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Abstract Multipliers on the classic Dirichlet space of the unit disk are much more complex

than those on the Hardy space and the Bergman space, many basic problems have not been

solved, such as the boundedness, which is still an open problem. The annulus, as a kind

of typical complex connected domain, has more complicated function structure. This paper

focuses on discussing the invertibility and Fredholmness of multipliers on the Dirichlet space

of the annulus. The spectra and essential spectra of multipliers with Laurent polynomials

symbols are calculated. In addition, we anwser a problem proposed by Guangfu CAO and Li

HE on spectrum and essential spectrum for general multipliers.
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1. Introduction

Operator theory on classical function spaces studies mainly the structure of the Toeplitz

operators and their algebraic properties on the Hardy space, Bergman space or Dirichlet space of

the unit disk D in the complex plane C. It is well known that D is a classical simple connected do-

main in the complex plane. Annulus is the another important domain, it is a complex connected

domain, the function structure on which is different from the structure of the analytic function

on the disk. In addition, the difference between the structure of different spaces is large, and

the corresponding structure of their operator and operator algebras also have huge difference.

Even in the case of the unit disk, the corresponding problems on the Dirichlet space are much

complex than on the Hardy space and Bergman space, some basic problems are still open, such

as the boundedness of the multipliers. In recent years, the research on the Dirichlet space and

their operators become an active field, for example, Wu [1,2], Cao [3,4], Lu and Sun [5] studied

the structure and properties of various operators on the Dirichlet space. [6],[7] discussed some

problems of the multipliers on the Hardy-Sobolev space of the unit disk. In this paper, we find a

gap of the proof of [6, Lemma 2.1], and give a new proof of the key lemma on the multipliers with

Laurent polynomial symbols on the Dirichlet space of the annulus, and calculate the spectra and

essential spectra of these mutipliers. In addition, we answer a problem left over by [6].
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Assume that 0 < r0 < 1, denote by Dr0 the disk centered at zero with radius r0, H = D−Dr0
the annulus in C, and ∂H its boundary. Let dA = 1

π(1−r20)
rdrdθ be the Lebesgue area measure

of H. The Dirichlet space of H, written as D, is the set of all analytic functions on H satisfying

∥f∥D = [

∫
H

|
∂(
∑+∞
k=1 bk

1
zk
)

∂z
|2dA+

∫
H

|
∂(
∑+∞
k=1 akz

k)

∂z
|2dA+ |a0|2]

1
2 < +∞,

where f(z) =
∑+∞
k=1 bk

1
zk

+
∑+∞
k=0 akz

k is the Laurent polynomial of f on H. Then, D is a Hilbert

space with the inner product

⟨f, g⟩D = ⟨∂f
∂z
,
∂g

∂z
⟩L2(H,dA) + a0 · ã0 =

∫
H

∂f

∂z
· ∂g
∂z

dA+ a0 · ã0, ∀f, g ∈ D,

where f(z) =
∑+∞
k=1 bk

1
zk

+
∑+∞
k=0 akz

k and g(z) =
∑+∞
k=1 b̃k

1
zk

+
∑+∞
k=0 ãkz

k are the Laurent

polynomials of f and g on H, respectively. Obviously, ∥f∥2D = ⟨f, f⟩D.

It is not easy to check that {zk}+∞
k=−∞ is an orthogonal basis of D, and

∥zk∥D =

 [−k 1−r−2k
0

(1−r02)r−2k
0

]
1
2 , k < 0;

[k
1−r2k0
1−r02 ]

1
2 , k > 0.

(1.1)

Denote by Kw(z) the reproducing kernel function of D, then

Kw(z) =
+∞∑
k=1

1− r0
2

k
· r2k0
1− r2k0

(zw)−k +
+∞∑
k=1

1− r0
2

k
· 1

1− r2k0
(zw)k + 1

and

∥Kw∥2D = ⟨Kw,Kw⟩D = Kw(w)

=

+∞∑
k=1

1− r0
2

k
· r2k0
1− r2k0

1

|w|2k
+

+∞∑
k=1

1− r0
2

k
· 1

1− r2k0
|w|2k + 1

=

+∞∑
k=1

1− r0
2

k
· 1

1− r2k0
(
r0
|w|

)2k +

+∞∑
k=1

1− r0
2

k
· |w|2k

1− r2k0
+ 1,

which indicates

Kw(w) →
+∞∑
k=1

1− r0
2

k
· 1

1− r2k0
r2k0 +

+∞∑
k=1

1− r0
2

k
· 1

1− r2k0
+ 1 = +∞

as |w| → 1, and

Kw(w) →
+∞∑
k=1

1− r0
2

k
· 1

1− r2k0
+

+∞∑
k=1

1− r0
2

k
· r2k0
1− r2k0

+ 1 = +∞

as |w| → r0. Then, kw(z) =
Kw(z)
∥Kw∥D

is the normalized reproducing kernel function. Obviously,

kw converges weakly to 0 in D as |w| → 1 or |w| → r0.

Suppose φ ∈ D, for ∀f ∈ D, define Mφf = φf , called the multiplier with symbol φ. In

general case, Mφ is the operator densely defined on D. The boundedness of Mφ is unknown,

even in the disk, it is still an open problem. Write

M = {φ ∈ D |Mφ is bounded on D},
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then M is the multiplier algebra of D.

2. Spectral properties of the multipliers

Lemma 2.1 Assume that λ ∈ H. Then, Mz−λ is lower bounded on D.

Proof For ∀f(z) =
∑+∞
k=1 bk

1
zk

+
∑+∞
k=0 akz

k ∈ D, we have

(z − λ)f(z) = (z − λ)(
+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k)

=
+∞∑
k=1

bk
1

zk−1
− λ

+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k+1 − λ

+∞∑
k=0

akz
k

= (
+∞∑
k=2

bk
1

zk−1
− λ

+∞∑
k=1

bk
1

zk
) + (b1 − λa0) + (

+∞∑
k=0

akz
k+1 − λ

+∞∑
k=1

akz
k).

Then,

∥(z − λ)f(z)∥2D =∥
+∞∑
k=2

bk
1

zk−1
− λ

+∞∑
k=1

bk
1

zk
∥2D+

∥
+∞∑
k=0

akz
k+1 − λ

+∞∑
k=1

akz
k∥2D + |b1 − λa0|2

≥(|λ|∥
+∞∑
k=1

bk
1

zk
∥D − ∥

+∞∑
k=2

bk
1

zk−1
∥D)2+

(∥
+∞∑
k=0

akz
k+1∥D − |λ|∥

+∞∑
k=1

akz
k∥D)2 + |b1 − λa0|2

=(I1 − I2)
2 + (J1 − J2)

2 + |b1 − λa0|2,

where

I1 = |λ|∥
+∞∑
k=1

bk
1

zk
∥D, I2 = ∥

+∞∑
k=2

bk
1

zk−1
∥D,

J1 = ∥
+∞∑
k=0

akz
k+1∥D, J2 = |λ|∥

+∞∑
k=1

akz
k∥D.

Direct calculation gives

I1 =|λ|∥
+∞∑
k=1

bk
1

zk
∥D = |λ|⟨

+∞∑
k=1

bk
1

zk
,
+∞∑
k=1

bk
1

zk
⟩

1
2

D

=|λ|⟨
∂[
∑+∞
k=1 bk

1
zk
]

∂z
,
∂[
∑+∞
k=1 bk

1
zk
]

∂z
⟩

1
2

L2(H,dA)

=|λ|[
+∞∑
k=1

|bk|2k2
∫
H

1

|z|2(k+1)
dA]

1
2

=|λ|[
+∞∑
k=1

|bk|2k2 ·
1

−k
· 1− r−2k

0

1− r20
]
1
2
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=|λ|[
+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

]
1
2 .

Similarly,

I2 =∥
+∞∑
k=2

bk
1

zk−1
∥D = ⟨

+∞∑
k=2

bk
1

zk−1
,

+∞∑
k=2

bk
1

zk−1
⟩

1
2

D

=[

+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

]
1
2 ,

which makes

I1 − I2 =|λ|[
+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

]
1
2 − [

+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

]
1
2

=
|λ|
r0

[|b1|2 +
+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2(k−1)
0

]
1
2 − [

+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

]
1
2

≥|λ|
r0

[

+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

]
1
2 − [

+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

]
1
2

=(
|λ|
r0

− 1)[

+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

]
1
2

where
+∞∑
k=2

|bk|2(k − 1) · 1− r
2(k−1)
0

(1− r20)r
2(k−1)
0

=

+∞∑
k=2

k − 1

k
|bk|2k ·

1− r2k0
(1− r20)r

2k
0

· r
2
0[1− r

2(k−1)
0 ]

1− r2k0

≥ 1

2

+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· r20 ·
1k−1 − r20

(k−1)

1k − r20
k

=
1

2

+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· r20 ·
1 + r20 + · · ·+ r

2(k−2)
0

1 + r20 + · · ·+ r
2(k−1)
0

≥ r20
2

+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· [1− 1

1 + r20 + · · ·+ r
2(k−1)
0

]

≥ r20
2

+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· [1− 1

1 + r20
] =

r20
2

+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· r20
1 + r20

=
r40

2(1 + r20)

+∞∑
k=2

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

=
r40

2(1 + r20)
∥
+∞∑
k=2

bk
1

zk
∥2D.

Thus,

I1 − I2 ≥ (
|λ|
r0

− 1)
r20√

2(1 + r20)
∥
+∞∑
k=2

bk
1

zk
∥D. (2.1)

In addition,

J1 − J2 =∥
+∞∑
k=0

akz
k+1∥D − |λ|∥

+∞∑
k=1

akz
k∥D
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=[
+∞∑
k=0

|ak|2(k + 1)2 ·
∫
H

|z|2kdA(z)] 12 − |λ|[
+∞∑
k=1

|ak|2k2 ·
∫
H

|z|2(k−1)dA(z)]
1
2

=[
+∞∑
k=0

|ak|2(k + 1) · 1− r
2(k+1)
0

1− r20
]
1
2 − |λ|[

+∞∑
k=1

|ak|2k ·
1− r2k0
1− r20

]
1
2

≥(1− |λ|)[
+∞∑
k=1

|ak|2k ·
1− r2k0
1− r20

]
1
2 = (1− |λ|)∥

+∞∑
k=1

akz
k∥D.

Combining (2.1) and (2.2), we obtain

∥(z − λ)f∥2D ≥ (
|λ|
r0

− 1)2
r40

2(1 + r20)
∥
+∞∑
k=2

bk
1

zk
∥2D + (1− |λ|)2∥

+∞∑
k=1

akz
k∥2D + |b1 − λa0|2. (2.3)

We are to show thatMz−λ is lower bounded on D. Otherwise, there exist fn(z) =
∑+∞
k=1 b

(n)
k

1
zk

+∑+∞
k=0 a

(n)
k zk ∈ D such that ∥fn∥D = 1 and ∥Mz−λfn∥ → 0 as n → ∞. Since the unit ball in

D is weakly compact, without loss of generality, assume fn
w−→ f , we have Mz−λfn

w−→ Mz−λf ,

which implies Mz−λf = 0. Note KerMz−λ = {0}, we get f = 0. This makes fn
w−→ 0.

Hence, a
(n)
k → 0(n → ∞), b

(n)
k → 0(n → ∞) for each k ∈ Z. Especially, a

(n)
0 → 0(n → ∞),

b
(n)
1 → 0(n→ ∞). (2.3) gives

∥Mz−λfn∥2D ≥ (
|λ|
r0

− 1)2
r40

2(1 + r20)
∥
+∞∑
k=2

b
(n)
k

1

zk
∥2D + (1− |λ|)2∥

+∞∑
k=1

a
(n)
k zk∥2D + |b(n)1 − λa

(n)
0 |2

≥ min{( |λ|
r0

− 1)2
r40

2(1 + r20)
, (1− |λ|)2, 1}(∥

+∞∑
k=2

b
(n)
k

1

zk
∥2D + ∥

+∞∑
k=1

a
(n)
k zk∥2D + |b(n)1 − λa

(n)
0 |2),

which indicates

∥
+∞∑
k=2

b
(n)
k

1

zk
∥2D + ∥

+∞∑
k=1

a
(n)
k zk∥2D + |b(n)1 − λa

(n)
0 |2 → 0

as n→ ∞. Thus,

∥fn∥D = [∥
+∞∑
k=1

b
(n)
k

1

zk
∥2D + ∥

+∞∑
k=1

a
(n)
k zk∥2D + |a(n)0 |2] 12 → 0

as n→ ∞, which makes contradiction with ∥fn∥D = 1. This completes the proof. �

Lemma 2.2 Assume λ ∈ C\H̄. Then, Mz−λ is invertible on D.

Proof Case 1 if λ /∈ D̄, then z − λ is lower bounded. Let

φλ(z) =
1

z − λ
= − 1

λ

+∞∑
k=0

(
1

λ
)kzk.

For ∀f(z) =
∑+∞
k=1 bk

1
zk

+
∑+∞
k=0 akz

k ∈ D, ∀k0 ∈ Z, we have

zk0f = zk0(
+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k).

If k0 = 0, then ∥zk0f∥D = ∥f∥D.



174 Zelong CAO, Junlin LIU and Li HE

If k0 > 0, then

zk0f(z) =

+∞∑
k=1

bkz
k0−k +

+∞∑
k=0

akz
k0+k

=
+∞∑

k=k0+1

bkz
k0−k + (

k0−1∑
k=1

bkz
k0−k +

+∞∑
k=0

akz
k0+k) + bk0 .

When k = 0, we have ∥zk0+k∥2D = ∥zk0∥2D = k0 · 1−rk0
0

1−r20
≤ k0

1−r20
.

When k > 0, we have

∥zk0+k∥2D =
k0 + k

1− r20
· [1− r

2(k0+k)
0 ]

≤k0 · k + k · k0
1− r20

· 1− r2k0
1− r2k0

· [1− r
2(k0+k)
0 ]

=2k0
k(1− r2k0 )

1− r20
· 1 + r20 + · · ·+ r

2(k0+k−1)
0

1 + r20 + · · ·+ r
2(k−1)
0

=2k0
k(1− r2k0 )

1− r20
· (1 + r2k0 + · · ·+ r

2(k0+k−1)
0

1 + r20 + · · ·+ r
2(k−1)
0

)

≤2k0(1 + k0) ·
k(1− r2k0 )

1− r20

≤2(k0 + 1)2 · ∥zk∥2D.

If k < k0, then

∥zk0−k∥2D =
k0 − k

1− r20
· [1− r

2(k0−k)
0 ]

=(k0 − k) · 1− r2k0
(1− r20)r

2k
0

· 1− r
2(k0−k)
0

1− r2k0
· r2k0

≤(k0 · k + k · k0) ·
1− r2k0

(1− r20)r
2k
0

· 1− r
2(k0−k)
0

1− r2k0

=2k0k ·
1− r2k0

(1− r20)r
2k
0

· 1 + r20 + · · ·+ r
2(k0−k−1)
0

1 + r20 + · · ·+ r
2(k−1)
0

≤2k0k ·
1− r2k0

(1− r20)r
2k
0

· k0
1

=2k20 ·
k(1− r2k0 )

(1− r20)r
2k
0

= 2k20∥z−k∥2D.

If k > k0, then

∥zk0−k∥2D =
k − k0
1− r20

· 1− r
2(k−k0)
0

r
2(k−k0)
0

≤ 2k0
1− r20

k · 1− r2k0
r2k0

· r2k0

r
2(k−k0)
0

· 1− r
2(k−k0)
0

1− r2k0
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=2k0 ·
k(1− r2k0 )

(1− r20)r
2k
0

· r2k00 · 1 + r20 + · · ·+ r
2(k−k0−1)
0

1 + r20 + · · ·+ r
2(k−1)
0

≤2k0 · ∥z−k∥2D.

Therefore,

∥zk0f∥2D = ∥
+∞∑

k=k0+1

bkz
k0−k∥2D + ∥

k0−1∑
k=1

bkz
k0−k∥2D + ∥

+∞∑
k=0

akz
k0+k∥2D + |bk0 |2

≤
+∞∑

k=k0+1

|bk|2 · 2k0 · ∥z−k∥2D +

k0−1∑
k=1

|bk|2 · 2k20∥z−k∥2D +
+∞∑
k=0

|ak|2 · 2(k0 + 1)2 · ∥zk∥2D + |bk0 |2

≤ 2k0∥
+∞∑

k=k0+1

bkz
−k∥2D + 2k20∥

k0−1∑
k=1

bkz
−k∥2D + 2(k0 + 1)2[∥

+∞∑
k=1

akz
k∥2D + |a0|2 ·

k0
1− r20

]+

|bk0 |2 ·
1

k0
· k0(1− r2k00 )

(1− r20)r
2k0
0

· (1− r20)r
2k0
0

1− r2k00

= 2k0∥
+∞∑

k=k0+1

bkz
−k∥2D + 2k20∥

k0−1∑
k=1

bkz
−k∥2D +

(1− r20)r
2k0
0

k0(1− r2k00 )
· |bk0 |2∥z−k0∥2D+

2(k0 + 1)2[∥
+∞∑
k=1

akz
k∥2D + |a0|2 ·

k0
1− r20

]

≤ 2k20[∥
+∞∑

k=k0+1

bkz
−k∥2D + ∥

k0−1∑
k=1

bkz
−k∥2D + ∥bk0z−k0∥2D] +

2(k0 + 1)3

1− r20
∥
+∞∑
k=0

akz
k∥2D

≤ 2(k0 + 1)3

1− r20
[∥

+∞∑
k=1

bkz
−k∥2D + ∥

+∞∑
k=0

akz
k∥2D]

=
2(k0 + 1)3

1− r20
∥f∥2D.

That is,

∥zk0f∥D ≤
√
2√

1− r20
(k0 + 1)

3
2 ∥f∥D. (2.4)

Since
∑+∞
k=0(

1
|λ| )

kkα is convergent for arbitrary α ∈ R as |λ| > 1, and

∥φλf∥2D =∥ 1
λ

+∞∑
k=0

(
1

λ
)kzkf∥2D ≤ 1

|λ
|2[

+∞∑
k=0

(
1

|λ|
)k∥zkf∥2D]2

≤ 1

|λ
|2[

+∞∑
k=0

(
1

|λ|
)k

√
2√

1− r20
(k + 1)

3
2 ]2∥f∥2D,

we have φλ ∈ M and Mφλ
Mz−λ =Mz−λMφλ

= I.

Case 2 If 0 ≤ |λ| < r0, for any z ∈ H, set

φλ(z) =
1

z − λ
=

1

z(1− λ
z )

= φ1(z) · φ2(z),
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where φ1(z) =
1
z , φ2(z) =

1
1−λ

z

. Then, for ∀f(z) =
∑+∞
k=1 bk

1
zk

+
∑+∞
k=0 akz

k ∈ D, we have

φ1f(z) =
1

z
(
+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k) = (

+∞∑
k=2

bk−1
1

zk
+ a0

1

z
) +

+∞∑
k=1

ak+1z
k + a1,

thus

∥φ1f∥2D =∥
+∞∑
k=2

bk−1
1

zk
+ a0

1

z
∥2D + ∥

+∞∑
k=1

ak+1z
k∥2D + |a1|2

=

+∞∑
k=2

|bk−1|2k ·
1− r2k0

(1− r20)r
2k
0

+ |a0|2
1

1− r20

1− r20
r20

+

+∞∑
k=1

|ak+1|2k ·
1− r2k0
1− r20

+ |a1|2

=

+∞∑
k=1

|bk|2(k + 1) · 1− r
2(k+1)
0

(1− r20)r
2(k+1)
0

+
|a0|2

r20
+

+∞∑
k=2

|ak|2(k − 1) · 1− r
2(k−1)
0

1− r20
+ |a1|2

≤ 2

r20

+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· 1− r
2(k+1)
0

1− r2k0
+

|a0|2

r20
+

+∞∑
k=2

|ak|2k ·
1− r2k0
1− r20

+ |a1|2

≤ 4

r20

+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

+
|a0|2

r20
+

+∞∑
k=1

|ak|2k ·
1− r2k0
1− r20

≤ 4

r20
[
+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

+
+∞∑
k=1

|ak|2k ·
1− r2k0
1− r20

+ |a0|2]

=
4

r20
∥f∥2D.

This implies φ1 ∈ M.

Furthermore, |λ|
|z| <

|λ|
r0

< 1 for arbitrary z ∈ H since |λ| < r0, which makes φ2(z) =∑+∞
k=0(

λ
z )
k is uniformly convergent on H. For arbitrary k0 ≥ 1 and f(z) =

∑+∞
k=1 bk

1
zk

+∑+∞
k=0 akz

k ∈ D, we have

1

zk0
f =

+∞∑
k=1

bk
1

zk+k0
+

k0−1∑
k=0

akz
k−k0 + ak0 +

+∞∑
k=k0+1

akz
k−k0 .

Thus,

∥ 1

zk0
f∥2D

=
+∞∑
k=1

|bk|2(k + k0) ·
1− r

2(k+k0)
0

(1− r20)r
2(k+k0)
0

+

k0−1∑
k=0

|ak|2(k0 − k) · 1− r
2(k0−k)
0

(1− r20)r
2(k0−k)
0

+

|ak0 |2 +
+∞∑

k=k0+1

|ak|2(k − k0) ·
1− r

2(k−k0)
0

1− r20

≤ 2k0

+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

· 1− r
2(k+k0)
0

(1− r2k0 )r2k00

+

k0−1∑
k=1

|ak|2k ·
1− r2k0
1− r20

· k0 − k

k
· 1− r

2(k0−k)
0

(1− r20)r
2(k0−k)
0

+

|a0|2k0 ·
1− r2k00

(1− r20)r
2k0
0

+ |ak0 |2k0 ·
1− r2k00

1− r20
· 1− r20
1− r2k00

+

+∞∑
k=k0+1

|ak|2k ·
1− r2k0
1− r20

· 1− r
2(k−k0)
0

1− r2k0
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≤ 2(k0 + 1)2

r2k00

+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

+
(k0 + 1)2

r2k00

k0−1∑
k=1

|ak|2k ·
1− r2k0
1− r20

+
(k0 + 1)2

r2k00

|a0|2+

|ak0 |2k0 ·
1− r2k00

1− r20
+

+∞∑
k=k0+1

|ak|2k ·
1− r2k0
1− r20

≤ 2(k0 + 1)2

r2k00

[

+∞∑
k=1

|bk|2k ·
1− r2k0

(1− r20)r
2k
0

+

+∞∑
k=1

|ak|2k ·
1− r2k0
1− r20

+ |a0|2]

=
2(k0 + 1)2

r2k00

∥f∥2D,

which implies

∥φ2f∥D ≤
+∞∑
k=0

∥(λ
z
)kf∥D ≤

+∞∑
k=0

|λ|k · ∥ 1

zk
f∥D ≤

√
2[

+∞∑
k=0

(
|λ|
r0

)k(k + 1)]∥f∥D.

Hence, φ2 ∈ M. This suggests that φλ(z) = (z − λ)−1 ∈ M for 0 ≤ |λ| < r0, and Mφλ
is the

inverse of Mz−λ. �

Lemma 2.3 Suppose p(z) is a Laurent polynomial on H, and p(z) has no zero point on ∂H.

Then, Mp is lower bounded on D.

Proof Assume p(z) =
∑m
k=1 bk

1
zk

+
∑n
k=0 akz

k where m,n ∈ N. Then,

p(z) = z−m[

m∑
k=1

bkz
m−k +

n∑
k=0

akz
k+m].

Without loss of generality, assume p(z) has the decomposition p(z) = z−manΠ
n+m
k=1 (z−λk). Since

p(z) has no zero point on ∂H, we have λk ∈ H or λk ∈ C\H̄. If λk ∈ C\H̄, then Lemma 2.2 gives

that Mz−λk
is invertible on D; If λk ∈ H, then Lemma 2.1 gives that Mz−λk

is lower bounded

on D. Hence, Mp =Mz−manΠ
n+m
k=1 (z−λk)

is lower bounded on D. The proof is finished here. �
Denote by R(p)(H) the range of p on H, it is not difficult to get the following conclusion.

Lemma 2.4 Assume p(z) is a Laurent polynomial on H. Then, σ(Mp) = R(p)(H).

Proof Assume p(z) =
∑m
k=1 bk

1
zk

+
∑n
k=0 akz

k where m,n ∈ N. If λ ̸∈ R(p)(H), then 1
p−λ is a

bounded analytic function on H. Suppose the decomposition of p− λ is

p− λ = az−mΠn+mk=1 (z − λk), λk /∈ H̄,

where a is the coefficient of the highest order term of p(z). Then,

(p− λ)−1 =
zm

aΠn+mk=1 (z − λk)
.

By Lemma 2.2, we have 1
z−λk

∈ M for each λk /∈ H̄, which implies (p − λ)−1 ∈ M for

∀λ /∈ H̄. Hence, σ(Mp) ⊆ R(p)(H). On the other hand, if λ ∈ R(p)(H), then there is a

λi0 ∈ H(1 ≤ i0 ≤ n +m), thus Mz−λi0
is not invertible, further Mp−λ is not invertible. This

shows that σ(Mp) = R(p)(H), which ends the proof. �
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Theorem 2.5 Assume p(z) is a Laurent polynomial on H. If λ /∈ R(p)(∂H), then Mp−λ is a

Fredholm operator.

Proof If λ /∈ R(p)(H̄), then Lemma 2.4 shows that Mp−λ is invertible, the conclusion holds

in this case. Without loss of generality, assume λ /∈ R(p)(∂H), but λ ∈ R(p)(H). Then,

p − λ has no zero point on ∂H. According to Lemma 2.3, Mp−λ is lower bounded on D. Note

dim[kerMp−λ] = 0, we just need to prove dim[ker(Mp−λ)
∗] <∞.

Assume p− λ can be decomposed as p(z)− λ = az−mΠn+mi=1 (z − λi), λi /∈ ∂H. Then,

(Mp−λ)
∗ = ā[Mz−mΠn+m

i=1 (z−λi)
]∗ = ā[MΠn+m

i=1 (z−λi)
]∗M∗

z−m .

Firstly, we show dim[ker(Mz−λi)
∗] < ∞ and dim[ker(M∗

z−m)] < ∞ for each 1 ≤ i ≤ n. For

∀f(z) =
∑+∞
k=1 bk

1
zk

+
∑+∞
k=0 akz

k ∈ D, if (Mz−λi)
∗f = 0, then ⟨(Mz−λi)

∗f, zn⟩D = 0 for every

n ∈ Z. Note

⟨(Mz−λi)
∗f, zn⟩D =⟨f,Mz−λiz

n⟩D = ⟨f, zn+1 − λiz
n⟩D

=⟨
+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k, zn+1 − λiz

n⟩D.

(1) When n = −1, we have

⟨(Mz−λi)
∗f, z−1⟩D =⟨

+∞∑
k=1

bk
1

zk
+

+∞∑
k=1

akz
k + a0, 1− λiz

−1⟩D

=⟨
+∞∑
k=1

bk
1

zk
+

+∞∑
k=1

akz
k,−λiz−1⟩D + a0

=⟨b1z−1,−λiz−1⟩D + a0

=b1λi ·
1− r−2

0

1− r20
+ a0.

By the fact that ⟨(Mz−λi)
∗f, zn⟩D = 0 (∀n ∈ Z), we get a0 = −b1λi · 1−r−2

0

1−r20
.

(2) When n = 0, we have

⟨(Mz−λi)
∗f, 1⟩D =⟨

+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k, z − λi⟩D

=⟨
+∞∑
k=1

bk
1

zk
+

+∞∑
k=0

akz
k, z⟩D − a0λi

=⟨a1z, z⟩D − a0λi = a1 − a0λi.

By the fact that ⟨(Mz−λi
)∗f, zn⟩D = 0 (∀n ∈ Z), we get a1 = a0λi.

(3) When n ≥ 1, we have

⟨(Mz−λi)
∗f, zn⟩D =⟨

+∞∑
k=1

bk
1

zk
+

+∞∑
k=1

akz
k + a0, z

n+1 − λiz
n⟩D

=⟨an+1z
n+1, zn+1⟩D + ⟨anzn,−nλizn−1⟩D
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=(n+ 1)an+1 ·
1− r

2(n+1)
0

1− r20
− nλ̄ian · 1− r2n0

1− r20
.

By the fact that ⟨(Mz−λi)
∗f, zn⟩D = 0 (∀n ∈ Z), we get

an+1 =
nλ̄i(1− r2n0 )

(n+ 1)[1− r
2(n+1)
0 ]

an, n ≥ 1.

(4) When n ≤ −2, we have

⟨(Mz−λi)
∗f, zn⟩D =⟨

+∞∑
k=1

bk
1

zk
+

+∞∑
k=1

akz
k + a0, z

n+1 − λiz
n⟩D

=⟨b−n−1z
n+1, zn+1⟩D + ⟨b−nzn,−λizn⟩D

=− (n+ 1)b−n−1
1− r

−2(n+1)
0

(1− r02)r
−2(n+1)
0

+ nλ̄ib−n
1− r−2n

0

(1− r02)r
−2n
0

=(n+ 1)b−n−1 ·
1− r

2(n+1)
0

1− r20
− nλ̄ib−n · 1− r2n0

1− r20
.

By the fact that ⟨(Mz−λi)
∗f, zn⟩D = 0 (∀n ∈ Z), we get

b−n =
(n+ 1)[1− r

2(n+1)
0 ]

nλ̄i(1− r2n0 )
b−n−1, n ≤ −2.

That is,

bk =
(k − 1)[1− r

2(−k+1)
0 ]

kλ̄i(1− r−2k
0 )

bk−1, k ≥ 2.

Combining (1)–(4), we conclude that dim[ker(Mz−λi
)∗] = 1. Furthermore, dim[kerΠn+mi=1 M∗

z−λi
]

< +∞, thus Πn+mi=1 Mz−λi is a Fredholm operator. Note Mz−m is invertible by Lemma 2.4, we

conclude that Mp−λ is also a Fredholm operator, and this completes the proof. �

Theorem 2.6 Assume p(z) is a Laurent polynomial on H. Then, σe(Mp) = R(p)(∂H).

Proof On one hand, Theorem 2.5 gives that Mp−λ is a Fredholm operator if λ /∈ R(p)(∂H).

That is, λ /∈ σe(Mp), which indicates σe(Mp) ⊆ R(p)(∂H). On the other hand, if λ ∈ R(p)(∂H),

then there exists a z0 ∈ ∂H such that p(z0) = λ. We still need to show λ ∈ σe(Mp).

Fetch some sequence {zn} ⊆ H such that zn → z0(n → ∞). Suppose Kzn(w) is the

reproducing kernel function at zn, and kzn(w) =
Kzn (w)
∥Kzn∥D

. Then, ∥kzn∥D = 1 and kzn(w)
w−→

0(n→ ∞). Note

|⟨M∗
p−λkzn , f⟩D| =|⟨kzn , (p− λ)f⟩D| = |⟨Kzn , (p(z)− p(z0))f⟩D|

∥Kzn∥D

=
1

∥Kzn∥D
· |⟨(p(z)− p(z0))f,Kzn⟩D|

=
1

∥Kzn∥D
· |(p(zn)− p(z0))f(zn)|

≤|(p(zn)− p(z0))| · ∥f∥D,
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we have

∥M∗
p−λkzn∥ = sup

∥f∥D≤1

|⟨M∗
p−λkzn , f⟩D| ≤ |(p(zn)− p(z0))| → 0, n→ ∞.

Then, Mp−λ is not a Fredholm operator. That is, λ ∈ σe(Mp). This means R(p)(∂H) ⊆ σe(Mp).

The proof has been finished here. �

3. Multipliers with general symbols

Theorem 3.1 Suppose Mφ ∈ M(D), then

(i) σ(Mφ) = R(φ)(H);

(ii) σe(Mφ) =
∩
δ>0 R(φ)(H −Hδ) where Hδ = {z ∈ H|r0 + δ < |z| < 1− δ}.

Proof Assume λ ∈ R(φ)(H). Then, φ(z)− λ has zero points on H. Without loss of generality,

assume z0 ∈ H satisfies φ(z0) = λ. Then, for arbitrary f ∈ D, we have

⟨Mφ−λf, kz0⟩ = (φ(z0)− λ)f(z0)
1

∥Kz0∥D
= 0.

That is,

⟨f,M∗
φ−λkz0⟩ = 0, ∀f ∈ D.

Then,

M∗
φkz0 = φ(z0)kz0 = λkz0 .

Thus, λ ∈ σ(Mφ), and R(φ)(H) ⊂ σ(Mφ). Since σ(Mφ) is closed, we have R(φ)(H) ⊂ σ(Mφ).

Conversely, if λ∈R(φ)(H), without loss of generality, we assume λ = 0, then |φ(z)| is lower
bounded on H. Thus, there exists a δ > 0 such that |φ(z)| ≥ δ > 0 for arbitrary z ∈ H. Let

ψ(z) = 1
φ(z) . Then ψ ∈ H∞, and we claim that Mψ ∈ M(D). In fact, there exists a positive

constant C such that∫
H

|ψ′f |2dA =

∫
H

|φ′(z)|2

|φ(z)|4
|f(z)|2dA ≤ 1

δ4

∫
H

|φ′(z)|2|f(z)|2dA

≤ 1

δ4
C∥f∥2D, ∀f ∈ D.

This shows Mψ is a bounded multiplier on D. Furthermore, MψMφ =MφMψ = I, we conclude

Mφ is invertible. That is, 0∈̄σ(Mφ). (i) is proved.

To show (ii), without loss of generality, assume 0 ∈
∩
δ>0 R(φ)(H −Hδ). Then, there is a

sequence {zk} ⊂ D such that |zk| → 1 or |zk| → r0, and |φ(zk)| → 0. Since M∗
φkzk = φ(zk)kzk ,

we have

∥M∗
φkzk∥ = |φ(zk)| → 0.

Note kzk(w) is a unit sequence which weakly converges to 0 as |zk| → 1 or |zk| → r0, we conclude

that M∗
φ is not a Fredholm operator. This means 0 ∈ σe(Mφ). Hence,

∩
δ>0 R(φ)(H −Hδ) ⊂

σe(Mφ).

Conversely, if 0∈̄
∩
δ>0 R(φ)(H −Hδ), then there exists a ϵ0 > 0 and a δ0 > 0 such that

|φ(z)| ≥ ϵ0, ∀z ∈ H −Hδ0 .
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This indicates φ(z) has only finite zero points on H. Suppose {zi}ki=1 ⊂ Hδ0 is the zero point

set of φ, let φ0 =
∏k
i=1(z − zi)

ki where ki is the repeating number of zi as the zero point of φ.

Then ψ = φ
φ0

is analytic and has no zero point on H. Obviously, there is an ϵ1 > 0 and δ1 with

0 < δ1 < δ0 such that

|φ0(z)| ≥ ϵ1, ∀z ∈ H −Hδ1 .

Thus,

|ψ(z)| = |φ(z)|
|φ0(z)|

≤ |φ(z)|
ϵ1

, ∀z ∈ H −Hδ1 ,

this implies that ψ ∈ H∞ by the fact φ ∈ H∞ and the maximal module principle.

We are to prove that Mψ ∈ M(D). In fact, for any f ∈ D,

∥Mψf∥2D ≤
∫
H

|(ψf)′|2dA+

∫
H

|ψf |2dA

=

∫
Hδ1

|(ψf)′|2dA+

∫
H−Hδ1

|(ψf)′|2dA+

∫
H

|ψf |2dA. (3.1)

Note both φ and ψ′ are bounded on Hδ1 , we see that

[

∫
Hδ1

|(ψf)′|2dA] 12 =[

∫
Hδ1

|ψ′f + ψf ′|2dA] 12

≤[

∫
Hδ1

|ψ′f |2dA] 12 + [

∫
Hδ1

|ψf ′|2dA] 12

≤C1{[
∫
Hδ1

|f |2dA] 12 + [

∫
Hδ1

|f ′|2dA] 12 }

≤C1{[
∫
H

|f |2dA] 12 + [

∫
H

|f ′|2dA] 12 }

=C2∥f∥D, (3.2)

where Ci (i = 1, 2) are positive constants dependent on δ1. Furthermore,

[

∫
H−Hδ1

|(ψf)′|2dA] 12 = [

∫
H−Hδ1

|ψ′f + ψf ′|2dA] 12

≤ [

∫
H−Hδ1

|ψ′f |2dA] 12 + [

∫
H−Hδ1

|ψf ′|2dA] 12

≤ [

∫
H−Hδ1

|φ
′φ0 − φ′

0φ

φ2
0

f |2dA] 12 + [

∫
H−Hδ1

| φ
φ0
f ′|2dA] 12

≤ 1

ϵ21
[

∫
H−Hδ1

|(φ′φ0 − φ′
0φ)f |2dA]

1
2 +

1

ϵ0
[

∫
H−Hδ1

|φf ′|2dA] 12 . (3.3)

Since φ0 is a polynomial, there is a positive constant C3 such that max{∥φ0∥∞, ∥φ′
0∥∞} ≤ C3,

which makes

[

∫
H−Hδ1

|(φ′φ0 − φ′
0φ)f |2dA]

1
2 ≤ C3[

∫
H−Hδ1

|φ′f |2dA] 12 + [

∫
H−Hδ1

|φf |2dA] 12

≤ C3[

∫
H

|φ′f |2dA] 12 + [

∫
H

|φf |2dA] 12 ≤ C4∥f∥D (3.4)
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where C4 is a positive constant. Combining (3.1)–(3.4), we have Mψ ∈ M(D). By the fact that

|φ(z)| > ϵ0 for z ∈ H −Hδ0 and |φ0(z)| ≤ ∥φ0∥∞, we know that

|ψ(z)| = |φ(z)|
|φ0(z)|

≥ ϵ0
∥φ0∥∞

, ∀z ∈ H −Hδ0 .

Since ψ(z) has no zero point on H, we see that ψ is lower bounded on H. Consequently,Mψ is in-

vertible on D, and Lemma 2.4 gives usMφ0 is a Fredholm operator, this indicatesMφ =Mφ0Mψ

is also a Fredholm operator. That is, 0∈̄σe(Mφ). Therefore, σe(Mφ) ⊂
∩
δ>0 R(φ)(H −Hδ). The

proof is completed. �
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