{1,1: k: 1,2}^{(3)}$ as a subgraph.

Figure 16 Hypergraphs $D_{1,1: k: 1,2}^{(3)}$

We label the graph as follows.

Figure 17 The labelling of $D_{1,1: k: 1,2}^{(3)}$
Set $x_{0}=x_{0}^{\prime}=\beta$. Since $\frac{1-\sqrt{1-4 \beta}}{2}<2 \beta<\frac{1+\sqrt{1-4 \beta}}{2}$, by the second item of Lemma 2.10, we set $x_{1}=f(2 \beta)$, and get $x_{n}=f_{n}(2 \beta)=\frac{1-\sqrt{1-4 \beta}}{2}+\varepsilon$. We also set $y_{1}=y_{4}=\beta, y_{2}=1-\beta, y_{3}=\frac{\beta}{1-\beta}$. We can check that $y_{3}+y_{4}+x_{n}=1.0+\varepsilon>1$. So, by Lemmas 2.1 and 2.8 , we get $\rho(H)>\rho_{3}^{\prime}$.

If there exist at least two vertexes v_{i}, such that $d_{v_{i}}=3, i=1,2$, and H contains the graph $D_{1,1: k: 1,2}^{(3)}$ or the following graph as a subgraph,

Figure 18 Hypergraphs $D_{1,1: h: 1: w: 1,1}^{(3)}$
we label the graph as follows.

Figure 19 The labelling of $D_{1,1: h: 1: w: 1,1}^{(3)}$
Let $w_{1}=w_{2}=z_{0}=\beta, z_{3}=1-\beta$. Since $\frac{1-\sqrt{1-4 \beta}}{2}<2 \beta<\frac{1+\sqrt{1-4 \beta}}{2}$. By the second item of Lemma 2.10, we set $x_{1}=f(2 \beta)$, and get $x_{m}=f_{m}(2 \beta)=\frac{1-\sqrt{1-4 \beta}}{2}+\varepsilon$. So, $z_{1}=$ $1-x_{m}=\frac{1+\sqrt{1-4 \beta}}{2}-\varepsilon$. By the symmetry, $z_{2}=\frac{1+\sqrt{1-4 \beta}}{2}-\varepsilon$. We can check that $z_{1} \cdot z_{2} \cdot z_{3}<$ $(1-\beta) \cdot\left(\frac{1+\sqrt{1-4 \beta}}{2}\right)^{2}=\beta$. So, by Lemmas 2.1 and 2.8 , we get $\rho(H)>\rho_{3}^{\prime}$. Thus, we can assume that there exists at most one vertex v with degree $d_{v}=3$.

Case 6 Suppose that v is the unique vertex with degree 3 and all other vertices have degree at most 2 . We denote by $E_{i, j, k}^{(3)}$ the 3-uniform hypergraphs obtained by attaching three paths of length i, j, k to the vertex v.

Figure 20 Hypergraphs $E_{i, j, k}^{(3)}$

Consider the three branches attached to v.
(1) Since $\rho\left(E_{2,2,2}^{(3)}\right)=\rho_{3}$, we consider $E_{2,2,3}^{(3)}$.

Figure 21 Hypergraphs $E_{2,2,3}^{(3)}$
We label the above graphs as follows

Figure 22 The labelling of $E_{2,2,3}^{(3)}$
Setting $x_{1}=x_{8}=x_{11}=\beta, x_{2}=x_{7}=x_{10}=1-\beta, x_{3}=x_{6}=x_{9}=\frac{\beta}{1-\beta}, x_{5}=\frac{1-2 \beta}{1-\beta}$, $x_{4}=\frac{\beta(1-\beta)}{1-2 \beta}$, we can check that $x_{3}+x_{4}+x_{9} \approx 1.0124>1$. So, by Lemmas 2.1 and 2.8 , if H contains $E_{2,2,3}^{(3)}$, we get $\rho(H)>\rho_{3}^{\prime}$. Thus we can assume that the first branch consists of only one edge.
(2) An edge e is called a branching edge if every vertex of e is not a leaf vertex. When $i=1, j=2$ and the third branch consists of a branching edge, then H consists of a subgraph $D_{1,2, k} F_{1,1}^{(3)}$ shown below.

Figure 23 Hypergraphs $D_{1,2, k} F_{1,1}^{(3)}$ and the labellings
Setting $x_{1}=x_{4}=w_{1}=w_{2}=\beta, x_{2}=z_{2}=z_{3}=1-\beta, x_{3}=\frac{\beta}{1-\beta}, z_{1}=\frac{\beta}{(1-\beta)^{2}}$, we can prove $\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2}$. Let $y_{1}=\frac{\beta}{1-z_{1}}=\frac{1-\sqrt{1-4 \beta}}{2}$. By Lemma 2.10, we get $y_{k}=\frac{1-\sqrt{1-4 \beta}}{2}$. We can check that $x_{3}+x_{4}+y_{k}=1$. So, $D_{1,2, k} F_{1,1}^{(3)}$ has a β-normal labeling, and we have $\rho\left(D_{1,2, k} F_{1,1}^{(3)}\right)=\rho_{3}^{\prime}$. Therefore, when $i \geq 1, j \geq 2, k \geq 2$ and there is at least one branching edge in graph H, by Lemma 2.1, we get $\rho(H) \geq \rho_{3}^{\prime}$, and the equality holds iff H is the same as $D_{1,2, k} F_{1,1}^{(3)}, k \geq 0$.
(3) When $i=1, j=2, k=n+1$, and there is no branching edge, then, the graph $H=E_{1,2, k}^{(3)}$ is as follows.

Figure 24 Hypergraphs $E_{1,2, k}^{(3)}$ and the labellings
Setting $x_{0}=\beta, n=k-1$, then when $n \rightarrow \infty$, by Lemma 2.10, we get $x_{n}=f_{n}(\beta)=\frac{1-\sqrt{1-4 \beta}}{2}-\varepsilon$. Set $y_{1}=y_{4}=\beta, y_{2}=1-\beta, y_{3}=\frac{\beta}{1-\beta}$. We can check that $y_{3}+y_{4}+x_{n}=1-\varepsilon<1$. So, we get $\rho(H)<\rho_{3}^{\prime}$. Since $\rho\left(E_{1,2,5}^{3}\right)=\rho_{3}$, thus, when $n>5, \rho_{3}<\rho(H)<\rho_{3}^{\prime}$.
(4) The first branch consists of only one edge, while the second branch consists of three edges, and the third branch consists of k edges. There is no branching edge. When $k=3$, $\rho(H)=\rho_{3}$. When $k=4$, the graph is as follows.

Figure 25 Hypergraphs $E_{1,3,4}^{(3)}$ and the labellings
Setting $x_{1}=x_{12}=x_{13}=\beta, x_{2}=x_{11}=1-\beta, x_{3}=x_{10}=\frac{\beta}{1-\beta}, x_{4}=x_{9}=\frac{1-2 \beta}{1-\beta}, x_{5}=$ $x_{8}=\frac{\beta(1-\beta)}{1-2 \beta}, x_{7}=\frac{\beta^{2}-3 \beta+1}{1-2 \beta}, x_{6}=\frac{\beta(1-2 \beta)}{\beta^{2}-3 \beta+1}$, we can check that $x_{5}+x_{6}+x_{13} \approx 0.9929<1$. So, $\rho_{3}<\rho\left(E_{1,3,4}^{(3)}\right)<\rho_{3}^{\prime}$. When $k=5$, the graph is as follows.

Figure 26 Hypergraphs $E_{1,3,5}^{(3)}$ and the labellings
Setting $x_{1}=x_{14}=x_{15}=\beta, x_{2}=x_{13}=1-\beta, x_{3}=x_{12}=\frac{\beta}{1-\beta}, x_{4}=x_{11}=\frac{1-2 \beta}{1-\beta}$, $x_{5}=x_{10}=\frac{\beta(1-\beta)}{1-2 \beta}, x_{6}=\frac{\beta\left(\beta^{2}-3 \beta+1\right)}{3 \beta^{2}-4 \beta+1}$, we can check that $x_{5}+x_{6}+x_{15} \approx 1.0066>1$. So, $\rho\left(E_{1,3,5}^{(3)}\right)>\rho_{3}^{\prime}$.
(5) The first branch consists of only one edge, while the second and the third branches each consist of at least four edges. There is no branching edge. The graph $E_{1,4,4}^{(3)}$ is as follows.

Figure 27 Hypergraphs $E_{1,4,4}^{(3)}$ and the labellings

Setting $x_{1}=x_{14}=x_{15}=\beta, x_{2}=x_{13}=1-\beta, x_{3}=x_{12}=\frac{\beta}{1-\beta}, x_{4}=x_{11}=\frac{1-2 \beta}{1-\beta}, x_{5}=x_{10}=$ $\frac{\beta(1-\beta)}{1-2 \beta}, x_{6}=\frac{\beta\left(\beta^{2}-3 \beta+1\right)}{3 \beta^{2}-4 \beta+1}$, we can check that $x_{7}+x_{8}+x_{15} \approx 1.0147>1$. So, $\rho\left(E_{1,4,4}^{(3)}\right)>\rho_{3}^{\prime}$. Thus, if H contains $E_{1,4,4}^{(3)}$ as a proper subgraph, $\rho(H)>\rho\left(E_{1,4,4}^{(3)}\right)>\rho_{3}^{\prime}$.
(6) The first branch and the second branch each consist of only one edge, while the third branch consists of k edges. When there is no branching edge in the third branch, for any $k \geq 1, \rho(H)<\rho_{3}$. When there are two branching edges in the third branch, and the graph $D_{1,1, m} G_{0,1: n: 1,1}$ is as follows.

Figure 28 Hypergraphs $D_{1,1, m} G_{0,1: n: 1,1}$
We label this graph as follows.

Figure 29 The labelling of $D_{1,1, m} G_{0,1: n: 1,1}$
Set $x_{0}=x_{0}^{\prime}=y_{1}=y_{3}=z_{1}=\beta, z_{2}=y_{2}=y_{4}=1-\beta, x_{1}=f(2 \beta), x_{m}=f_{m}(2 \beta)$, $z_{3}=1-f_{m}(2 \beta), y_{5}=\frac{\beta}{(1-\beta)^{2}}$. Since $\frac{1-\sqrt{1-4 \beta}}{2}<2 \beta<\frac{1+\sqrt{1-4 \beta}}{2}$, by Lemma 2.10, we get that x_{m} is decreasing with respect to m. Thus, $z_{3}=1-x_{m}$ is increasing with respect to m. So, when $m \rightarrow \infty$, we get $x_{m}=\frac{1-\sqrt{1-4 \beta}}{2}+\varepsilon$ and $z_{3}=1-x_{m}=\frac{1+\sqrt{1-4 \beta}}{2}-\varepsilon$. Since $\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2}$, we get $z_{4}=\frac{1-\sqrt{1-4 \beta}}{2}$. We can check that $z_{2} \cdot z_{3} \cdot z_{4}<\beta \cdot(1-\beta)<\beta$, so $D_{1,1, m} G_{0,1: n: 1,1}$ is β-supernormal and we have $\rho\left(D_{1,1, m} G_{0,1: n: 1,1}\right)>\rho_{3}^{\prime}$. Therefore, if H contains at least two branching edges in the third branch, then H contains graph $D_{1,1, m} G_{0,1: n: 1,1}$ as a subgraph, thus $\rho(H)>\rho\left(D_{1,1, m} G_{0,1: n: 1,1}\right)>\rho_{3}^{\prime}$. So, we may assume that there is only one branching edge in the third branch in graph H.

When there is one branching edge in the third branch, and the graph $D_{1,1, m} F_{1, n}^{(3)}$ is as follows.

Figure 30 Hypergraphs $D_{1,1, m} F_{1, n}^{(3)}$

We label this graph as follows.

Figure 31 The labelling of $D_{1,1, m} F_{1, n}^{(3)}$
Set $x_{0}=x_{0}^{\prime}=y_{1}=z_{1}=\beta, z_{2}=1-\beta, x_{1}=f(2 \beta), x_{m}=f_{m}(2 \beta), y_{n}=f_{n-1}(\beta)$. $z_{3}=1-f_{m}(2 \beta), z_{4}=1-f_{n-1}(\beta)$. Since $\frac{1-\sqrt{1-4 \beta}}{2}<2 \beta<\frac{1+\sqrt{1-4 \beta}}{2}, 0<\beta<\frac{1-\sqrt{1-4 \beta}}{2}$, by Lemma 2.10, we get that x_{m} is decreasing with respect to m, and y_{n} is increasing with respect to n. Thus, $z_{3}=1-x_{m}$ is increasing with respect to m, and $z_{4}=1-y_{n}$ is decreasing with respect to n. Moreover, we have $\rho\left(\widetilde{B D}_{n}^{3}\right)=\rho\left(D_{1,1, m} F_{1,2}^{(3)}\right)=\rho_{3}, \rho\left(D_{1,1, m} F_{1,1}^{(3)}\right)<\rho_{3}$, where $m \geq 0$, so if $\rho_{3}<\rho\left(D_{1,1, m} F_{1, n}^{(3)}\right) \leq \rho_{3}^{\prime}$, we only need consider $n \geq 3$. Let us consider the following cases:
(a) When $m=0, n=3$, we set $z_{3}=1-2 \beta, z_{4}=1-f_{2}(\beta)=1-\frac{\beta(1-\beta)}{1-2 \beta}$. We can check that $z_{2} \cdot z_{3} \cdot z_{4}=\beta$, so $\rho\left(D_{1,1,0} F_{1,3}^{(3)}\right)=\rho_{3}^{\prime}$. When $n>3$, since $z_{4}=1-y_{n}$ is decreasing with respect to n, we have $z_{2} \cdot z_{3} \cdot z_{4}<\beta$, so we get $\rho\left(D_{1,1,0} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(b) When $m=1$, if $n=3$, we can check that $z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2496>\beta$, so $D_{1,1,1} F_{1,3}^{(3)}$ is strictly β-subnormal; if $n=4$, we can check that $z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2410<\beta$, so $D_{1,1,1} F_{1,3}^{(3)}$ is strictly β-supernormal. Therefore, when $m=1, n=3, \rho_{3}<\rho\left(D_{1,1,1} F_{1,3}^{(3)}\right)<\rho_{3}^{\prime}$; when $n \geq 4$, $\rho\left(D_{1,1,1} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(c) When $m=2, n=4$, we can check that $z_{2} \cdot z_{3} \cdot z_{4}=\beta$, so $D_{1,1,2} F_{1,4}^{(3)}$ is β-normal and we have $\rho\left(D_{1,1,2} F_{1,4}^{(3)}\right)=\rho_{3}^{\prime}$. By Lemma 2.1, when $n=3$, we get $\rho_{3}<\rho\left(D_{1,1,2} F_{1,3}^{(3)}\right)<\rho_{3}^{\prime}$; when $n>4, \rho\left(D_{1,1,2} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(d) When $m=3$, if $n=4$, since $D_{1,1,2} F_{1,4}^{(3)}$ is β-normal, by Lemma 2.10, we get $D_{1,1,3} F_{1,4}^{(3)}$ is strictly β-subnormal, so, $\rho_{3}<\rho\left(D_{1,1,3} F_{1,4}^{(3)}\right)<\rho_{3}^{\prime}$; if $n=5$, we can check that $z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2432$, so $D_{1,1,3} F_{1,5}^{(3)}$ is β-supernormal and we have $\rho\left(D_{1,1,3} F_{1,5}^{(3)}\right)>\rho_{3}^{\prime}$. So, when $m=3, n=3$, 4 , we get $\rho_{3}<\rho\left(D_{1,1,2} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$; when $n \geq 5,\left(D_{1,1,2} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(e) When $m=4$, if $n=5$, we can check that $z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2462$, so $D_{1,1,4} F_{1,5}^{(3)}$ is β subnormal and we have $\rho\left(D_{1,1,4} F_{1,5}^{(3)}\right)<\rho_{3}^{\prime}$; if $n=6$, we can check that $z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2425$, so $D_{1,1,4} F_{1,5}^{(3)}$ is β-supernormal and we have $\rho\left(D_{1,1,4} F_{1,6}^{(3)}\right)>\rho_{3}^{\prime}$. So, by Lemmas 2.6 and 2.1, when $m=4, n=3,4,5$, we get $\rho_{3}<\rho\left(D_{1,1,4} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$; when $n \geq 6$, we have $\rho\left(D_{1,1,4} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(f) When $m=5$, if $n=6$, we can check that $z_{2} \cdot z_{3} \cdot z_{4}=\beta$, so $D_{1,1,5} F_{1,6}^{(3)}$ is β-normal and we have $\rho\left(D_{1,1,5} F_{1,6}^{(3)}\right)=\rho_{3}^{\prime}$; if $n=3,4,5$, by Lemma 2.1, $\rho_{3}<\rho\left(D_{1,1,4} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$; if $n \geq 7$, by Lemma 2.1, we have $\rho\left(D_{1,1,5} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(g) When $m=6$, if $n=6$, since $D_{1,1,5} F_{1,6}^{(3)}$ is β-normal, by Lemma 2.10 we get $D_{1,1,6} F_{1,6}^{(3)}$ is strictly β-subnormal, so, $\rho_{3}<\rho\left(D_{1,1,6} F_{1,6}^{(3)}\right)<\rho_{3}^{\prime}$; if $n=7$, we can check that $z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2246$, so $D_{1,1,6} F_{1,7}^{(3)}$ is β-supernormal and we have $\rho\left(D_{1,1,6} F_{1,7}^{(3)}\right)>\rho_{3}^{\prime}$. Therefore, by Lemma 2.1, when $m=6$, if $3 \leq n \leq 6$, we have $\rho_{3}<\rho\left(D_{1,1,6} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$; if $n \geq 7$, we have $\rho\left(D_{1,1,6} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.
(h) For any $m=n \geq 7$, since $\rho_{3}<\rho\left(D_{1,1,6} F_{1,6}^{(3)}\right)<\rho_{3}^{\prime}$, by Lemma 2.11, we have $\rho_{3}<$ $\rho\left(D_{1,1, n} F_{1, n}^{(3)}\right)<\rho_{3}^{\prime}$. By Lemma 2.1, when $m \geq 7$ and $3 \leq n<m$, we have $\rho_{3}<\rho\left(D_{1,1, n} F_{1, n}^{(3)}\right)<$ ρ_{3}^{\prime}. On the other hand, since $\rho\left(D_{1,1,6} F_{1,7}^{(3)}\right)>\rho_{3}^{\prime}$, by Lemmas 2.11 and 2.1, when $m \geq 7$ and $n>m$, we have $\rho\left(D_{1,1, m} F_{1, n}^{(3)}\right)>\rho_{3}^{\prime}$.

Case 7 We denote by $F_{i, j, k}^{(3)}$ the 3-uniform hypergraphs obtained by attaching three paths of length i, j, k to each vertex of one edge.

Figure 32 Hypergraphs $F_{i, j, k}^{(3)}$

We denote by $G_{i, j: m: l, k}^{(3)}$ the 3-uniform hypergraphs obtained by attaching four paths of length i, j, l, k to four ending vertices of path of length $m+2$ as shown in the following figure:

Figure 33 Hypergraphs $G_{i, j: m: l, k}^{(3)}$

Now we can assume that vertices in H have degrees at most 2 . We will divide it into the following subcases according to the number of branching edges.
(1) If H has no branching edge, then H is a path, we have $\rho(H)<\rho_{3}$.
(2) If H has exactly one branching edge, then $H=F_{i, j, k}^{(3)}$. We label this graph as follows.

Figure 34 Hypergraphs $F_{i, j, k}^{(3)}$ and the labellings

Set $x_{1}=y_{1}=w_{1}=\beta, x_{j}=f^{j-1}(\beta), y_{k}=f^{k-1}(\beta), w_{i}=f^{i-1}(\beta), z_{1}=1-x_{j}=1-f^{j-1}(\beta)$, $z_{2}=1-y_{k}=1-f^{k-1}(\beta), z_{3}=1-w_{i}=1-f^{i-1}(\beta)$. Then, we consider the following cases.
(a) When $i=1, j, k \rightarrow \infty$, by Lemma 2.12, we get $\rho\left(F_{1, \infty, \infty}\right)=\rho_{3}^{\prime}$. Since $\rho\left(F_{1,5,6}\right)=\rho\left(F_{1,4,8}\right)=$ $\rho\left(F_{1,3,14}\right)=\rho_{3}$, when $i=1, j=5, k>6$, or $i=1, j>5, k \geq 6$, or $i=1, j=4, k>8$, or $i=1, j>4, k \geq 8$, or $i=1, j=3, k>14$, or $i=1, j>3, k \geq 14$, we have $\rho_{3}<\rho\left(F_{i, j, k}\right)<\rho_{3}^{\prime}$.
(b) When $i=j=2, k \rightarrow \infty$, by Lemma 2.10, we set $y_{k}=\frac{1-\sqrt{1-4 \beta}}{2}-\varepsilon$ and $z_{2}=1-y_{k}=$ $\frac{1+\sqrt{1-4 \beta}}{2}+\varepsilon$. We can check that $z_{1} \cdot z_{2} \cdot z_{3}>z_{1} \cdot z_{3} \cdot \frac{1+\sqrt{1-4 \beta}}{2} \approx 0.2599>\beta$, so, we get $\rho\left(F_{2,2, \infty}\right)<\rho_{3}^{\prime}$. Thus, since $\rho\left(F_{2,2,7}\right)=\rho_{3}$, we get that $\rho_{3}<\rho\left(F_{2,2, k}\right)<\rho_{3}^{\prime}$ for any $k \geq 8$.

When $i=2, j=3$, we consider $\rho\left(F_{2,3, k}\right)$. When $k \rightarrow \infty$, we set $z_{2}=1-y_{k}=\frac{1+\sqrt{1-4 \beta}}{2}+\varepsilon$, and we can check that $z_{1} \cdot z_{2} \cdot z_{3}>z_{1} \cdot z_{3} \cdot \frac{1+\sqrt{1-4 \beta}}{2}=\beta$. Since $\rho\left(F_{2,3,4}\right)=\rho_{3}$, we get $\rho_{3}<\rho\left(F_{2,3, k}\right)<\rho_{3}^{\prime}$ for any $k \geq 5$.

When $i=2, j=4$, if $k=6$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2462>\beta$; if $k=7$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2436<\beta$. Since $\rho\left(F_{2,3,4}\right)=\rho_{3}$, we get $\rho_{3}<\rho\left(F_{2,4, k}\right)<\rho_{3}^{\prime}$ for any $4 \leq k \leq 6$.

When $i=2, j=5$, if $k=5$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2444<\beta$. So, we get $\rho\left(F_{2,5,5}\right)>\rho_{3}^{\prime}$. Thus, when $i=2, k \geq j \geq 5$, by Lemma 2.1, we have $\rho\left(F_{2, j, k}\right)>\rho_{3}^{\prime}$.
(c) When $i=3$, if $j=3, k=4$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2496>\beta$; if $j=3, k=5$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2441<\beta$. Since $\rho\left(F_{3,3,3}\right)>\rho_{3}$, we get $\rho_{3}<\rho\left(F_{3,3, k}\right)<\rho_{3}^{\prime}$ for any $k=3,4$, and $\rho\left(F_{3,3, k}\right)>\rho_{3}^{\prime}$ for any $k \geq 5$.

When $i=3$, if $j=4, k=4$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2411<\beta$. So, when $i=3$, if $k \geq j \geq 4$, we have $\rho\left(F_{3, j, k}\right)>\rho_{3}^{\prime}$.
(d) When $i=4$, if $j=4, k=4$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2328<\beta$. So, when $k \geq j \geq i \geq 4$, we have $\rho\left(F_{i, j, k}\right)>\rho_{3}^{\prime}$.
(3) If H has exactly two branching edges, then $H=G_{i, j: m: l, k}^{(3)}(i \leq j, l \leq k)$. We label this graph as follows.

Figure 35 Hypergraphs $G_{i, j: m: l, k}^{(3)}$ and the labellings

We set $x_{1}=y_{1}=w_{1}=q_{1}=\beta, x_{j}=f^{j-1}(\beta), y_{k}=f^{k-1}(\beta), w_{i}=f^{i-1}(\beta), q_{l}=f^{l-1}(\beta)$, $z_{1}=1-x_{j}=1-f^{j-1}(\beta), h_{1}=\frac{\beta}{1-z_{4}}, h_{s}=\frac{\beta}{1-h_{s-1}}$ for any $2 \leq s \leq m, z_{2}=1-h_{m}$, $z_{3}=1-w_{i}=1-f^{i-1}(\beta), z_{5}=1-y_{k}=1-f^{k-1}(\beta), z_{6}=1-q_{l}=1-f^{l-1}(\beta), z_{4}=\frac{\beta}{z_{5} \cdot z_{6}}$.

Firstly, we assume that $i \neq 1$ and $l \neq 1$ at the same time and consider the following cases.
(a) When $i+j=5$ and $l+k=3$, that is $i=2, j=3, l=1, k=2$. We can compute that $z_{4}=\frac{\beta}{1-2 \beta}=f(2 \beta)$. So, we set $h_{1}=f_{2}(2 \beta), h_{m}=f_{m+1}(2 \beta)$. Since $\frac{1-\sqrt{1-4 \beta}}{2}<2 \beta<\frac{1+\sqrt{1-4 \beta}}{2}$, by Lemma 2.10, we get that h_{m} is decreasing with respect to m, and $z_{2}=1-h_{m}$ is increasing with respect to m. So, when $m \rightarrow \infty$, we get $h_{m}=\frac{1-\sqrt{1-4 \beta}}{2}+\varepsilon$ and $z_{2}=1-h_{m}=\frac{1+\sqrt{1-4 \beta}}{2}-\varepsilon$. We can check that $z_{1} \cdot z_{2} \cdot z_{3}<z_{1} \cdot z_{3} \cdot \frac{1+\sqrt{1-4 \beta}}{2}=\beta$. So, for any $m \geq 0$, we get $\rho\left(G_{2,3: m: 1,2}\right)>\rho_{3}^{\prime}$. Thus, for any $m \geq 0, i+j \geq 5$, and $l+k \geq 3$, we have $\rho\left(G_{i, j: m: l, k}\right)>\rho_{3}^{\prime}$.
(b) When $i+j=5$ and $l+k=2$, that is $i=2, j=3, l=1, k=1$. We can compute that $z_{4}=\frac{\beta}{(1-\beta)^{2}}$. Since $\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2}$, we get $h_{m}=\frac{1-\sqrt{1-4 \beta}}{2}$. So, $z_{2}=\frac{1+\sqrt{1-4 \beta}}{2}$. We can check that $z_{1} \cdot z_{2} \cdot z_{3}=\beta$. Thus, for any $m \geq 0$, we have $\rho\left(G_{2,3: m: 1,1}\right)=\rho_{3}^{\prime}$.
(c) When $i+j=4$ and $l+k=4$, if $i=2, j=2, l=2, k=2$, we get $z_{4}=\frac{\beta(1-\beta)^{2}}{(1-2 \beta)^{2}}$ and we can compute that $\frac{1-\sqrt{1-4 \beta}}{2} \approx 0.4302<z_{4} \approx 0.5375<\frac{1+\sqrt{1-4 \beta}}{2} \approx 0.5698$. By Lemma 2.10, we get h_{m} is decreasing with respect to m. We can check that when $m=8, z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2433<\beta$, while when $m=9, z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2465>\beta$. So, for any $m \geq 9$, we get $\rho\left(G_{2,2: m: 2,2}\right)<\rho_{3}^{\prime}$, and for any $0 \leq m<9, \rho\left(G_{2,2: m: 2,2}\right)>\rho_{3}^{\prime}$.

If $i=2, j=2, l=1, k=3$, since $z_{4}=0.5098$, we can get the same results as $\rho\left(G_{2,2: m: 2,2}\right)$, that is, for any $m \geq 9$, we get $\rho\left(G_{2,2: m: 1,3}\right)<\rho_{3}^{\prime}$, and for any $0 \leq m<9, \rho\left(G_{2,2: m: 1,3}\right)>\rho_{3}^{\prime}$.
(d) When $i+j=4$ and $l+k=3$, that is $i=2, j=2, l=1, k=2$, since $z_{4}=\frac{\beta}{1-2 \beta}=$ $f(2 \beta)$, we get $h_{m}=f_{m+1}(2 \beta)$. By Lemma 2.10, we get that h_{m} is decreasing with respect to m, and $z_{2}=1-h_{m}$ is increasing with respect to m. So, we can check that when $m=1$ $z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2442<\beta$, while when $m=2 z_{1} \cdot z_{2} \cdot z_{3} \approx 0.2473>\beta$. So, for any $m \geq 2$, we get $\rho\left(G_{2,2: m: 1,2}\right)<\rho_{3}^{\prime}$, and for any $0 \leq m<2, \rho\left(G_{2,2: m: 1,2}\right)>\rho_{3}^{\prime}$.
(e) When $i+j=4$ and $l+k=2$, that is $i=2, j=2, l=1, k=1$, since $\rho\left(G_{2,3: m: 1,1}\right)=\rho_{3}^{\prime}$, by Lemma 2.1, we get $\rho\left(G_{2,2: m: 1,1}\right)<\rho_{3}^{\prime}$.

When $i+j \leq 3$ and $l+k \leq 3$, that is a special case of the following cases.
Now, we consider $i=l=1$. When $j=1$, we set $x_{1}=y_{1}=w_{1}=q_{1}=\beta, z_{1}=z_{3}=$ $z_{6}=1-\beta, z_{2}=\frac{\beta}{(1-\beta)^{2}}$. Since $\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2}$, we get $z_{4}=\frac{1+\sqrt{1-4 \beta}}{2}$. When $k \rightarrow \infty$, $z_{5}=1-y_{k}=1-f^{k-1}(\beta)=\frac{1+\sqrt{1-4 \beta}}{2}+\varepsilon$. We can check that $z_{4} \cdot z_{5} \cdot z_{6}<(1-\beta)\left(\frac{1+\sqrt{1-4 \beta}}{2}\right)^{2}=\beta$. Therefore, for any $m \geq 0, k \geq 1$, we have $\rho\left(G_{1,1: m: 1, k}\right)<\rho_{3}^{\prime}$. Since $\rho\left(G_{1,1: 0: 1,4}\right)=\rho_{3}$ and $\rho\left(G_{1,1: 6: 1,3}\right)=\rho_{3}$, so, if $\rho_{3}<\rho\left(G_{1,1: m: 1, k}\right)<\rho_{3}^{\prime}$, we have $m \geq 0, k \geq 5$, or $m>0, k=4$, or $m \geq 7, k \geq 3$. When $j=2$, since $z_{2}=\frac{\beta}{1-2 \beta}=f(2 \beta)$, we have the same results as in the sixth item of Case 6 when there is one branching edge in the third branch.

	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
25																						
3	2	4	6	7	9	10	11	12	13	14	15	16	17	18	19	20	20	21	22	22	23	23
4	6	8	9	11	12	13	14	15	16	17	18	19	20	21	22	22	23	24	24	25	25	26
5		10	11	12	14	15	16	17	18	19	20	21	22	22	23	24	25	25	26	27	27	27
6			12	14	15	16	17	18	19	20	21	22	23	24	25	25	26	27	27	28	28	29

Table 1 The values of j, k and m
When $j \geq 3$, if $\rho\left(G_{1, j: m: 1, k}\right)<\rho_{3}^{\prime}$, we have the following table. In the first column of the
table we set $j=3,4,5,6$, and in the first row we set $k=3,4, \ldots, 25$. In the table, the left values denote the minimum that m can get corresponding to the values that j and k get.

But from Table 1, we cannot get obvious rules that j, k and m can follow.
(4) H contains at least three branching edges. Since all degrees of vertices are at most 2, any branching edges lie in a path. We consider the following graph $G_{1,1: m: 1: n: 1,1}$

Figure 36 Hypergraphs $G_{1,1: m: 1: n: 1,1}$

We label this graph as follows.

Figure 37 The labelling of $G_{1,1: m: 1: n: 1,1}$
Set $h_{1}=h_{2}=z_{0}=\beta, x_{0}=\frac{\beta}{(1-\beta)^{2}}, z_{3}=1-\beta$. Since $\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2}$, we get $x_{m}=\frac{1-\sqrt{1-4 \beta}}{2}$. So, $z_{1}=1-x_{m}=\frac{1+\sqrt{1-4 \beta}}{2}$. By the symmetry, we set $z_{2}=\frac{1+\sqrt{1-4 \beta}}{2}$. We can check that $z_{1} \cdot z_{2} \cdot z_{3}=\beta$. Thus, for any $m \geq 0, n \geq 0, \rho\left(G_{1,1: m: 1: n: 1,1}\right)=\rho_{3}^{\prime}$. If H contains $G_{1,1: m: 1: n: 1,1}$ as a subgraph, then $\rho(H)>\rho\left(G_{1,1: m: 1: n: 1,1}\right)=\rho_{3}^{\prime}$.

Therefore, all hypergraphs with spectral radius $\rho(H)$ satisfying $\rho_{3}<\rho(H) \leq \rho_{3}^{\prime}$ are in the list of Theorem 3.1.

4. General k-uniform hypergraphs

For any integer $r \geq 2$, let $\rho_{r}^{\prime}=\beta^{-\frac{1}{r}}$. In this section, we will classify all r-uniform connected hypergraphs with spectral radius at most ρ_{r}^{\prime} for all $r \geq 4$.

A hypergraph $H=(V, E)$ is called reducible if every edge e contains at least one leaf vertex v_{e}. In this case, we can define an $(r-1)$-uniform multi-hypergraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by removing v_{e} from each edge e, i.e., $V^{\prime}=V \backslash\left\{v_{e}: e \in E\right\}$ and $E^{\prime}=\left\{e-v_{e}: e \in E\right\}$. We say that H^{\prime} is reduced from H while H extends H^{\prime}.

From [2] we have the following lemma and corollary.
Lemma 4.1 If H extends H^{\prime}, then H is consistently β-normal if and only of H^{\prime} is consistently β-normal for the same value of β.

Corollary 4.2 If H extends H^{\prime}, then $\rho(H)=\rho_{r}^{\prime}$ if and only if $\rho\left(H^{\prime}\right)=\rho_{r-1}^{\prime}$, and $\rho\left(H^{\prime}\right)<\rho_{r-1}^{\prime}$ if and only if $\rho(H)<\rho_{r}^{\prime}$.

We will use a similar notion for those special r-uniform hypergraphs with spectral radius at most ρ_{r}^{\prime}. We can extend the graphs in Theorem 3.1 by Corollary 4.2. Are there any new hypergraphs not extended from the list of Theorem 3.1

Theorem 4.3 For $r \geq 5$, every r-uniform hypergraph with spectral radius at most ρ_{r}^{\prime} is reducible. For $r=4$, irreducible hypergraphs with spectral radius at most ρ_{r}^{\prime} are the following hypergraphs.

Figure 38 Irreducible 4-uniform hypergraphs

Proof Let H be an r-uniform hypergraph with $\rho_{r}<\rho(H) \leq \rho_{r}^{\prime}$.
(1) If H is not simple, then H contains a subgraph that consists of two edges intersecting on $s \geq 2$ vertices. Call this subgraph $G_{s}^{(r)}$. Define a weighted incident matrix B of $G_{s}^{(r)}$ as follows: for any vertex v and edge e (called the other edge e^{\prime}),

$$
B(v, e)= \begin{cases}\frac{1}{2}, & \text { if } v \in e \cap e^{\prime} \\ 1, & \text { if } v \in e \backslash e^{\prime} \\ 0, & \text { otherwise }\end{cases}
$$

It is easy to check that when $s \geq 3$ we have $\left(\frac{1}{2}\right)^{s}<\beta$, so $G_{s}^{(r)}$ is consistently β-supernormal and $\rho(H)>\rho_{r}^{\prime}$. When $s=2, G_{s}^{(r)}$ is reducible to $C_{n}^{(3)+}$. So, if H contains $G_{s}^{(r)}, \rho(H)>\rho_{r}^{\prime}$.
(2) Now we assume that H is simple. If H is not a simple hypertree, then H contains a cycle. Let $C_{l}=v_{0} e_{1} v_{1} e_{1} \cdots v_{l-1} e_{l} v_{0}$ be a cycle of the minimum length in H. Observe that any vertex in e_{i} other than v_{i-1} and v_{i} must be a leaf vertex in C_{l}. This cycle must be equal to $C_{l}^{(r)+}$, which is β-supernormal. We have $\rho(H)>\rho\left(C_{l}^{(r)+}\right)>\rho_{r}^{\prime}$.
(3) Finally, we assume that H is a simple hypertree. Now assume that H is irreducible. Following the proof in [2], we take an edge, saying $F_{0}=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ so that each vertex v_{i} is in another edge F_{i}, for $i=1,2, \ldots, r$. The subgraph consisting of edges $F_{0}, F_{1}, \ldots, F_{r}$ is called an edge-star, denoted by $S_{r}^{(r)}$. Now we define $B\left(v_{i}, F_{i}\right)=\frac{1}{4}, B\left(v_{i}, F_{0}\right)=\frac{3}{4}$, and $B\left(v, F_{i}\right)=1$ for each vertex $v \neq v_{i}$ in F_{i}. Note $\prod_{i=1}^{r} B\left(e_{i}, F_{0}\right)=\left(\frac{3}{4}\right)^{r} \leq 0.2373<\beta$ if $r \geq 5$. Thus $S_{r}^{(r)}$ is β-supernormal for $r \geq 5$. We have $\rho(H) \geq \rho\left(S_{r}^{(r)}\right)>\rho_{r}^{\prime}$. Contradiction. Thus, every r-uniform hypergraph for $r \geq 5$ with spectral radius at most ρ_{r}^{\prime} is reducible.

Figure 39 Hypergraphs H_{1}^{\prime} and H_{2}^{\prime}
(4) It remains to consider the case $r=4$. Firstly, if there is a branch containing either a branching vertex or a branching edge, then H contains one of the following subgraphs H_{1}^{\prime} and H_{2}^{\prime}.

We label H_{1}^{\prime} and H_{2}^{\prime} as follows.

Figure 40 The labellings of H_{1}^{\prime} and H_{2}^{\prime}
In both H_{1}^{\prime} and H_{2}^{\prime}, setting $x_{1}=x_{5}=x_{6}=y_{1}=y_{2}=\beta, x_{2}=x_{3}=x_{4}=h_{1}=h_{2}=1-\beta$, $h_{3}=\frac{\beta}{(1-\beta)^{2}}=\frac{1-\sqrt{1-4 \beta}}{2} z_{0}=\frac{\beta}{(1-\beta)^{3}}$, we can check $\frac{\beta}{(1-\beta)^{3}}=\frac{1+\sqrt{1-4 \beta}}{2}$. By Lemma 2.10, we get $z_{m}=\frac{1+\sqrt{1-4 \beta}}{2}$. In H_{1}^{\prime}, we can check that $y_{1}+y_{2}+z_{m} \approx 1.0601>1$, while in H_{2}^{\prime}, $h_{3}+z_{m}=\frac{1-\sqrt{1-4 \beta}}{2}+\frac{1+\sqrt{1-4 \beta}}{2}=1$. Thus, for any $m \geq 0, \rho\left(H_{1}^{\prime}\right)>\rho_{r}^{\prime}, \rho\left(H_{2}^{\prime}\right)=\rho_{r}^{\prime}$. If H contains H_{1}^{\prime} or H_{2}^{\prime} as a proper subgraph, then $\rho(H)>\rho_{r}^{\prime}$.

Now, we consider that all four branches of F_{0} are paths. We denote H by $H_{i, j, k, l}^{(4)}$, where i, j, k, and $l(i \leq j \leq k \leq l)$ are the length of the four paths. We will first show that $H_{1,2,2,2}$ is strictly β-supernormal. We label this graph as follows.

Figure 41 Hypergraphs $H_{1,2,2,2}$ and the labellings
Set $x_{1}=z_{0}=\beta, x_{2}=f(\beta), z_{1}=\frac{1-2 \beta}{1-\beta}$, by the symmetry, $z_{2}=z_{3}=z_{4}=\frac{1-2 \beta}{1-\beta}$. We can check that $z_{1} \cdot z_{2} \cdot z_{3} \cdot z_{4}=\approx 0.2325<\beta$. So, $\rho\left(H_{1,2,2,2}\right)>\rho_{r}^{\prime}$.

When $i=j=1, k=2$, let the following graph denote $H_{1,1,2, l}$.

Figure 42 Hypergraphs $H_{1,1,2, l}$

We label this graph as follows.

Figure 43 The labelling of $H_{1,1,2, l}$
Setting $x_{1}=y_{1}=z_{0}=z_{5}=\beta, x_{2}=f(\beta), z_{1}=\frac{1-2 \beta}{1-\beta}, z_{2}=z_{3}=1-\beta, y_{l}=f^{l-1}(\beta)$, $z_{4}=1-y_{l}$. When $l=3$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \cdot z_{4}=\beta$. So, $\rho\left(H_{1,1,2,3}\right)=\rho_{3}^{\prime}$. When $l=4$, we can check that $z_{1} \cdot z_{2} \cdot z_{3} \cdot z_{4} \approx 0.2367<\beta$. So, $\rho\left(H_{1,1,2,4}\right)>\rho_{r}^{\prime}$. Since $\rho\left(H_{1,1,2,2}\right)=\rho_{r}$, we have that only when $l=3, \rho_{r}<\rho\left(H_{1,1,2,3}\right)=\rho_{r}^{\prime}$.

When $i=j=k=1$, let the following graph denote $H_{1,1,1, l}$,

Figure 44 Hypergraphs $H_{1,1,2, l}$
We label this graph as follows.

Figure 45 The labelling of $H_{1,1,2, l}$
Set $x_{1}=y_{1}=z_{0}=z_{5}=\beta, z_{1}=z_{2}=z_{3}=1-\beta, y_{l}=f^{l-1}(\beta), z_{4}=1-y_{l}$. When $l \rightarrow \infty$, by Lemma 2.12, we set $y_{l}=\frac{1-\sqrt{1-4 \beta}}{2}-\varepsilon$ and $z_{4}=1-y_{l}=\frac{1+\sqrt{1-4 \beta}}{2}+\varepsilon$. We can check that $z_{1} \cdot z_{2} \cdot z_{3} \cdot z_{4}>z_{1} \cdot z_{2} \cdot z_{3} \cdot \frac{1+\sqrt{1-4 \beta}}{2}=\beta$. Since $\rho\left(H_{1,1,1,4}\right)<\rho_{4}$ and $\rho\left(H_{1,1,1,5}\right)>\rho_{4}$, we have that for any $l \geq 5, \rho_{r}<\rho\left(H_{1,1,1, l}\right)<\rho_{r}^{\prime}$.

Therefore, all irreducible hypergraphs with spectral radius between at most ρ_{r}^{\prime} are classified in the list of Theorem 4.3.

From Corollary 4.2, Theorems 4.3 and 3.1, we have the following theorem.
Theorem 4.4 Let $r \geq 4, \rho_{r}=\sqrt[r]{4}$ and $\rho_{r}^{\prime}=\beta^{-1 / r}$. If the spectral radius of a connected r-uniform hypergraph H is in $\left(\rho_{r}, \rho_{r}^{\prime}\right)$, then H must be one of the following hypergraphs:
(1) r-uniform hypergraphs obtained by extending the hypergraphs on the list of Theorem 3.1 by $r-3$ times.
(2) r-uniform hypergraphs obtained by extending the hypergraphs on the list of Theorem 4.3 by $r-4$ times.

Acknowledgements We thank the referees for their time and comments.

References

[1] J. H. SMITH. Some Properties of the Spectrum of a Graph. Combinatorial Structures and Their Applications, 1970.
[2] Linyuan LU, Shoudong MAN. Connected hypergraphs with small spectral radius. Linear Algebra Appl., 2016, 509: 206-227.
[3] K. C. CHANG, K. PEARSON, Tan ZHANG. Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci., 2008, 6(2): 507-520.
[4] J. COOPER, A. DUTLE. Spectra of uniform Hypergraphs. Linear Algebra Appl., 2012, 436(9): 3268-3292.
[5] P. KEEVASH, J. LENZ, D. MUBAYI. Spectral extremal problems for hypergraphs. SIAM J. Discrete Math., 2014, 28(4): 1838-1854.
[6] V. NIKIFOROV. Analytic methods for uniform hypergraphs. Linear Algebra Appl., 2014, 457: 455-535.
[7] D. M. CVETKOVIĆ, M. DOOB, I. GUTMAN. On graphs whose spectral radius does not exceed $(2+\sqrt{5})^{1 / 2}$. Ars Combin., 1982, 14: 225-239.
[8] A. E. BROUWER, A. NEUMAIER. The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$. Linear Algebra Appl., 1989, 115: 273-276.

[^0]: Received May 23, 2016; Accepted September 22, 2017
 Supported by the National Natural Science Foundation of China (Grant Nos. 11601368; 11401434; 11771322).

 * Corresponding author

 E-mail address: manshoudong@163.com (Shoudong MAN)

