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Abstract We introduce and study two subclasses Ω[α1](A,B, λ) and Ω+
[α1]

(A,B, λ) of mero-

morphic p-valent functions defined by certain linear operator involving the generalized hy-

pergeometric function. The main object is to investigate the various important properties

and characteristics of these subclasses of meromorphically multivalent functions. We extend

the familiar concept of neighborhoods of analytic functions to these subclasses. We also de-

rive many interesting results for the Hadamard products of functions belonging to the class

Ω+
[α1]

(α, β, γ, λ).
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1. Introduction

Let Σp denote the subclass of functions of the form

f(z) =
1

zp
+

∞∑
k=1

akz
k−p, p ∈ N = 1, 2, . . . , (1.1)

which are analytic and p−valent in the punctured unit U⋆ = {z : z ∈ C and 0 < |z| < 1} =

U \ {0}. For a function f(z) ∈ Σp given by (1.1) and g(z) ∈ Σp given by

g(z) =
1

zp
+

∞∑
k=1

bkz
k−p, p ∈ N,

the Hadamard product (or convolution) of f(z) and g(z) is given by

(f ∗ g)(z) = 1

zp
+

∞∑
k=1

akbkz
k−p = (g ∗ f)(z).

For complex parameters α1, . . . , αq and β1, . . . , βs (βj /∈ Z−
0 = {0,−1,−2, . . .}, j = 1, 2, . . . , s),
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we now define the generalized hypergeometric function qFs(α1, . . . , αq;β1, . . . , βs; z) by

qFs(α1, . . . , αq;β1, . . . , βs; z) =
∞∑
k=0

(α1)k · · · (αq)k

(β1)k · · · (βs)k

zk

k!

(q 6 s+1; q, s ∈ N0∪{0}), where (θ)ν is the Pochhammer symbol defined in terms of the Gamma

function Γ, by

(θ)ν =
Γ(θ + ν)

Γ(θ)

{
1, ν = 0; θ ∈ C \ {0},
θ(θ + 1) · · · (θ + ν − 1), ν ∈ N, θ ∈ c.

Corresponding to the function hp(α1, . . . , αq;β1, . . . , βs; z) defined by

hp(α1, . . . , αq;β1, . . . , βs; z) = z−p
qFs(α1, . . . , αq;β1, . . . , βs; z),

we consider a linear operator Hp(α1, . . . , αq;β1, . . . , βs) : Σp −→ Σp, which is defined by the

following Hadamard product (or convolution):

Hp(α1, . . . , αq;β1, . . . , βs)f(z) = hp(α1, . . . , αq;β1, . . . , βs; z) ∗ f(z).

We observe that, for a function f(z) of the form (1.1), we have

Hp(α1, . . . , αq;β1, . . . , βs)f(z) = z−p +
∞∑
k=1

Γk(α1)akz
k−p, (1.2)

where

Γm(α1) =
(α1)m · · · (αq)m

(β1)m · · · (βs)m m!
, m ∈ N. (1.3)

If, for convenience, we write Hp,q,s(α1) = Hp(α1, . . . , αq;β1, . . . , βs), then one can easily verify

from (1.2) that

z(Hp,q,s(α1))
′ = α1Hp,q,s(α1 + 1)f(z)− (α1 + p)Hp,q,s(α1)f(z).

The linear operator Hp,q,s(α1) was investigated recently by Liu and Srivastava [1] , Aouf [2] and

Aouf and Yassen [3]. In particular, for q = 2, s = 1 and α2 = 1, we obtain the linear operator

Hp,q,s(α1, 1, β1)f(z) = ℓp(α1, β1)f(z) which was introduced and studied by Liu and Srivastava

[4]. We also note, for any integer n > −p and for f(z) ∈ Σp that

Hp(n+ p, 1; 1)f(z) = In+p−1f(z) =
(1 + z)n+p

zp
∗ f(z), n > −p; f(z) ∈ Σp,

where In+p−1f(z) is the differential operator studied earlier by (among others) Aouf [5] and Aouf

and Srivastava [6]. Note also, similar approach in getting the function G[α1],λ(z) was studied

extensively by Aouf and Mostafa [7].

Now, for f ∈ Σp; p ∈ N ; 0 6 λ < 1
2 , let

G[α1],λ(z) = Gp,q,s,(α1),λ = (1− λ)Hp,q,s(α1)f(z) +
λ

p+ 1
z2[

1

z
(Hp,q,s(α1)f(z))]

′

so that,

G[α1],λ(z) =
1− 2λ

zp
+

∞∑
n=1

[1− λ+ λ(
k − (p+ 1)

p+ 1
)]Γk(α1)akz

k−p, p ∈ N ; 0 6 λ <
1

2
. (1.4)
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From (1.4), it is easily verified that

zG′
[α1],λ

(z) = α1G[α1+1],λ(z)− (α1 + p)G[α1],λ(z). (1.5)

For fixed parameters A,B, p and λ with −1 6 B < A 6 1, p ∈ N and 0 6 λ < 1
2 , we say that

a function f(z) ∈ Σp is in the class Ω[α1](A,B,λ) of meromorphically p-valent functions in U∗, if

the function G[α1],λ(z) defined by (1.4) satisfies the following inequality:

|
zp+1G′

[α1],λ
(z) + p(1− 2λ)

Bzp+1G′
[α1],λ

(z) +Ap(1− 2λ)
| < 1, z ∈ U∗. (1.6)

Let Σp denote the class of functions of the form

f(z) = z−p +

∞∑
n=p

|ak| zk, p ∈ N, (1.7)

which are analytic and p- valent in U∗. Furthermore, we say that a function f(z) ∈ Ω+
[α1]

(A,B, λ)

whenever f(z) is of the form (1.1) and satisfies (1.6).

We have the following interesting relationships with some of the special function classes

which were investigated recently:

(i) For q = 2 (α1, α2 = 1), s = 1 (β = 1) and λ = 0, we have Ω[p,2,1,α1,β1](αA,αB, 0) =

Sα1,β1(A,B, α), and Ω+
[p,2,1,α1,β1]

(αA,αB, 0) = S∗
α1,β1

(A,B, α) (α > 0,−1 6 B < A 6 1,−1 6
B 6 0 and |Bα| 6 1) (see [8]);

(ii) For q = 2 (α1, α2 = 1), s = 1 (β1 = 1) and λ = 0, where have Ω+
[p,2,1,α1]

(A,B, 0) =

H∗(p;A,B) (0 6 B 6 1;−B 6 A < B) (see [9]);

(iii) For p = 1, q = 2 (α1, α2 = 1), s = 1 (β1 = 1), A = (1−2γα)β, B = (1−2γ)β and λ = 0,

we have Ω+
[1,2,1,α1]

((1− 2γα)β, (1− 2γ)β, 0) = Σd(α, β, γ) (0 6 α < 1; 1
2 6 γ 6 1, 0 < β 6 1) (see

[10]);

(iv) For p = 1, q = 2 (α1, α2 = 1), s = 1 (β1 = 1) and λ = 0, where have Ω+
[1,2,1,α1]

(A,B, 0) =

Σd(A,B) (−1 6 B < A 6 1,−1 6 B < 0) (see [11]).

Also we note that:

Ω+
[α1]

((1− 2γ
α

p
)β, (1− 2γ)β, λ) = Ω+

[α1]
(α, β, γ)

= {f(z) ∈ Σ∗
p :

∣∣ zp+1G′
[α1],λ

(z) + p(1− 2λ)

(2γ − 1)zp+1G′
[α1],λ

(z) + (2λα− p)(1− 2λ)

∣∣ < β}

for (z ∈ U∗; 0 6 α < p, p ∈ N ; 1
2 6 γ 6 1; 0 < β 6 1).

Meromorphically multivalent functions have been extensively studied by (for example) Mo-

gra [9,12], Uralegaddi and Ganigi [13], Uralegaddi and Somanatha [14], Aouf [5,15,16], Srivastava

et al. [17], Owa et al. [18], Joshi and Aouf [19], Joshi and Srivastava [20], Aouf et al. [21], Raina

and Srivastava [22] and Yang [23,24].

In this paper we investigate the various important properties and characteristics of the

classes Ω[α1](A,B, λ) and Ω+
[α1]

(A,B, λ). Following the recent investigations by Altintas et al. [25,

p.1668], we extend the concept of neighborhoods of analytic functions, which was considered

earlier by (for example) Goodman [26] and Ruscheweyh [27], to meromorphically multivalent



46 Mostafa ALBEHBAH and Maslina DARUS

functions belonging to the classes Ω[α1](A,B, λ) and Ω+
[α1]

(A,B, λ). We also derive many results

for the Hadamard products of functions belonging to the class Ω+
[α1]

(α, β, γ, λ).

2. Inclusion properties of the class Ω[α1](A,B, λ)

We begin by recalling the following result (Jack’s lemma), which we shall apply in proving

our first inclusion theorem (Theorem 2.2 below).

Lemma 2.1 ([28]) Let the (nonconstant) function w(z) be analytic in U with w(0) = 0. If |w(z)|
attains its maximum value on the circle |z| = r < 1 at a point z0 ∈ U , then z0w

′(z0 = ξw(z0),

where ξ is a real number and ξ ≥ 1.

Theorem 2.2 The following inclusion property holds true for the Ω[α+1](A,B, λ), α1 > 0:

Ω[α+1](A,B, λ) ⊂ Ω[α1](A,B, λ).

Proof Let f(z) ∈ Ω[α+1](A,B, λ) and suppose that

zp+1G′
[α1],λ

(z) = −p(1− 2λ)
1 +Aw(z)

1 +Bw(z)
, (2.1)

where the function w(z) is analytic in U and w(0) = 0. Then by using (1.5) and (2.1), we have

zp+1G′
[α1],λ

(z) = −p(1− 2λ)
1 +Aw(z)

1 +Bw(z)
− p(1− 2λ)

α1
.
(A−B)zw′(z)

(1 +Bw(z))2
. (2.2)

We claim that |w(z)| < 1 for z ∈ U . Otherwise there exist a point z0 ∈ U such that max|z|6|z0| |w(z)|
= |w(z0)| = 1. Applying Jack’s lemma, we have z0w

′(z0) = ξw(z0) (ξ > 1). Writing w(z0) = eiθ

(0 6 θ 6 2π) and putting z = z0 in (2.2), we get

|
zp+1
0 G′

[α1],λ
(z0) + p(1− 2λ)

Bzp+1
0 G′

[α1],λ
(z0) +Ap(1− 2λ)

|2 − 1

=
|α1 + ξ + α1Beiθ|2 − |α1 +B(α1 − ξ)eiθ|2

|α1 +B(α1 − ξ)eiθ|2

=
ξ2(1−B2) + 2α1ξ(1 +B2 + 2B cos θ)

|α1 +B(α1 − ξ)eiθ|2
, (2.3)

which obviously contradicts our hypothesis that f(z) ∈ Ω[α1+1](A,B, λ). Thus we must have

|w(z)| < 1 (z ∈ U), and so from (2.3), we conclude that f(z) ∈ Ω[α1](A,B, λ), which evidently

completes the proof of Theorem 2.2. �

Theorem 2.3 Let µ be a complex number such that Re(µ) > 0. If f(z) ∈ Ω[α1](A,B, λ), then

the function

F[α1],λ(z) =
µ

zµ+p

∫ z

0

tµ+p−1G[α1],λ(t)dt, (2.4)

is also in the same class Ω[α1](A,B, λ).

Proof From (2.4), we have

zF ′
[α1],λ

(z) = µG[α1],λ(z) + (µ+ p)F[α1,λ](z). (2.5)
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Put

zp+1F ′
[α1],λ

(z) = −p(1− 2λ)
1 +Aw(z)

1 +Bw(z)
, (2.6)

where w(z) is analytic in U and w(0) = 0. Then, by using (2.5) and (2.6), we have

zp+1G′
[α1],λ

(z) = −p(1− 2λ)
1 +Aw(z)

1 +Bw(z)
− p(1− 2λ)(A−B)

µ
· zw′(z)

(1 +Bw(z))2
.

The remaining part of the proof is similar to that of Theorem 2.2 and so is omitted. �

Theorem 2.4 f(z) ∈ Ω[α1](A,B, λ), if and only if

F[α1],λ(z) =
α1

zα1+p

∫ z

0

tα1+p−1f(t)dt ∈ Ω[α1+1](A,B, λ). (2.7)

Proof In view of the definition of Fα1,λ(z), we have

α1f(z) = (α1 + p)F[α1],λ(z) + zF ′
[α1],λ

(z). (2.8)

By using (1.5) and (2.7), we have

α1Gα1,λf(z) = (α1 + p)Gα1,λFα1,λ(z) + z(Gα1,λFα1,λ(z))
′.

The desired result follows immediately. �

3. Properties of the class Ω+
[α1]

(A,B, λ)

In the rest of the paper we assume further that αj > 0 (j = 1, . . . , q), βj > 0 (j = 1, l . . . , s),

−1 6 A < B 6 1, −1 6 B 6 0, 0 6 λ < 1
2 and p ∈ N.

Theorem 3.1 Let f(z) ∈ Σ∗
p be given by (1.7). Then f(z) ∈ Ω+

[α1]
(A,B, λ) if and only if

∞∑
k=p

k[1 + λ(
k − (p+ 1)

p+ 1
)](1−B)Γk+p(α1) |ak| 6 (A−B)p(1− 2λ), (3.1)

where Γm is given by (1.3).

Proof Let f(z) ∈ Ω+
[α1]

(A,B, λ) be given by (1.7). Then, from (1.6) and (1.7), we have

∣∣ zp+1G′
[α1+1],λ(z) + p(1− 2λ)

Bzp+1G′
[α1+1],λ(z) +Ap(1− 2λ)

∣∣
=

∣∣ ∑∞
k=p k[1 + λ(k−(p+1)

p+1 )]Γk+p(α1) |ak| zk+p

(A−B)p(1− 2λ) +
∑∞

k=p Bk[1 + λ(k−(p+1)
p+1 )]Γk+p(α1) |ak| zk+p

∣∣ < 1, z ∈ U.

Since Re(z) 6 |z| (z ∈ C), we have

Re
{ ∑∞

k=p k[1 + λ(k−(p+1)
p+1 )]Γk+p(α1) |ak|

(A−B)p(1− 2λ) +
∑∞

k=p Bk[1 + λ(k−(p+1)
p+1 )]Γk+p(α1) |ak|

}
< 1. (3.2)

Choose values of z on the real axis so that zp+1G′
[α1+1],λ(z) is real. Upon clearing the denominator

in (3.1) and letting z → 1− through real values we obtain (2.8). In order to prove the converse,
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we assume that the inequality (2.8) holds true. Then, if we let z ∈ ∂U , we find from (1.7) and

(2.8) that ∣∣ zp+1G′
[α1+1],λ(z) + p(1− 2λ)

Bzp+1G′
[α1+1],λ(z) +Ap(1− 2λ)

∣∣
6

∑∞
k=p k[1 + λ(k−(p+1)

p+1 )]Γk+p(α1) |ak|

(A−B)p(1− 2λ) +
∑∞

k=p Bk[1 + λ(k−(p+1)
p+1 )]Γk+p(α1) |ak|

, z ∈ U

< 1, z ∈ ∂U = {z : z ∈ C and |z| = 1} . (3.3)

Hence, by the maximum modulus theorem, we have f(z) ∈ Ω+
[α1]

. This completes the proof of

Theorem 3.1. �

Corollary 3.2 If the function f(z) defined by (1.7) is in the class Ω+
[α1]

(A,B, λ), then

an ≤ (A−B)p(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1−B)Γk+p(α1)

, k > p; p ∈ N

with equality for the functions

f(z) = z−p +
(A−B)p(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1−B)Γk+p(α1)

, k > p; p ∈ N. (3.4)

Putting A = (1 − 2γ α
p ) and B = (1 − 2γ)β (0 6 α < p, 0 < β 6 1, 1

2 6 γ 6 1 and p ∈ N) in

Theorem 3.1.

Corollary 3.3 A function f(z) defined by (1.7) is in the class Ω+
[α1]

(α, β, γ, λ) if and only

∞∑
k=p

k[1 + λ(
k − (p+ 1)

p+ 1
)](1 + 2βγ − β)Γk+p(α1) |ak| 6 2βγ(p− α)(1− 2λ).

The following property is an easy consequence of Theorem 3.1.

Theorem 3.4 Let each of the function fj(z) defined by

fj(z) = z−p +
∞∑
k=p

|ak,j | zk, j = 1, 2, . . . ,m (3.5)

be in the class Ω+
[α1]

(A,B, λ). Then the function h(z) defined by

h(z) =

m∑
j=1

ζjfj(z), ζj > 0 and

m∑
j=1

ζj = 1

is also in the class Ω+
[α1]

(A,B, λ).

Next we prove the following growth and distortion properties for the class Ω+
[α1]

(A,B, λ).

Theorem 3.5 If a function f(z) defined by (1.7) is in the class f(z) ∈ Ω+
[α1]

(A,B, λ) and the

sequence {Ck} = {k[1 + λ(k−(p+1)
p+1 )]Γk+p(α1)} (k > p; p ∈ N ; 0 6 λ < 1

2 ) is nondecreasing, then{ (p+m− 1)!

(p− 1)!
− (A−B)(1− 2λ)

(1−B)Cp
· p!

(p−m)!
r2p

}
r−(p+m)
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6 |f (m)(z)| 6
{ (p+m− 1)!

(p− 1)!
+

(A−B)(1− 2λ)

(1−B)Cp
.

p!

(p−m)!
r2p

}
(3.6)

(0 < |z| = r < 1; 0 6 λ < p; p ∈ N ;m ∈ N0 = N
∪
{0} ; p > m), where Γm(α1) is given by (1.3).

The result is sharp for the functions f(z) given by

f(z) = z−p +
(A−B)(1− 2λ)

(1−B)Γ2p(α1)
zp, p ∈ N. (3.7)

Proof In view of Theorem 3.1, we have

Γ2p(α1)
p

p!

∞∑
k=p

k! |ak| 6
∞∑
k=p

k[1 + λ(
k − (p+ 1)

p+ 1
)]Γk+p(α1) |ak| 6

(A−B)p(1− 2λ)

(1−B)
,

which tields
∞∑
k=p

k! |ak| 6
(A−B)p(1− 2λ)

(1−B)Γ2p(α1)
, p ∈ N. (3.8)

Now, by differentiating both sides of (1.7) m times with respect to z, we have

f (m)(z) = (−1)m
(p+m− 1)!

(p− 1)!
z−(p+m) +

∞∑
k=p

k!

(k −m)!
|ak| zk−m, (3.9)

m ∈ N0; p ∈ N ; p > m and Theorem 3.5 follows easily from (3.6) and (3.7). Finally, it is easy

to see that the bounds in (3.4) are attained for the function f(z) given by (3.5). �
Next we determine the radii of meromorphically p-valent starlikeness of order δ and mero-

morphically p-valent convexity of order δ (0 6 δ < p) for functions in the class Ω+
[α1]

(A,B, λ).

Theorem 3.6 Let the function f(z) defined by (1.7) is in the class Ω+
[α1]

(A,B, λ). Then we

have:

(i) f(z) is meromorphically p-valent starlike of order δ (0 6 δ < p), p ∈ N in the disk

|z| < r1, that is,

Re{−zf ′(z)

f(z)
} > δ, |z| < r1,

where

r1 = inf
k>p

{ (p− δ)k[1 + λ(k−(p+1)
p+1 )](1−B)Γk+p(α1)

(k + δ)(A−B)p(1− 2λ)

} 1
k+p . (3.10)

(ii) f(z) is meromorphically p-valent convex of order δ (0 6 δ < p), p ∈ N in the disk

|z| < r2, that is,

Re{−(1 +
zf ′′(z)

f ′(z)
)} > δ, |z| < r2,

where

r2 = inf
k>p

{ (p− δ)[1 + λ(k−(p+1)
p+1 )](1−B)Γk+p(α1)

(k + δ)(A−B)p(1− 2λ)

} 1
k+p . (3.11)

Each of these results is sharp for the function f(z) given by (3.2).

Proof (i) From Eq. (1.7), we easily get

∣∣ zf ′(z)
f(z) + p

zf ′(z)
f(z) − p+ 2δ

∣∣ 6 ∑∞
k=p(k + p)|ak||z|k+p

2(p− δ)−
∑∞

k=p(k − p+ 2δ)|ak||z|k+p
.
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Thus, we have the desired inequality

∣∣ zf ′(z)
f(z) + p

zf ′(z)
f(z) − p+ 2δ

∣∣ 6 1, 0 6 δ < p; p ∈ N.

If
∞∑
k=p

(
k + δ

p− δ
)|ak||z|k+p 6 1, (3.12)

by Theorem 3.1, (3.10) will be true if

(
k + δ

p− δ
)|z|k+p 6

{k[1 + λ(k−(p+1)
p+1 )](1−B)Γk+p(α1)

(A−B)p(1− 2λ)

}
, k > p; p ∈ N. (3.13)

The last inequality (3.11) leads us immediately to the disk |z| < r1, where r1 is given by (3.8).

(ii) In order to prove the second assertion of Theorem 3.6, we find from the definition (1.7)

that ∣∣ 1 + zf ′′(z)
f ′(z) + p

1+zf ′′(z)
f ′(z) − p+ 2δ

∣∣ 6 ∑∞
k=p k(k + p)|ak||z|k+p

2p(p− δ)−
∑∞

k=p k(k − p+ 2δ)|ak||z|k+p
.

Thus, we have the desired inequality

∣∣ 1 + zf ′′(z)
f ′(z) + p

1+zf ′′(z)
f ′(z) − p+ 2δ

∣∣ 6 1, 0 6 δ < p; p ∈ N.

If
∞∑
k=p

(
k(k + δ)

p(p− δ)
)|ak||z|k+p 6 1, (3.14)

by Theorem 3.1, (3.10) will be true if

(
k(k + δ)

p(p− δ)
) |z|k+p 6

{k[1 + λ(k−(p+1)
p+1 )](1−B)Γk+p(α1)

(A−B)p(1− 2λ)

}
, k > p; p ∈ N. (3.15)

The last inequality (3.13) readily yields the disk |z| < r2, where r2 is given by (3.15). �

4. Neighborhoods

Following the earlier works (based upon the familiar concept of neighborhoods of ana-

lytic functions) by Goodman [26] and Ruscheweyh [27], and (more recently) by Altintas et

al. [25,29,30], Liu [8], and Liu and Srivastava [1], we begin by introducing here the δ-neighborhood

of a functionf(z) ∈ Σp of the form (1.1) by means of the definition given below:

Nδ(f) =
{
g ∈ Σp : g(z) = z−p +

∞∑
k=1

bkz
k−p and

∞∑
k=1

(1 + |B|)(k + p)[1− λ+ λ(k−(p+1)
p+1 )]

(A−B)p(1− 2λ)
|bk − ak| 6 δ

}
(4.1)

−1 6 B < A 6 1; p ∈ N ; 0 6 λ <
1

2
; δ > 0.
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Making use of the definition (3.15), we now prove Theorem 4.1 below

Theorem 4.1 Let the function f(z) defined by (1.1) be in the class Ω[α1](A,B, λ). If f(z)

satisfies the following condition:

f(z) + ϵz−p

1 + ϵ
∈ Ω[α1](A,B, λ), ϵ ∈ C; |ϵ| < δ; δ > 0, (4.2)

then

Nδ(f) ⊂ Ω[α1](A,B, λ). (4.3)

Proof It is easily seen from (1.6) that g(z) ∈ Ω[α1](A,B, λ) if and only if for any complex

number σ with |σ| = 1,

zp+1G′
[α1],λ

(z) + p(1− 2λ)

Bzp+1G′
[α1],λ

(z) +Ap(1− 2λ)
̸= σ, z ∈ U, (4.4)

which is equivalent to

(g ∗ h)(z)
z−p

̸= 0, z ∈ U, (4.5)

where, for convenience,

h(z) = z−p +
∞∑
k=1

ckz
k−p = z−p +

∞∑
k=1

(1− σB)(k − p)[1− λ+ λ(k−(p+1)
p+1 )]Γk(α1)

(B −A)p(1− 2λ)σ
zk−p. (4.6)

From (4.5), we have

|ck| =
∣∣ (1− σB)(k − p)[1− λ+ λ(k−(p+1)

p+1 )]Γk(α1)

(B −A)p(1− 2λ)σ

∣∣
6

(1 + |B|)(k + p)[1− λ+ λ(k−(p+1)
p+1 )]Γk(α1)

(A−B)p(1− 2λ)
, k, p ∈ N ; 0 6 λ <

1

2
.

Now, if f(z) = z−p +
∑∞

k=1 akz
k−p ∈ Σp satisfies the condition (4.1), then (4.4) yields∣∣ (f ∗ h)(z)

z−p

∣∣ > δ, z ∈ U ; δ > 0.

By letting g(z) = z−p +
∑∞

k=1 bkz
k−p ∈ Nδ(f), we get that

∣∣ [g(z)− f(z)] ∗ h(z)
z−p

∣∣ = ∣∣∣ ∞∑
k=1

(bk − ak)ckz
k
∣∣∣

6 |z|
∞∑
k=1

(1 + |B|)(k + p)[1− λ+ λ(k−(p+1)
p+1 )]Γk(α1)

(A−B)p(1− 2λ)
|bk − ak| < δ, z ∈ U ; δ > 0.

Then we have (4.4), and hence also (4.3) for any σ ∈ C such that |σ| = 1, which implies that

g(z) ∈ Ω[α1](A,B, λ). This evidently proves the assertion (4.3) of Theorem 4.1. �
We now define the δ-neighborhood of a function f(z) ∈ Σp of the form (1.7) as follows

N+
δ (f) =

{
g ∈ Σ∗

p : g(z) = z−p +

∞∑
k=p

|bk|zk and
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∞∑
k=1

(1 + |B|)k[1− λ+ λ(k−(p+1)
p+1 )]Γk+p(α1)

(A−B)p(1− 2λ)
∥bk| − |ak∥ 6 δ

}
,

−1 6 B < A 6 1; p ∈ N ; 0 6 λ <
1

2
; δ > 0.

Theorem 4.2 Let the function f(z) defined by (1.7) be in the class Ω+
[α1+1](A,B, λ) (−1 6

B < A 6 1,−1 6 B 6 0, P ∈ N and) 0 6 λ < 1
2 . Then

N+
δ (f) ⊂ Ω+

[α1]
(A,B, λ), δ =

2p

α1 + 2p
.

The result is sharp in the sense that δ cannot be increased.

Proof Making use the same method as in the proof of Theorem 4.1, we can show that (4.6)

h(z) = z−p +
∞∑
k=p

ckz
k = z−p +

∞∑
k=p

(1− σB)k[1− λ+ λ(k−(p+1)
p+1 )]Γk+p(α1)

(B −A)p(1− 2λ)σ
zk.

Thus, under the hyppothesis −1 6 B < A 6 1,−1 6 B 6 0, P ∈ N and 0 6 λ < 1
2 , f(z) ∈

Ω+
[α1+1](A,B, λ) is given by (1.7), we obtain

∣∣ (f ∗ h)(z)
z−p

∣∣ = ∣∣∣1 + ∞∑
k=p

ck|ak|zk+p
∣∣∣

> 1− α1

α1 + 2p

∞∑
k=p

(1−B)k[1− λ+ λ(k−(p+1)
p+1 )]Γk+p(α1 + 1)

(A−B)p(1− 2λ)
|ak|.

Also, from Theorem 3.1, we obtain∣∣ (f ∗ h)(z)
z−p

∣∣ > 1− α1

α1 + 2p
=

2p

α1 + 2p
= δ.

The remaining part of thr proof of Theorem 4.2 is similar to that of Theorem 4.1, and we skip

the details involved. To show the sharpness, we consider the function f(z) anf g(z) given by

f(z) = z−p +
(A−B)(1− 2λ)

(1−B)Γ2p(α1 + 1)
zp ∈ Ω+

[α1+1](A,B, λ)

and

g(z) = z−p + [
(A−B)(1− 2λ)

(1−B)Γ2p(α1 + 1)
+

(A−B)(1− 2λ)δ′

(1−B)Γ2p(α1 + 1)
]zp,

where δ′ > δ = 2p
α1+2p . Clearly, the function g(z) belongs to N+

δ′ (A,B, λ). Thus the proof of

Theorem 4.2 is completed. �

Theorem 4.3 Let f(z) ∈ Σp be given by (1.1) and define the partial sums s1(z) and sn(z) as

s1(z) = z−p and sn(z) = z−p +

n−1∑
k=1

akz
k−p, n ∈ N {1}.

Suppose also that

∞∑
k=1

dk|ak| 6 1, dk =
(1 + |B|)(k + p)[1− λ+ λ(k−(p+1)

p+1 )]Γk(α1)

(A−B)p(1− 2λ)
. (4.7)
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Then:

(i) f(z) ∈ Ω[α1](A,B, λ).

(ii) If {Γk(α1)} (k ∈ N) is nondecreasing and

Γ1(α1) >
(A−B)p(1− 2λ)

(1 + |B|)(1 + p)[1− λ+ λ(k−(p+1)
p+1 )]

,

then

Re{ f(z)

sn(z)
} > 1− 1

dn
, z ∈ U ; n ∈ N, (4.8)

and

Re{sn(z)
f(z)

} >
dn

1 + dn
, z ∈ U ; n ∈ N. (4.9)

Each of the bounds in (4.7) and (4.8) is the best possible for each n ∈ N .

Proof (i) It is not difficult to see that z−p ∈ Ω[α1](A,B, λ) (p ∈ N). Thus, from Theorem 4.1

and the hypothesis (4.6), we have N1(z
−p) ⊂ Ω[α1](A,B, λ) as asserted by Theorem 4.1.

(ii) Under the hypothesis in Part (ii) of Theorem 4.3, we can see from (4.6) that dk+1 >

dk > 1, k ∈ N . Therefore, we have

n−1∑
k=1

|ak|+ dn

∞∑
k=n

|ak| 6
∞∑
k=1

dk |ak| 6 1, (4.10)

by using hypothesis (4.6) again. By setting

g1(z) = dn[
f(z)

sn(z)
− (1− 1

dn
)] = 1 +

dn
∑∞

k=n akz
k

1 +
∑n−1

k=1 akz
k
,

and appling (4.9), we find that

|g1(z)− 1

g1(z) + 1
| 6 dn

∑∞
k=n |ak|

2− 2
∑n−1

k=1 |ak| − dn
∑∞

k=n |ak|
6 1, z ∈ U,

which readily yields the assertion (4.7). If we take

f(z) = z−p − zn−p

dn
, (4.11)

then
f(z)

sn(z)
= 1− zn

dn
−→ 1− 1

dn
, z −→ 1−,

which shows that bound in (4.7) is the best possible for each n ∈ N . Similary, if we put

g2(z) = (1 + dn)(
sn(z)

f(z)
− dn

1 + dn
) = 1−

(1 + dn)
∑∞

k=n akz
k

1 +
∑zk

ak

,

and making use of (4.9), we can deduce that

|g2(z)− 1

g2(z) + 1
| 6 (1 + dn)

∑∞
k=n |ak|

2− 2
∑n−1

k=1 |ak|+ (1− dn)
∑∞

k=n |ak|
6 1, z ∈ U,

which leads immediately to assertion (4.10). The bound in (4.8) is sharp for each n ∈ N , with

the extremal function f(z) given by (4.10). The proof of Theorem 4.3 is thus completed. �
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5. Convolution properties for the class Ω+
[α1]

(α, β, γ, λ)

For the function fj(z) (j = 1, 2) defined by (3.3) we denote by (f1 ∗ f1)(z) the Hadmard

product (or convolution) of the function f1(z) and f2(z), that is,

(f1 ∗ f1)(z) = z−p +
∞∑
k=p

|ak,1| |ak,2| zk.

Throughout this section, we assume further that the sequence {k[1+λ(k−(p+1)
p+1 )]Γk+p(α1)} (k >

p; p ∈ N, 0 6 λ < 1
2 ) is nondecreasing.

Theorem 5.1 Let the functions fj(z) (j = 1, 2) defined by (3.5) be in the class Ω+
[α1]

(α, β, γ, λ).

Then (f1 ∗ f2)(z) ∈ Ω+
[α1]

(ζ, β, γ, λ), where

ζ = p− 2βγ(p− α)2(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
.

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) = z−p +
2βγ(p− α)2(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
zp, j = 1, 2; p ∈ N. (5.1)

Proof Employing the technique used earlier by Schild and Silverman [22], we need to find the

largest ζ such that

∞∑
k=p

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

2βγ(p− ζ)(1− 2λ)
|ak,1| |ak,2| 6 1

for fj(z) ∈ Ω+
[α1]

(α, β, γ, λ) (j = 1, 2). Since fj(z) ∈ Ω+
[α1]

(α, β, γ, λ) (j = 1, 2), we readily see

that
∞∑
k=p

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)
|ak,j | 6 1, j = 1, 2.

Therefore, by the Cauchy-Schwarz inequality, we obtain

∞∑
k=p

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)

√
|ak,1| |ak,2| 6 1. (5.2)

This implies that we only need to show that

1

(p− ζ)
. |ak,1| |ak,2| 6

1

(p− α)
.
√
|ak,1| |ak,2|, k > p,

or, equivalently, that
√
|ak,1||ak,2| 6 p−ζ

p−α (k > p). Hence, by the inequality (5.1), it is sufficient

to prove that
2βγ(p− α)2(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

6 p− ζ

p− α
, k > p. (5.3)

It follows from (5.2) that

ζ 6 p− 2βγ(p− α)2(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

, k > p.
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Now, defining the function Φ(k) by

Φ(z) = p− 2βγ(p− α)2(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

, k > p,

we have

Φ(k + 1)− Φ(z) =
2βγ(p− α)2(1− 2λ)

(1 + 2βγ − β)
Γk+p(α1)×

{
(k + 1)(a+ k + p)[1 + λ(k+1−(p+1)

p+1 )]− k(c+ k + p)[1 + λ](k−(p+1)
p+1 )

k(k + 1)(a+ k + p)[1 + λ(k−(p+1)
p+1 )][1 + λ](k+1−(p+1)

p+1 )
} > 0,

that is, Φ(k) is an increasing function of k (k > p). Therefore, we conclude that

ζ 6 Φ(p) = p− 2βγ(p− α)2(1− 2λ)

p(1 + 2βγ − β)Γk+p(α1)
,

which evidently completes the proof of Theorem 5.1. �
Using arguments similar to these in the proof of Theorem 5.1, we obtain the following result.

Theorem 5.2 Let the functions f1(z) defined by (3.3) be in the class Ω+
[α1]

(α, β, γ, λ). Suppose

also that the function f2(z) defined (3.3) is in the class ∈ Ω+
[α1]

(θ, β, γ, λ). Then (f1 ∗ f2)(z) ∈
Ω+

[α1]
(τ, β, γ, λ) where

τ = p− 2βγ(p− α)(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
.

The result is sharp for the functions fj(z) (j = 1, 2) given by

f1(z) = z−p +
2βγ(p− α)(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
zp, p ∈ N,

f1(z) = z−p +
2βγ(p− θ)(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
zp, p ∈ N.

Theorem 5.3 Let the functions fj(z) (j = 1, 2) defined by (3.3) be in the class Ω+
[α1]

(α, β, γ, λ).

Then the function h(z) defined by

h(z) = z−p +

∞∑
k=p

(|ak,1|2 + |ak,2|2)zk

belongs to the class Ω+
[α1]

(φ, β, γ, λ), where

φ = p− 4βγ(p− α)2(1− 2λ)

p(1 + 2βγ − β)Γ2p(α1)
.

The result is sharp for the functions fj(z) (j = 1, 2) defined by (4.11).

Proof Noting that( ∞∑
k=p

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)

)2

|ak,j |2

6
( ∞∑

k=p

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)
|ak,j |

)2

6 1, j = 1, 2,



56 Mostafa ALBEHBAH and Maslina DARUS

for fj(z) ∈ Ω+
[α1]

(p, α, β, γ, λ) (j = 1, 2), we have

∞∑
k=p

1

2

[k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

2βγ(p− α)(1− 2λ)

]2
(|ak,1|2 + |ak,2|2) 6 1.

Therefore, we have to find the largest φ such that

1

(p− φ)
6

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

4βγ(p− α)2(1− 2λ)
, k > p, (5.4)

that is,

φ 6 p− 4βγ(p− α)2(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

, k > p.

Now, defining the function Ψ(k) by

Ψ(z) = p− 4βγ(p− α)2(1− 2λ)

k[1 + λ(k−(p+1)
p+1 )](1 + 2βγ − β)Γk+p(α1)

, k > p,

we observe that Ψ(z) is an increasing function of k (k > p). Thus, we conclude that

φ 6 Ψ(z) = p− 4βγ(p− α)2(1− 2λ)

p(1 + 2βγ − β)Γk+p(α1)
, k > p,

which completes the proof of Theorem 5.3. �
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