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1. Introduction

Mathematicians care about the eigenvalue problem (or more precisely, eigenvalue inequal-

ities) since it has the close relation with the isoperimetric problem, and this fact can be easily

seen from some classical results, for instance, the Rayleigh-Faber-Krahn inequality (see, e.g.,

Theorem 2 on page 87 of [1]), the Szegö-Weinberger inequality (see, e.g., Remark 6 on page 94

of [1]), the Payne-Polya-Weinberger inequality [2], and so on. A classical result in the eigenvalue

problem on manifolds, Cheng’s eigenvalue comparison theorem (Cheng’s ECT for short), tells

us that for an n-dimensional (n ≥ 2) complete Riemannian manifold M and a point q ∈ M ,

if its Ricci curvature is greater than and equal to (n − 1)K, then the first Dirichlet eigenvalue

λ1 (B(q, r)) of the Laplace operator on the geodesic ball B(q, r) satisfies

λ1 (B(q, r)) ≤ λ1 (Vn(r)) , (1.1)

where Vn(r) is the geodesic ball of radius r in the n-dimensional space form of constant sectional

curvature K, with λ1 (Vn(r)) the first Dirichlet eigenvalue of the Laplacian on Vn(r), and the

equality in (1.1) holds if and only if B(q, r) is isometric to Vn(r); conversely, if its sectional

curvature is less than and equal to K, then for the geodesic ball B(q, r) within the cut-locus of

q, we have

λ1 (B(q, r)) ≥ λ1 (Vn(r)) , (1.2)
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where Vn(r), B(q, r) and λ1(·) have the same meanings as those in (1.1), and, as above, the

equality in (1.2) hods if and only if B(q, r) and Vn(r) are isometric. We know that, in general, it

is difficult to calculate the first Dirichlet eigenvalue of geodesic balls on a general manifold, but

in the case of space forms, λ1 (Vn(r)) is actually the lowest positive real number such that there

exists at least a nontrivial function u(t) satisfying u′′(t) +
(n−1)S′

K(t)
SK(t) u′(t) + λ1 · u(t) = 0,

u′(0) = u(r) = 0,

with

SK(t) =


sin(

√
Kt)/

√
K, K > 0,

t, K = 0,

sinh(
√
−Kt)/

√
−K, K < 0.

We refer readers to [1, Section 5, Chapter II] for this fact. The above ordinary differential

equation (ODE for short) can be solved by suitable change of variables, and once K, n and

r are confirmed, then λ1 (Vn(r)) can be accurately computed. This implies that we can give

bounds, which can be given by accurate numbers, to λ1 (B(q, r)) provided we can find bounds

for curvatures of the given complete manifold. Cheng’s ECT is a useful tool in the estimation

of eigenvalues of the Laplacian, and one can easily find examples for this fact [3, Theorem 2.1,

Corollaries 2.2, 2.3, 2.4 and Theorem 4.2].

By considering more general curvature conditions, Freitas, Mao and Salavessa [4] have ex-

tended Cheng’s ECT to more generalized versions [4, Theorems 3.6 and 4.4]. More precisely, for

an n-dimensional (n ≥ 2) complete Riemannian manifold M and a point q ∈ M , let t := d(q, ·)
be the Riemannian distance on M to the point q, if the radial Ricci curvature of M is bounded

from below by (n − 1)k(t) with respect to q (see [4, Definition 2.2] for the precise statement of

“how to define a lower bound, which is given by a continuous function w.r.t. t, for the radial

Ricci curvature”), then the first Dirichlet eigenvalue λ1 (B(q, r)) of the Laplace operator on the

geodesic ball B(q, r) satisfies

λ1 (B(q, r)) ≤ λ1

(
Vn(q

−, r)
)
, (1.3)

where Vn(q
−, r) is the geodesic ball with center q− and radius r on the spherically symmetric

manifold M− := [0, l)×f(t) Sn−1 with q− as its base point, and f(t) determined by
f ′′(t) + k(t)f(t) = 0, t ≥ 0,

f ′(0) = 1,

f(0) = 0,

f(t) > 0 on (0, l),

(1.4)

and λ1 (Vn(q
−, r)) denotes the first Dirichlet eigenvalue of the Laplacian on Vn(q

−, r). If l < ∞
and f(l) = 0, then M− “closes” at t = l; if l = +∞, this implies that the initial value problem

(1.4) has a positive solution on (0,∞), and in this case, without considering the confusion between

our parameter t here and the usual time-parameter, we say that M− exists “for all the time”, or
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equivalently, M− has the “long-time existence”. Here the radius-parameter r in (1.3) satisfies

r < min{l,max
ξ

dξ(q)}, (1.5)

with ξ ∈ Sn−1
q ⊂ TqM and

dξ(q) := sup{t > 0| γξ(s) = γ(q,ξ)(s) := expq(sξ) is the unique

minimal geodesic joining q and γξ(t)},

and moreover, the equality in (1.3) holds if and only if B(q, r) is isometric to Vn(q
−, r). Con-

versely, if the radial sectional curvature of M is bounded from above by k(t) with respect to q

(see [4, Definition 2.3]) for the precise statement of “how to define an upper bound, which is

given by a continuous function w.r.t. t, for the radial sectional curvature”), then λ1 (B(q, r))

satisfies

λ1 (B(q, r)) ≥ λ1

(
Vn(q

+, r)
)
, (1.6)

where B(q, r) and λ1(·) have the same meanings as those in (1.3), and Vn(q
+, r) is the geodesic

ball with center q+ and radius r on the spherically symmetric manifold M+ := [0, l)×f(t) Sn−1

with q+ as its base point, and f(t) determined by (1.4). Here the radius-parameter r in (1.6)

satisfies

r < min{inj(q), l}, (1.7)

with inj(q) the injective radius of q, and the equality in (1.6) holds if and only if B(q, r) and

Vn(q
+, r) are isometric. Similarly, the long-time existence of M+ can also be defined as before.

We call M− and M+ the “model spaces” of the original manifold M . The requirements (1.5)

and (1.7) are necessary, since they are the preconditions for the validity of volume comparisons

[4, Corollary 3.5, Theorem 4.2] which are the main tool to prove (1.3) and (1.6) in [4]. Especially,

if k(t) is a constant function, then the eigenvalue comparisons (1.3) and (1.6) degenerate into

Cheng’s ECT (1.1) and (1.2) directly. We also would like to point out one thing here, that is,

in the case of spherically symmetric manifolds, λ1 (Vn(q
−, r)) or λ1 (Vn(q

+, r)) is actually the

lowest positive real number such that there exists at least a nontrivial function u(t) satisfying u′′(t) + (n−1)f ′(t)
f(t) u′(t) + λ1 · u(t) = 0,

u′(0) = u(r) = 0,
(1.8)

with f(t) determined by (1.4). Clearly, this initial value problem can also be solved no matter

f(t) is given explicitly or numerically. Therefore, the bound λ1 (Vn(q
−, r)) or λ1 (Vn(q

+, r))

for the first Dirichlet eigenvalue λ1 (B(q, r)) can also be given (explicitly or numerically) by an

accurate number once k(t), n and r are confirmed.

The eigenvalue comparison (1.3) has been extended to the case of p-Laplcian (1 < p < ∞)

by Mao [5] (see [5, Theorem 3.2] for the precise statement), but the eigenvalue comparison (1.6)

cannot be similarly generalized to the case of p-Laplcian, since in this case, Barta’s lemma [4,

Lemma 4.3] for the precise statement cannot be directly used any more.
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2. The principle of numerical calculations

When the dimension of the original manifold M is 2 (i.e., n = 2), the radial Ricci curvature

and the radial sectional curvature coincide with each other and are equal to the Gaussian cur-

vature of the surface M . For the case of surfaces, we have the following result.

Theorem 2.1 Let Σ be a complete surface, which can be parameterized, and a point q ∈ Σ.

For the geodesic disk B(q, r) with center q and radius r, where r satisfies (1.5) and (1.7), an

optimal upper bound and an optimal lower bound can always be given simultaneously for the

first Dirichlet eigenvalue λ1(B(q, r)) of the Laplacian on B(q, r). Moreover, these two optimal

bounds can be computed numerically.

Proof Let (u, v, h(u, v)) be a parametrization of Σ, and let t := d(q, ·) be the Riemannian

distance to q. If one wants to apply (1.3) and (1.6) to give an upper bound and a lower bound

simultaneously for the first Dirichlet eigenvalue on B(q, r), one needs to find upper and low-

er bounds for the Gaussian curvature with respect to q, and these bounds should be given as

continuous functions of the variable t.

In general, one can compute the Gaussian curvature of Σ directly by the parameterization

(u, v, h(u, v)), and the Gaussian curvature should be a continuous function of u, v. Without loss

of generality, let K(u, v) be the Gaussian curvature of Σ. Now, it is necessary to set up the

relation between parameters u, v and the distance-parameter t. Hence, it cannot be avoided to

compute geodesics on Σ starting from q, which generally do not have explicit expressions. But,

fortunately, the software Mathematica can supply us the expressions of these geodesics given

by interpolating functions. Actually, if one wants to get the expressions for geodesics starting

from q, it is equivalent to solve the following system of ordinary differential equations (ODEs for

short) 
u′ = ℓ,

v′ = s,

ℓ′ = −Γ1
11ℓ

2 − 2Γ1
12ℓs− Γ1

22s
2,

s′ = −Γ2
11ℓ

2 − 2Γ2
12ℓs− Γ2

22s
2,

(2.1)

with initial conditions 
u(0) = 0,

v(0) = 0,

u′(0) = ℓ(0) = cos θ,

v′(0) = ℓ(0) = sin θ,

where θ ∈ [0, 2π) and Γi
jk, 1 ≤ i, j, k ≤ 2, denote the Christoffel symbols of Σ. Solving (2.1)

by Mathematica, the Gaussian curvature can be rewritten as K (u(t, θ), v(t, θ)), which now is a

function of variables t, θ. Let

k−(q, t) := min
θ∈[0,2π)

K (u(t, θ), v(t, θ)) , k+(q, t) := max
θ∈[0,2π)

K (u(t, θ), v(t, θ)) , (2.2)

which, for a fixed t, are actually the minimal and the maximal values of the Gaussian curvature
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on the geodesic circle c(q, t) with center q and radius t. Clearly, k−(q, t) and k+(q, t) are optimal

bounds of the Gaussian curvature with respect to q. Besides, by applying the uniform continuity

of continuous functions on compact sets, one can easily get that k−(q, t) and k+(q, t) are contin-

uous functions w.r.t. t. Then the first claim of this theorem follows by applying the eigenvalue

comparisons (1.3) and (1.6) directly. Once the Gaussian curvature bounds are obtained by (2.1)

and (2.2), the model surfaces M− and M+ can be determined by solving the initial value problem

(1.4), and then the values of bounds for the first Dirichlet eigenvalue λ1(B(q, r)) can be obtained

numerically by solving the boundary value problem (1.8). This completes the proof of Theorem

2.1. �

Remark 2.2 The system of ODEs given by (2.1) for finding relations between the parameters

u, v and the distance-parameter t can also be found in [6, Example 2.5.2]. Three interesting

examples about torus, elliptic paraboloid and saddle [4, Examples 6.1, 6.2 and 6.3] and related

numerical calculations have been dealt with in [4, Section 6]. However, the general way of find-

ing k−(q, t) and k+(q, t) defined by (2.2) for the Gaussian curvature was not mentioned therein.

Therefore, for the purpose that readers, who are interested in those examples, know the details

of numerical calculations done in [4, Section 6] clearly, we give the above main theorem and

its proof. From the proof of the above theorem, we know that this principle (which, roughly

speaking, means the system of ODEs (2.1), with its initial conditions, and the optimal choice of

bounds for the Gaussian curvature given by (2.2)) is the core of doing numerical calculations for

the eigenvalue comparison on a given complete parameterized surface.
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