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Abstract In this paper, we investigate the Hadamard factorization theorem of analytic

functions in the finite disc DR = {z ∈ C : |z| = r < R < ∞}, where C is the whole complex

plane. Examples are given to show that our results are sharp.
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1. Introduction and main results

Set that E(u, 0) = 1− u and

E(u, p) = (1− u) exp{u+
1

2
u2 + · · ·+ 1

p
up}, p = 1, 2, . . . .

It is well-known that Weierstrass [1] obtained the following factorization theorem of entire func-

tion with infinite many zeros on the whole complex plane C.

Theorem 1.1 (Weierstrass factorization theorem) ([1]) Let f be an entire function with infinite

many zeros 0, z1, z2, . . . , zn, . . . . Then

f(z) = zmΦ(z)eg(z),

where

Φ(z) =

∞∏
n=1

E(
z

zn
, pn − 1),

pn is a positive integer number depending on n, the number m is the order of zeros of f(z) at

z = 0, and g is an entire function.

Later, Hadamard improved Theorem 1.1 and obtained the following well-known theorem by

making use of the concept of the growth of order of entire function.
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Theorem 1.2 (Hadamard factorization theorem) ([1,2]) An entire function f(z) of finite order

σ(f) is factorized by

f(z) = zmΦ(z)eg(z)

which satisfies that g(z) is a polynomial of degree deg(g) ≤ σ(f), and that Φ(z) is the canonical

product [1,2] of non-zero zeros of f(z), and that m is the order of zeros of f(z) at z = 0.

From the Riemann Mapping Theorem, we know that there are essential differences between

the finite open disc DR = {z ∈ C : |z| = r < R < ∞} and the whole complex plane C. Thus it

is very interesting to consider the Weierstarss factorization theorem and Hadamard factorization

theorem of analytic or meromorphic functions in the finite discDR = {z ∈ C : |z| = r < R < ∞}.
In [3], there exists a factorization theorem for meromorphic functions with bounded characteristic

(Nevanlinna class) in the unit disc as the following form

f(z) = zm
π1(z)

π2(z)
eh(z),

where m is an integer, π1, π2 are Blaschke products, and h(z) is analytic in the unit disc. Using

u = 1−|zk|2
1−zkz

into canonical product, it is known that if f is an analytic function in the unit disc D
with finite M -order σM (f), then f(z) = P (z)q(z), where P is a canonical product formed using

zeros of f, and both P and q are analytic and of M-order σM (P ) and σM (q) at most σM (f) in

D (see [4]). If f is a meromorphic function with finite order σ(f) in D, then f(z) = f1(z)
f2(z)

, where

f1 and f2 are analytic functions in D with order at most σ(f) (see [5, p.227]).

Recently, by making use of

u =
R zk

|zk| − zk

R zk
|zk| − z

into canonical product, Xu [6] obtained the disc version of Weierstrass theorem.

Theorem 1.3 ([6]) Let f be an analytic function in DR with infinite many zeros 0, z1, z2, . . . , zn,

. . . , where 0 < |zn| < R. Then

f(z) = zmP (z)eg(z), (1.1)

where

P (z) =

∞∏
n=1

E(
R zn

|zn| − zn

R zn
|zn| − z

, pn − 1), (1.2)

pn is a positive integer number depending on n, the number m is the order of zero of f(z) at

z = 0, and g is an analytic function in DR.

In this paper, we will investigate the Hadamard factorization theorem in the disc DR by

also using

u =
R zk

|zk| − zk

R zk
|zk| − z

into canonical product. Let us use the standard notations of the Nevanlinna’s theory in DR (see

[3,7]). We introduce some definitions which are similar to those in the unit disc as follows.
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Definition 1.4 Let f be a meromorphic function in DR, and

D(f) = lim
r→R−

T (r, f)

log 1
R−r

= b. (1.3)

If b < ∞, we say f is non-admissible; if b = ∞, we say f is admissible.

Definition 1.5 Let f be an analytic function in DR. If

DM (f) = lim
r→R−

log+ M(r, f)

log 1
R−r

= b < ∞ (or = ∞), (1.4)

then we say f is of finite b degree (or infinite degree ).

Remark 1.6 We have the inequality D(f) ≤ DM (f) if f is an analytic function in DR. (see

Theorem 2.3(v) in the next section). However, we cannot get that D(f) < ∞ if and only if

DM (f) < ∞ (see [8, Proposition 1(i)]), since there exists a non-admissible analytic function f in

DR which satisfies DM (f) = ∞. For example, if

f(z) = eg(z) = exp{ 1

1− z
}, z ∈ ∆,

then one can get that DM (f) = ∞ and D(f) < ∞.

Definition 1.7 The order of a meromorphic function f in DR is defined by

σ(f) = lim
r→R−

log+ T (r, f)

log 1
R−r

. (1.5)

For an analytic function f in DR, we also define

σM (f) = lim
r→R−

log+ log+ M(r, f)

log 1
R−r

, (1.6)

where M(r, f) is the maximum modulus function.

Remark 1.8 We have the inequalities σ(f) ≤ σM (f) ≤ σ(f) + 1 if f is an analytic function in

DR. (see Theorem 2.3(v) in the next section). Thus the order σ(f) of an analytic function in

DR is finite if and only if σM (f) is finite. It is well known that σ(f) = σM (f) if f is an entire

function in C. However, there exists an analytic function f in DR which satisfies σ(f) ̸= σM (f).

For example [5, p.205], if

f(z) = eg(z) = exp{ 1

(1− z)k
} with k > 1, z ∈ ∆,

then σM (f) = k and σ(f) = k − 1 which satisfies σM (f) = σ(f) + 1.

Now we give the concept of the convergence exponent in DR.

Definition 1.9 The convergence exponent of a (a ∈ C) of a meromorphic function f in DR is

defined by

λ(f − a) = lim
r→R−

log n(r, 1
f−a )

log 1
R−r

; (1.7)
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if a = ∞, then

λ(
1

f
) = lim

r→R−

log n(r, f)

log 1
R−r

. (1.8)

Remark 1.10 It is easy to see that

λ(f − a) = lim
r→R−

logN(r, 1
f−a )

log 1
R−r

; λ(
1

f
) = lim

r→R−

logN(r, f)

log 1
R−r

.

For the convergence exponent, we have the following results.

Theorem 1.11 Let f be a meromorphic function in DR which has zeros z1, z2, . . . , zk, . . . , |zk| =
rk < R, and ri ≤ rj (i ≤ j). The multiple zeros count those multiplicity. Denote

ρ(f) = inf{τ :
∞∑
j=1

(R− rj)
τ < ∞, τ > 0}. (1.9)

Then ρ(f) = λ(f).

From Theorem 1.11, one can easily get the following corollary.

Corollary 1.12 (i) ρ(f) = λ(f) ≤ σ(f); (ii) when τ > σ(f), the sum
∑∞

j=1(R− rj)
τ converges.

Let f be an analytic function of finite order in DR which has zeros z1, z2, . . . , zn, . . . , |zn| =
rn < R. Set pn = p+1 in the sum (1.2). By Corollary 1.12, the sum

∑∞
j=1(R− rj)

p+1 converges

if p+1 > σ(P ). Hence there exists some integer number p which is independent of n and satisfies

that the product

P (z) =

∞∏
n=1

E(
R zn

|zn| − zn

R zn
|zn| − z

, p) (1.10)

converges uniformly in any domain in DR (similar discussion as to the proof of Lemma 2.11, see

[6]). Thus we can give the definition as follows.

Definition 1.13 Canonical product formed by non-zero zeros of an analytic function f(z) in

DR is defined by the function P (z) of (1.10), if p is the maximum integer number which satisfies

that the sum
∑∞

j=1(R− rj)
p+1 converges. And p is called the genus of the canonical product.

For the canonical product, we have the following result.

Theorem 1.14 The order σ(P ) and σM (P ) of canonical product P (z) are equal to the conver-

gence exponent λ(P ) of its zeros, namely, σM (P ) = λ(P ) = σ(P ).

Remark 1.15 For example [6, Example 2.2], if f(z) is analytic in ∆ which has non-zero zeros

zn = 1− 1
n2 (n ∈ N \ {1}) in ∆, then one can get that

P (z) =
∞∏

n=2

E(
1

n2(1− z)
, 0),

where P (z) is the the canonical product formed by non-zero zeros of f, and that σM (P ) =

σ(P ) = λ(P ) = λ(f) = 1
2 .

Now we give factorization theorems of functions of finite order in DR. For analytic functions

of finite order in DR, we obtain the result as follows.



Results on the Hadamard factorization theorem for analytic functions in the finite disc 141

Theorem 1.16 An analytic function f(z) of finite order in DR is factorized by

f(z) = zmP (z)eg(z) (1.11)

which satisfies that

DM (g) ≤ σ(f) + 2, (1.12)

where g(z) is an analytic function of finite degree inDR, P (z) is the canonical product of non-zero

zeros of f(z) in DR, and m is the order of zeros of f(z) at z = 0.

For a meromorphic function of finite order in DR, we obtain the following result.

Theorem 1.17 A meromorphic function f(z) of finite order in DR is factorized by

f(z) = zm
P1(z)

P2(z)
eg(z) (1.13)

which satisfies the inequality

DM (g) ≤ σ(f) + 2, (1.14)

where g(z) is an analytic function of finite degree in DR, P1(z), P2(z) are respectively the canon-

ical products of non-zero zeros of f(z) and 1
f(z) in DR, and m is the order of zeros or poles of

f(z) at z = 0.

Remark 1.18 If f(z) = eg(z) = exp{ −1
(1−z)2 }, z ∈ ∆, then one can get that DM (g) = 2 and

σ(f) = σM (f) = 0 which satisfies DM (g) = 2 + σ(f). The example shows that Theorems 1.16

and 1.17 are sharp.

2. Some basic results in disc

For describing accurately the infinite order, we give the definition of the hyper order as

follows. We omit the details of proofs of the following results since they are very similar to the

case in the unit disc [4,9,11]

Definition 2.1 The hyper order of a meromorphic function f in DR is defined by

σ2(f) = lim
r→R−

log+ log+ T (r, f)

log 1
R−r

, (2.1)

for an analytic function f in DR, we also define

σ2,M (f) = lim
r→R−

log+ log+ log+ M(r, f)

log 1
R−r

. (2.2)

Now we give the results related to the order and hyper order in DR as follows.

Theorem 2.2 If f and g are meromorphic functions in DR, then we have

(i) σ(f) = σ( 1f ), σ(a · f) = σ(f), (a ∈ C \ {0});
(ii) σ(f) = σ(f ′);

(iii) max{σ(f + g), σ(f · g)} ≤ max{σ(f), σ(g)};
(iv) If σ(f) < σ(g), then σ(f + g) = σ(g), σ(f · g) = σ(g).
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Theorem 2.3 If f and g are analytic functions in DR, then we have

(i) σM (a · f) = σM (f) (a ∈ C \ {0});
(ii) σM (f) = σM (f ′); DM (f ′) = DM (f) + 1 when DM (f) > 1;

(iii) max{σM (f + g), σM (f · g)} ≤ max{σM (f), σM (g)};
(iv) If σM (f) < σM (g), then σM (f + g) = σM (g);

(v) D(f) ≤ DM (f), σ(f) ≤ σM (f) ≤ σ(f) + 1, σ2(f) = σ2,M (f).

Remark 2.4 It is very interesting that we have the result σ2(f) = σ2,M (f) in Theorem 2.3 if

f is an analytic function in DR, which is the same result as the entire function in C.

Theorem 2.5 Let f(z) = eg(z), where g(z) is an analytic function in DR. Then σM (f) ≤
DM (g) ≤ σM (f) + 1 ≤ σ(f) + 2, and σM (g) = σ2,M (f) = σ2(f).

Corollary 2.6 Let f(z) = eg(z), where g(z) is an analytic function in DR. If f is of finite order

of growth, then g is non-admissible.

Remark 2.7 From the functions f in Remarks 1.6 and 1.8, we can see that DM (g) = σM (f).

However, there exists f(z) = eg(z) in DR which satisfies DM (g) ̸= σM (f). For example, if

f(z) = eg(z) = exp{ z

z − 1
} or f(z) = eg(z) = exp{ 1

z − 1
}, z ∈ ∆,

then one can see that DM (g) = 1 and σM (f) = σ(f) = 0 which satisfies DM (g) = 1 + σM (f) =

1 + σ(f). From the function f in Remark 1.18, it shows that DM ((g)) = 2 + σ(f). Thus it is

sharp of σM (f) ≤ DM (g) ≤ σM (f) + 1 ≤ σ(f) + 2.

Lemma 2.8 ([6]) The general form of an analytic function f in DR with no zeros in DR is eg(z),

where g(z) is also an analytic function in DR.

Lemma 2.9 ([1,2]) Let k > 1. Then for |u| ≤ 1
k , we have

| logE(u, p)| ≤ k

k − 1
|u|p+1. (2.3)

Lemma 2.10 ([6]) Let the positive real sequences {rn} satisfy

0 < r1 ≤ r2 ≤ · · · ≤ rn ≤ · · · < R,R < ∞

and let n → ∞, rn → R−. Then there exists a positive integer series pn satisfying that
∞∑

n=1

(
R− rn
R− r

)pn (2.4)

is convergent for any r ∈ (0, R).

Lemma 2.11 ([6]) For any given sequences {zn} such that |zn| < R, its unique limit point is just

at R, then there exists an analytic function in DR which has and only has zeros zn, n = 1, 2, . . . .

3. Proofs of Theorems

In this section we give the proofs of our results.
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Proof of Theorem 1.11 We use similar reasoning as in the proof of [2, Theorem 2.1] to get

the theorem. Let n(r) be the number of non-zero zeros of f(z) in |z| ≤ r < R, and set

N(r) =

∫ r

0

n(t)

t
dt,

then

n(r,
1

f
) = n(r) + n(0,

1

f
).

Set λ(f) = λ. Now we consider the following two cases.

Case 1 λ < ∞. By Definition 1.9, for any given ε(> 0), when j is large enough, we have

log n(rj ,
1
f )

log 1
R−rj

< λ+
ε

2
,

namely,

n(rj ,
1

f
) < {( 1

R− rj
)λ+

ε
2 }.

Since the multiple zeros count those multiplicity, then we have n(rj ,
1
f ) ≥ n(rj) ≥ j. Thus

j < {( 1

R− rj
)λ+

ε
2 },

(R− rj)
λ+ε ≤ (R− rj)

(λ+ ε
2 )·(

λ+ε
λ+ ε

2
)
< j

− λ+ε
λ+ ε

2 .

Since λ+ε
λ+ ε

2
> 1, then

∑∞
j=1(R− rj)

λ+ε converges.

On the other hand, for any given ε (> 0), one can prove that

∞∑
j=1

(R− rj)
λ−ε (3.1)

is not convergent. In fact, if (3.1) is convergent, then

lim
j→∞

(j · (R− rj)
λ−ε) = 0.

Thus, when j is large enough, n(rj) = j < {( 1
(R−rj)

)λ−ε}. Set rk ≤ r < rk+1, then n(rk) =

n(r) < n(rk+1). Therefore, when j is large enough, we have

n(r,
1

f
)− n(0,

1

f
) = n(r) < {( 1

R− r
)λ−ε}

Hence

λ = lim
r→R−

logn(r, 1
f )

log 1
R−r

≤ λ− ε.

This is a contradiction. Hence (3.1) is not convergent.

By the arbitrariness of ε, we obtain the convergence exponent λ(f) of zeros of f(z) is equal

to ρ(f).

Case 2 λ = ∞. Then for any τ > 0, the sum
∞∑
j=1

(R − rj)
τ is not convergent. Otherwise, if

there exists some τ such that
∑∞

j=1(R − rj)
τ converges, then using the same method as above,
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we have λ = τ. This contradicts λ = ∞. Thus ρ(f) = ∞ when λ(f) = ∞. �

Proof of Theorem 1.14 By Theorem 2.3 (v) and Corollary 1.12, λ = λ(P ) ≤ σ(P ) ≤ σM (P ).

Now we prove λ ≥ σM (P ). We set

log |P (z)| =
∑

R−rn
R−r ≥ 1

2

| logE(
R zn

|zn| − zn

R zn
|zn| − z

, p)|+
∑

R−rn
R−r < 1

2

| logE(
R zn

|zn| − zn

R zn
|zn| − z

, p)| =
∑
1

+
∑
2

.

(i) For
∑

2, by Lemma 2.9, and R−rn
R−r < 1

2 we have∣∣∣∑
2

∣∣∣ ≤ 2
∑

R−rn
R−r < 1

2

(
R− rn
R− r

)p+1 =
2

(R− r)p+1

∑
R−rn
R−r < 1

2

(R− rn)
p+1.

If p = λ− 1, then
∑∞

n=1(R− rn)
p+1 converges. Hence there exists a constant A1 such that∣∣∣∑

2

∣∣∣ < A1(
1

R− r
)p+1 = A1(

1

R− r
)λ.

If p > λ− 1, then for any given small ε (> 0), p+ 1 > λ+ ε, So∣∣∣∑
2

∣∣∣ ≤ 2 · ( 1

R− r
)λ+ε ·

∑
R−rn
R−r < 1

2

(R− rn)
p+1

(R− r)p+1−λ−ε

≤ 2 · (1
2
)p+1−λ−ε · ( 1

R− r
)λ+ε ·

∞∑
n=1

(R− rn)
λ+ε ≤ A1(

1

R− r
)λ+ε.

(ii) For
∑

1, since
R−rn
R−r ≥ 1

2 , we have

log |E(
R zn

|zn| − zn

R zn
|zn| − z

, p)| ≤ log(1 +
R− rn
R− r

) + [
R− rn
R− r

+ (
R− rn
R− r

)2 + · · ·+ (
R− rn
R− r

)p]

≤ 2[
R− rn
R− r

+ (
R− rn
R− r

)2 + · · ·+ (
R− rn
R− r

)p]

= 2(
R− rn
R− r

)p[(
R− r

R− rn
)p−1 + (

R− r

R− rn
)p−2 + · · ·+ 1].

Hence,

log |E(
R zn

|zn| − zn

R zn
|zn| − z

, p)| < 2(2p−1 + 2p−2 + · · ·+ 1)(
R− rn
R− r

)p = A2(
R− rn
R− r

)p.

Noting that λ+ ε− p > 0, so∑
1

< A2(
1

R− r
)p

∑
R−rn
R−r ≥ 1

2

(R− rn)
p = A2(

1

R− r
)p

∑
R−rn
R−r ≥ 1

2

(R− rn)
p−λ−ε(R− rn)

λ+ε

≤ A2(
1

R− r
)p(

2

R− r
)λ+ε−p

∞∑
n=1

(R− rn)
λ+ε = A3(

1

R− r
)λ+ε.

From above discussion, we obtain

log |P (z)| ≤ max{A1, A3}(
1

R− r
)λ+ε.

Since ε is arbitrary, we get σM (P ) ≤ λ.
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Therefore, λ(P ) = σ(P ) = σM (P ) holds. �

Proof of Theorem 1.16 Set

F (z) =
f(z)

zmP (z)
, (3.2)

where P (z) is the canonical product of non-zero zeros of f(z) in DR, and m is the order of zeros

of f(z) at z = 0. Then F (z) is an analytic function in DR with no zero point in DR. Hence by

Lemma 2.8, we have F (z) = eg(z), where g(z) is an analytic function in DR. By Corollary 1.12

and Theorem 1.14, we have

σ(P ) = σM (P ) = λ(P ) = λ(f) ≤ σ(f). (3.3)

By (3.3) and Theorem 2.2, we get

σM (F )− 1 ≤ σ(F ) ≤ max{σ(f), σ( 1
P
)} = max{σ(f), σ(P )} = σ(f). (3.4)

Hence by (3.4) and Theorem 2.5, we obtain

DM (g)− 1 ≤ σM (F ) ≤ σ(f) + 1.

So DM (g) ≤ σ(f) + 2. Since σ(f) < ∞, the degree of g(z) is finite. �

Proof of Theorem 1.17 Set

F (z) =
f(z)P2(z)

zmP1(z)
, (3.5)

where P1(z), P2(z) are respectively the canonical products of non-zero zeros of f(z) and 1
f(z) in

DR, and m is the order of zeros or poles of f(z) at z = 0. Then F (z) is an analytic function

in DR with no zero point in DR. Hence by Lemma 2.8, we have F (z) = eg(z), where g(z) is an

analytic function in DR. By Corollary 1.12 and Theorem 1.14, we have

σ(P2) = σM (P2) = λ(P2) = λ(
1

f
) ≤ σ(

1

f
) = σ(f) (3.6)

and

σ(
1

P1
) = σ(P1) = σM (P1) = λ(P1) = λ(f) ≤ σ(f). (3.7)

By (3.6), (3.7) and Theorem 2.2, we get

σM (F )− 1 ≤ σ(F ) ≤ max{σ(f), σ(P2), σ(
1

P1
)} = σ(f). (3.8)

Hence by (3.8) and Theorem 2.5, we obtain

DM (g)− 1 ≤ σM (F ) ≤ σ(f) + 1.

So DM (g) ≤ σ(f) + 2. Since σ(f) < ∞, the degree of g(z) is finite. �

4. Concluding remark

We ask the following question: Is it admissible of a meromorphic function f in DR which

has infinitely many zero points in DR? If it is true, then [12, Theorem 1.5] can be extended to

the following conclusion:
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For any given sequences {an} in DR, there exists a sequence {cn} in DR which does not

intersect with {an} such that ({an}, {cn}) is not 0-d set of any analytic functions in DR.
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