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Multipliers on the Dirichlet Space for the Annulus
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Abstract Multipliers on the classic Dirichlet space of the unit disk are much more complex
than those on the Hardy space and the Bergman space, many basic problems have not been
solved, such as the boundedness, which is still an open problem. The annulus, as a kind
of typical complex connected domain, has more complicated function structure. This paper
focuses on discussing the invertibility and Fredholmness of multipliers on the Dirichlet space
of the annulus. The spectra and essential spectra of multipliers with Laurent polynomials
symbols are calculated. In addition, we anwser a problem proposed by Guangfu CAO and Li
HE on spectrum and essential spectrum for general multipliers.
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1. Introduction

Operator theory on classical function spaces studies mainly the structure of the Toeplitz
operators and their algebraic properties on the Hardy space, Bergman space or Dirichlet space of
the unit disk D in the complex plane C. It is well known that D is a classical simple connected do-
main in the complex plane. Annulus is the another important domain, it is a complex connected
domain, the function structure on which is different from the structure of the analytic function
on the disk. In addition, the difference between the structure of different spaces is large, and
the corresponding structure of their operator and operator algebras also have huge difference.
Even in the case of the unit disk, the corresponding problems on the Dirichlet space are much
complex than on the Hardy space and Bergman space, some basic problems are still open, such
as the boundedness of the multipliers. In recent years, the research on the Dirichlet space and
their operators become an active field, for example, Wu [1,2], Cao [3,4], Lu and Sun [5] studied
the structure and properties of various operators on the Dirichlet space. [6],[7] discussed some
problems of the multipliers on the Hardy-Sobolev space of the unit disk. In this paper, we find a
gap of the proof of [6, Lemma 2.1], and give a new proof of the key lemma on the multipliers with
Laurent polynomial symbols on the Dirichlet space of the annulus, and calculate the spectra and

essential spectra of these mutipliers. In addition, we answer a problem left over by [6].

Received November 21, 2017; Accepted January 13, 2018

Supported by the National Natural Science Foundation of China (Grant No.11501136), Featured Innovation
Project of Guangdong Province (Grant No.2016KTSCX105) and Youth Project of Guangzhou City (Grant
No. 1201630152).

* Corresponding author

E-mail address: helichangshal986@163.com (Li HE)



170 Zelong CAO, Junlin LIU and Li HE

Assume that 0 < 7y < 1, denote by D, the disk centered at zero with radius ro, H = D—D,,
the annulus in C, and 0H its boundary. Let dA = 1773)
of H. The Dirichlet space of H, written as ®, is the set of all analytic functions on H satisfying

bkz) apz 1
T /| Dpaas [ Q2192 1204 4 a1 < oo,

rdrdé be the Lebesgue area measure

0z
where f(z) = k:l bkz—k +Ek:0 arz" is the Laurent polynomial of f on H. Then, ® is a Hilbert

space with the inner product

0 af 0dg
(f,9)o <8f 9% >L 2(H,dA) T G0 - ao—/ or gdA-i-ao ag, Vf,g€e€?,
where f(z) = 302 b + 2po0 ans® and g(z) = 305 bkz% + Y020 G2k are the Laurent
polynomials of f and g on H, respectively. Obviously, ||f|% = (f, [)o
It is not easy to check that {zk}kfiOO is an orthogonal basis of ®, and

—2k

[—kli”‘i{)_]%, k< 0;
I2*llo = @ rofr™ (1.1)
1— 72k 1
ki), k> 0.

Denote by K, (z) the reproducing kernel function of ®, then

+oo 2 2k +oo 2
1—rg T o 1—rg 1 -
Ky(2) = E : . —Orgk (zw) "+ Z ko 7(zw)k +1
k=1

2k
i 1 L=rg

and

too 2 2k
1-— 1 1-— 1
:Z o~ 7“0 . +Z o2 ' kw|2k+1
k 72k Jwl|?k k 1—1r2
k=1
7+Ool—r02 1 21—7'02 w2k 41
po k 1— \w| P — gk ’
which indicates
400 2 +
1—r 1—7r 1
Kol 3 1 N SEEL I N
k=1 k
as |w| — 1, and
foo 2 too 2 2k
1—1rg 1 1—rg 7“0
Ku(w) =Y~ [ T2 o Tl =
k=1 0 k=1
as |w| = ro. Then, k,(z) = % is the normalized reproducing kernel function. Obviously,

ky, converges weakly to 0 in @ as |w| — 1 or |w| — ro.
Suppose ¢ € D, for Vf € D, define M, f = ¢f, called the multiplier with symbol ¢. In
general case, M, is the operator densely defined on ©. The boundedness of M, is unknown,

even in the disk, it is still an open problem. Write

M ={pe®D| M, is bounded on D},
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then M is the multiplier algebra of ©.

2. Spectral properties of the multipliers
Lemma 2.1 Assume that A € H. Then, M,_ is lower bounded on ®.

Proof For Vf(z) = -,::; b 25 + Zﬁi% a2z’ € D, we have

+o0 1 +o0
(z=Nf(2)=(=-N0 br—y, + > axz")
k=1 k=0

+oo 1 —+oo 1 +oo +oo
= § bkﬁ - A E bk—k + E a;czk'Irl - A E akzk
R z
k=1 k=1 k=0 k=0

1 1
B (;2 b k=1 )‘; b’f;k) + (b1 — Aag) + (;O a2t — )\;akzk).

Then,
+o00 1 400 1
e~ NFEIR =1 by ~ A beg o+
k=2 k=1
+o00 400
1@zt =AD" a2 + o = Aaof?
k=0 k=1
+o0 1 400 1
(MY bigllo — 1Y by llo)*+
k=1 k=2
+oo “+o00
(1Y arz" o = A arz"[l0)? + b1 — Aao|?
k=0 k=1
=(I1 — I)* + (J1 — J2)* + |by — Aao?,
where

=1 = 1
5L = |)\H|Zbk;k|\©’ I = || Zbszl\ba
k=1 k=2

+o00 too
Jo=1) o, Ja= 1D azo.
k=0 k=1

Direct calculation gives

+o0 1 400 1 +o0 1 1
I =[Nl Zbk;kﬂm =\ bk;k,zbk;k%
k=1 k=1 k=1

O r S b ] O[S0 b ]
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=)l Z|bk| k- ) ,ﬁ.

Similarly,

+oo 1 +o0 1 +o0 1 1
L =| Z bkzlchQ = <Z Z k-1 Z Z k1 )o
k=2 k=2 k=2

f 1 77"2(16_1) 1
= bk —1) —5—1%,
k=2 (1_7"8)7“0( )
which makes
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Thus,

A 3 -, 1
=T > (= 1) |3 b |l
tes (7”0 ) 2(1+73) | = kok o

In addition,

+oo +oo
Jo= T =Y ar o = MDY arzlo
k=0

(2.1)
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+o0 foo
3 lanP (b + 17 [ JPAAGE = WY JasPa - [ (PO DaA)
k=0 H k=1 H
400 2(k+1) +oo 2k
1—r 1 L—rg".1
Z[Z lag)*(k +1) - ﬁ]Q - W[Z |ak |k - 1= 02 K
— "o To
k=0 k=1
too 2k .
>(1 = ADD laxl*k - .2 512 =(1—A) IIZakzkllg
k=1 0 k=1
Combining (2.1) and (2.2), we obtain
1z = Nfl% > (m - 1)2LH +iobkiﬂ2 + (1= JfakzkIIQ + b1 — Aaol?. (23)
D= 2(1+rd) = ° Pt ° ! or- A
We are to show that M,_, is lower bounded on ©. Otherwise, there exist f,(z) = z:i b,(cn) zik +

o a,(c")zk € © such that ||f,]lo = 1 and ||M._xfn]| = 0 as n — oo. Since the unit ball in

D is weakly compact, without loss of generality, assume f, — f, we have M,_xfp — M,_xf,

which implies M._xf = 0. Note Ker M,_, = {0}, we get f = 0. This makes f, — 0.

Hence, a,gn) — 0(n — 0), b,(cn) — 0(n — o0) for each k € Z. Especially, a(()n) — 0(n — o),

b(n) — 0(n — o0). (2.3) gives

+o0 foo
Al r 1 .
IM A fulld > Qﬁllzbé’”;kll%+(1f|A|>2||Za;i”)z’“||%+lb§”ané”)lz
k=1

Al

> min{(
7o

—+o00

—1>22(1+ 5+ (1= ) 1) sz“” el + 1D a2 % + [y = rag”P),
k=1

which indicates

= L e XS ) kg2 )y ()2

”Zbk ZTCH@"‘”Z% 25+ by = Aag [T = 0

k=2 k=

as n — o0o. Thus,

+
1 1
I fallo =1l Zb“” 1%+ | Za‘“z’w% +ag"?)2 =0
k=
as n — oo, which makes contradiction with || f,|lo = 1. This completes the proof. O
Lemma 2.2 Assume A € C\H. Then, M, _ is invertible on .

Proof Case 1 if A\ ¢ D, then z — X is lower bounded. Let

1 1<X 1, 4
SOA(Z)*Z_)\*—X (X)Z'
k=0
For Vf(z) = 3025 b2 & + Z o axz® € D, Vko € Z, we have

“+o0 1 +oo
2R f = zko(z bkz—k + Z apz")
k=1 k=0

If kg = 0, then ||zF f|lo = || f|lo-
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If kg > 0, then

+oo +oo
2P f(z) = Z brzFo—k 4 Z apzFotF
k=1 k=0

“+o0 ko—1 +00
k=ko+1 k=1 k=0
1—rg0
When k = 0, we have [["0F|% = [[7|[5 = ko - 7% < 775

When k£ > 0, we have
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If k < kg, then
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If k > ko, then
2(k—k
szoikH% _k—ko . 1- To( 0)
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2% k(1 —rgh) 12ko L+rd+- -+ rg(k_ko—l)
—2hy - AT 0 ) _ -
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Therefore,
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k=ko+1 k=1 k=0
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—k|2 2 —k|2 2 k|2 2
s%onkkzﬂbkz I+ 2681 3 =+ 2000 + 101 3 ou ool 721
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2(ko + 1)[I1) _ axz* |13 + laol '1—7~g]
k=1
ko—1 k0+1 3 +oo
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= =1 Il
That is,
V2 s
2% fllo < ﬁ(ko + 12| fllo- (2.4)
—'o

Since ;2 (%)kk‘a is convergent for arbitrary o € R as |A| > 1, and
13301 1 pex, 1
2 1t DNk k2 o L2 k
sl =y 4115 < P (118
\/ﬁ

we have oy € M and My, M,_\ = M,_\M,, = 1.

1,aX 1., V2 .
<=l [kzz()(m>k (k+1)221f1%,

Case 2 If 0 < |\ < 7o, for any z € H, set
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where ¢1(z) = 1, ¢2(2) = 171A. Then, for Vf(z) = Y02 b ¢ + Z o axz’ € D, we have

“+oo

1 +o0o 1 +o00o +oo 1 1
:7§b7 § ’“:E:b_— - § k
e1f(2) Z(kﬂ kg +k70akz ) (ki2 k=17F +aoz)+ k412" + a1,

thus
+o0 1 too
ler I =IY _ bro1 5 + a0 ||@ 1Y arn S + o
k=2 k=1
1 1-72 X 1
2 2 0 2 2
—Zlbk k7 )Qmo\ — st Pl T+l
1 p2(k+) a2 2 1 p2(k=1)
=Y |l (k+1)- g k—1) —25— 2
Z| ARUESY (1_rg)r§(k+1> e +;|ak| (k= 1) =2 |al
_ 2k 1 — p2(k+1) a2 oo 1 — 2k
IARE g + + 3 lank - —5% + |aa|?
3,; BT e A AP I
— 2k \ao\Q too 1 — 2k
|bx | - 0+ + 57 anl?k - 0
=9 rovak = Z T
4 +o0
bt foi S itk T
0 k=1
4
7||f||@
This implies ¢ € M.
Furthermore, l\i\\l < ‘T’\OI < 1 for arbitrary z € H since |A| < 79, which makes p2(z) =
z:g(%)k is uniformly convergent on H. For arbitrary ko > 1 and f(z) et b2 +
Sioe agz® € D, we have
ko—1
Zbk k+ko + Z e Z a2
k=ko+1
Thus,
1
/1
Z r2(k‘+k0) koz_:l 1 — T‘Q(kofk)
+k 2(ko—k
( 8)7"0( 2 k=0 (1- T%)ro( o)
+o0 1 _ p2(k—ko)
Qg Qg —Ro)—F o5 —
a4 Y Tarl?(k — ko) -0
k=ko+1 0
00 _ 2k 1— T2(k+ko) ko—1 L 1— 2(ko k)
< 2ko ) [bul*k- or —aeon 2 ek :
kg (1 _ ,),.0) 8’{7 (1 2k0 Z 7"8 k (1 _ ,r.%),ro(k() k)
lao[2ko 1 rgko 1— rgko 1—1r3 = 1 —r2k 1—7‘2(]67]60)

LI e - 3wl -
2k 0 2 2k 2 2k
(1 - T(Q))TO o 1- 0 1- To 0 k=ko+1 - o 1- )
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2k +1)2 2 o, 1=rE (ke DPRE 1= (ke +1)?
2ko Zlb“ k- TO)Tgk T%ko ’; |ax |k - 1—12 + r(Q)ko lao|*+
1-— rzko
lage ko - ——25 + Z |a)?k -
k=ko+1
2(ko 4+ 1)? <X
<D kR Ty +Z|ak| ke +| ol’]
To k=1
_ 2(kg +1)?
=S 1,
which implies
+o00 +oo +oo
A 1 YN
lpafllo <> II(;)’“fH@ <> E I fllo < V2D ( 0) (k+D][lflo-
k=0 k=0 k=0

Hence, w2 € M. This suggests that py(z) = (2 — A)7' € M for 0 < |A| < 7o, and My, is the
inverse of M, . [

Lemma 2.3 Suppose p(z) is a Laurent polynomial on H, and p(z) has no zero point on 0H.
Then, M, is lower bounded on ©.

Proof Assume p(z) = Y/" b 2r + > p_o axz” where m,n € N. Then,

m n
=z m[z brz™ R ¢ E apzFtm.
k=1 k=0

Without loss of generality, assume p(2) has the decomposition p(z) = z~™a, I} X" (2— ;). Since
p(2) has no zero point on OH, we have A\, € H or A\, € C\H. If \;, € C\H, then Lemma 2.2 gives
that M,_,, is invertible on ®; If Ay € H, then Lemma 2.1 gives that M,_,, is lower bounded
on . Hence, M, = M

Denote by R(p)(H) the range of p on H, it is not difficult to get the following conclusion.

74T (= Ap) is lower bounded on ®. The proof is finished here. (I

2—maq,

Lemma 2.4 Assume p(z) is a Laurent polynomial on H. Then, o(M,) = R(p)(H).

Proof Assume p(z) = Y1, be—r + Y _p_o axz” where m,n € N. If X & R(p)(H), then—)\lsa

bounded analytic function on H. Suppose the decomposition of p — A is
p—A= azmeZZI”(z — k), M\ ¢ H,

where «a is the coefficient of the highest order term of p(z). Then,

Zm

)\ - -
PN = G

By Lemma 2.2, we have z_l/\k € M for each \, ¢ H, which implies (p — \)~! € M for
VA ¢ H. Hence, o(M,) C R(p)(H). On the other hand, if A\ € R(p)(H), then there is a
iy € H(1 < ip < n+m), thus M., is not invertible, further M,_ is not invertible. This

shows that o(M,) = R(p)(H), which ends the proof. [J
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Theorem 2.5 Assume p(z) is a Laurent polynomial on H. If A ¢ R(p)(0H), then M,_ is a

Fredholm operator.

Proof If A\ ¢ R(p)(H), then Lemma 2.4 shows that M,_, is invertible, the conclusion holds
in this case. Without loss of generality, assume A\ ¢ R(p)(0H), but A € R(p)(H). Then,
p — A has no zero point on OH. According to Lemma 2.3, M,,_, is lower bounded on ®. Note
dim[ker M,_»] = 0, we just need to prove dimker(M,_»)*] < oo.

Assume p — A can be decomposed as p(z) — A = az ™4™ (2 — \;), \; ¢ OH. Then,

(M,_\)* = d[MZ”"H?jlm(zfAi)]* = d[MH?L’"(zfAi)]*M;’"'

Firstly, we show dim(ker(M,_y,)*] < oo and dim[ker(M}_,,)] < oo for each 1 < i < n. For
Vf(z) = bkk—i—z o arz” €©1f( M,_x,)*f =0, then (M,_x,)*f,2™)» = 0 for every
n € Z. Note

(M) f,2")2 <f, PRV >© =(f,z"" = \iz")o
:<Z bk—k + Zakzk, PAARID PP PN
=1 ° k=0
(1) When n = —1, we have

+oo +oo
1
<(MZ,)\i)*f,Z_1>© :<Z bk; + Zakzk + ag,1 — )\iZ_1>@

Zbk k—l—Zakz Azt Yo + ag

:<b12 ,—)\iz >® + ag
1—ry2

:bx~
! 1—1r3

+ ag.

2
lro

By the fact that ((M,_x,)*f,2")o =0 (Vn € Z), we get ag = —by \; - -
(2) When n = 0, we have

+oo +oo
1
(Moox)" f: )2 =<Z by— + Z arz", 2 — Xi)o
k=1 o k=0
+00 1 +0oo -
:<Z bszk + Z akzk, Z>z) — agA;
k=1 k=0

:<a12, Z>© - aO/\iz' =a; — a0>\71'~

3

By the fact that ((M,_x,)*f,2")o =0 (Vn € Z), we get a; = ag\;.
(3) When n > 1, we have

<( , @ = Zbk k + Zakz + ap, 2 — )\Z‘Zn>@

=<an+1z H,z"“)g 4 (an 2™, —nXi2" Ho
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2(n+1) 2n
1-—- - 1-—
"o — NGy, - d

:(n + 1)@n+1 :

2 2 -
1—7§ 1—7r§

By the fact that ((M,_x,)*f, 2o =0 (¥Yn € Z), we get

nXi(1 —r2"
An+1 = ( g(n)+1) Qp, N Z 1.
(n+1)[1—rg J

(4) When n < —2, we have

+oo +oo
1
Y * n — b k n+1 _>\i n
(Mz-x)"f.2")2 <;§_1 K E +k§_1akz + ag, z ")

=(b_p_ 12" 2" g+ (b_p2™, N2 e

1 — p 20D - 1—r72m
=—(n+1)b_p_ 0 +n\ib_,— 2
( ) 1 (1 _ Toz)raz(mrl) (1 _ TOQ)T(;2TL
2(n+1) 2n
1—r - 1—r
= Db_poq - ——% — — by, - 0.
(n+1) ! 1—r2 " 1—rd

By the fact that ((M,_x,)*f,2")o =0 (Vn € Z), we get

(n+ D)[1 —rg "]
n):i(l )

b_n= bopn-1, n<—2.

That is,

- o 2(—k+1)
P L) |l S TR )
k)\l(l — Ty )

Combining (1)—(4), we conclude that dim[ker(M,_»,)*] = 1. Furthermore, dim/ker H?:JrlmMz*i)\i]
< 400, thus I} M, _,, is a Fredholm operator. Note M, is invertible by Lemma 2.4, we

conclude that M,,_, is also a Fredholm operator, and this completes the proof. [J
Theorem 2.6 Assume p(z) is a Laurent polynomial on H. Then, o.(M,) = R(p)(0H).

Proof On one hand, Theorem 2.5 gives that M,_» is a Fredholm operator if \ ¢ R(p)(90H).
That is, A ¢ o.(M,), which indicates o.(M,) C R(p)(0H). On the other hand, if A € R(p)(0H),
then there exists a zg € OH such that p(zp) = X\. We still need to show A € o.(M,).

Fetch some sequence {z,} C H such that z, — zp(n — o0). Suppose K, (w) is the
reproducing kernel function at z,, and k,, (w) = % Then, ||k, ||lo = 1 and k. (w) =

0(n — o0). Note

[(K-,., (p(2) = p(20)) )|
(e

(My_ 3k, Fol =[(kz,, (0 = M) f)o| =

)
1
Ko {(p(z) — p(zo)) . K=, )o|
1

<l(p(zn) = p(20))| - [ /]|,
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we have
Mk, || = S (M k=, f)o] < [(p(zn) — p(20))] = 0, n — oo,
»<1

Then, M,_ is not a Fredholm operator. That is, A € g.(M,). This means R(p)(0H) C o.(M),).
The proof has been finished here. (J

3. Multipliers with general symbols

Theorem 3.1 Suppose M, € M(D), then

(i) o(My) = R(p)(H);
(i) oc(My) = Nsso R(@)(H — Hs) where Hs = {z € Hlrg+ 6 < |2| <1 —6}.

Proof Assume A € 9(¢)(H). Then, ¢(z) — A has zero points on H. Without loss of generality,
assume zg € H satisfies p(2z9) = A. Then, for arbitrary f € ©, we have
1
(Mp-xf, k=) = (p(20) — /\)f(ZO)T =
1Kz o
That is,
(f, Mg _\kz) =0, VfeD.

Then,
Mgk, = p(20)kz, = Py

Thus, A € a(M,), and R(p)(H) C o(M,). Since o(M,) is closed, we have R(p)(H) C o(M,).

Conversely, if A\€R () (H), without loss of generality, we assume A = 0, then |p(z)| is lower
bounded on H. Thus, there exists a § > 0 such that |¢(2)| > § > 0 for arbitrary z € H. Let
U(z) = ﬁz). Then ¢ € H*, and we claim that M, € M(D). In fact, there exists a positive
constant C such that

[ wsraa= [ L jopar< [ e

OHf”zn VfeD.

< 64
This shows My, is a bounded multiplier on ©. Furthermore, MyM, = M, M, = I, we conclude
M, is invertible. That is, 0€c(M,,). (i) is proved.

To show (ii), without loss of generality, assume 0 € (- R(p)(H — Hs). Then, there is a
sequence {z} C I such that |z;| — 1 or [z — 7o, and [p(z)| — 0. Since Mk, = o(zp)ks, ,

we have

[MZk= |l = le(zk)| = 0.

Note k., (w) is a unit sequence which weakly converges to 0 as |z| — 1 or |zx| — ro, we conclude
that M is not a Fredholm operator. This means 0 € o¢(M,). Hence, (-, R(p)(H — H;) C
oe(My).

Conversely, if 0€ (5.0 R (w)(H — H;), then there exists a ¢g > 0 and a dp > 0 such that

lp(2)| > €0, Vz € H — Hs,.
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This indicates ((z) has only finite zero points on H. Suppose {z;}¥_, C Hj, is the zero point
set of p, let g = Hle(z — 2;)% where k; is the repeating number of z; as the zero point of .
Then ¢ = £ is analytic and has no zero point on H. Obviously, there is an ¢; > 0 and d; with

®o
0 < d1 < dg such that

leo(2)| > €1, Vze€ H — Hsy,.

Thus,

_ el ey
|'L/J(Z)| - |SDO(Z)| é €1 ) V EH H51a

this implies that ¢ € H* by the fact ¢ € H* and the maximal module principle.
We are to prove that M, € M(D). In fact, for any f € D,

My f||? "1?dA 2dA
1Mot < [ JwpPaas [ o
— [ wwpraas [ jwpypaas [ jespaa (3.1)
Hs, H—Hs, H
Note both ¢ and ¢’ are bounded on Hy,, we see that
! 2dA % — ! ! 2dA %
[/Hél|wf> ] [/H§1|«/»f+wf| 1

< / ' FPdATE + | /H o P AT

1

scl{[/H |f\2dA1%+[/H 2
gcl{[/H\deAﬁH/H\f/\sz]%}
=G fllo, 3.2)

where C; (i = 1,2) are positive constants dependent on d;. Furthermore,

2 3 — / 72 1
f,, wnrant=(f s espan

H—Hs,

112 1 P i
<(f,, wataaterf s

! — ol 1 1
<t IEE a2 ppaa
H—Hs, %0 H-Hs, %0
1 1 1 1
<zl e-viofaat e = lerfaat (3.3)
€1 JH-Hs, €0 JH-Hs,

Since g is a polynomial, there is a positive constant C3 such that max{||¢ollcc, [|¥6llec} < Cs,

which makes

[/H_Hé1 (/00 — ) fI2dA]? < 03[/ o' AT} + [/ o f[2dA]H

—Hgl —H51

< oy /H & f2dALE £ [ /H ofPdAT} < Culfllm (3.4)
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where Cj is a positive constant. Combining (3.1)—(3.4), we have My, € M(D). By the fact that
lo(2)] > € for z € H— Hs, and |¢o(2)| < ||¢0llc0, we know that

el . e
= Y H — Hs .
W= 100 @] = Tool® 72 € H ~ Hao

Since 9(z) has no zero point on H, we see that 1 is lower bounded on H. Consequently, M, is in-
vertible on ®, and Lemma 2.4 gives us M, is a Fredholm operator, this indicates M, = M, M,
is also a Fredholm operator. That is, 0€o.(M,,). Therefore, o.(M,) C (550 R(e)(H — Hs). The
proof is completed. [
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