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Abstract Here presented is a matrix representation of recursive number sequences of order

3 defined by an = pan−1 + qan−2 + ran−3 with arbitrary initial conditions a0, a1 = 0, and a2

and their special cases of Padovan number sequence and Perrin number sequence with initial

conditions a0 = a1 = 0 and a2 = 1 and a0 = 3, a1 = 0, and a2 = 2, respectively. The matrix

representation is used to construct many well known and new identities of recursive number

sequences as well as Pavodan and Perrin sequences.
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1. Introduction

The matrices associated with recursive sequences and their properties always attract the

attentions of the people working in fields of combinatorics, linear algebra, approximation theory,

and numerical analysis. In this paper, we focus our attention on those matrices related recursive

sequences of order 3 defined by

an = pan−1 + qan−2 + ran−3 (1.1)

for n ≥ 3 with some initial conditions a0, a1, and a2. The admissible matrix associated with

sequences was defined and studied by Aigner in [1]. The matrices associated with some well-

known recursive sequences of order 3 with p = 0 and q = r = 1, such as Padovan sequence, Perrin

sequence, and Van der Laan sequence, are discussed by Shannon, Anderson, and Horadam [2],

Sokhuma [3], Stewart [4], Yilmaz and Bozkurt [5,6]. The matrices associated with recursive

polynomial sequences can be found from Chen and Louck [7], Hoggatt, Jr., and Bicknel [8], etc.

Padovan number sequence {Pn} defined by Pn = Pn−2+Pn−3 (n ≥ 3) with initial conditions

P0 = P1 = P2 = 1 was introduced by Dutch architect Hans var der Laan. Architect Richard

Padovan attributed the discovery of the sequence to Hans var der Laan in a 1994 essay, and
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used the sequence in design. In 1996 Ian Stewart described the sequence as the plastic number

sequence [4] because of a genesis similar to the golden ratio. Unlike the golden ratio, the plastic

ratio does not seem to have interesting manifestations in nature. However, the sequence and its

related materials have more and more connections with other mathematics. For instance, the

sequence with the same recursion but initial conditions P̂0 = 3, P̂1 = 0, and P̂2 = 2, called the

Perrin number sequence, has an interesting property noticed by Edouard Lucas in 1876: If n is

a prime, n divides P̂n. This result provides a speedy test (in logn steps) for nonprimality.

In this paper we discuss a generalized recursive number and polynomial sequences of order

3 including the Padovan sequence, Perrin sequence, etc. as special cases. In next section, we

shall give matrices associated with recursive number and polynomial sequences. The special

cases of those matrices associated with Padovan sequence, Perrin sequence, Tribonacci sequence,

and Tribonacci polynomial sequence will also be given. In Section 3, the matrices obtained in

the previous section will be used to derive some new and well known identities for the recursive

number and polynomial sequences.

2. Matrices associated with recursive number and polynomial sequences

We first give a matrix representation of a recursive number sequence of order 3.

Theorem 2.1 Let an = pan−1 + qan−2 + ran−3, a0 = a1 = 0, a2 = a ̸= 0, and let

ϕ =

 p q r

1 0 0

0 1 0

 . (2.1)

Then we have the following matrix representation of {an}:

ϕn =
1

a

 an+2 qan+1 + ran ran+1

an+1 qan + ran−1 ran
an qan−1 + ran−2 ran−1

 . (2.2)

Proof We prove (2.2) by using mathematical induction. First, for n = 2,

ϕ2 =

 p2 + q pq + r pr

p q r

1 0 0

 =
1

a

 a4 qa3 + ra ra3
a3 qa ra

a 0 0

 .

Assume (2.2) holds for n = k. Thus

ϕk+1 = ϕkϕ =
1

a

 ak+2 qak+1 + rak rak+1

ak+1 qak + rak−1 rak
ak qak−1 + rak−2 rak−1

 p q r

1 0 0

0 1 0


=

1

a

 pak+2 + qak+1 + rak qak+2 + rak+1 rak+2

pak+1 + qak + rak−1 qak+1 + rak rak+1

pak + qak−1 + rak−2 qak + rak−1 rak


=

1

a

 ak+3 qak+2 + rak+1 rak+2

ak+2 qak+1 + rak rak+1

ak+1 qak + rak−1 rak

 .

This completes the proof of theorem. �
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Corollary 2.2 ([6]) Let {Pn} be the Padovan sequence, i.e., Pn = Pn−2 + Pn−3 (n ≥ 3) with

initial conditions P0 = P1 = 0 and P2 = 1, and let

ϕ =

 0 1 1

1 0 0

0 1 0

 . (2.3)

Then by substituting p = 0 and q = r = 1 into (2.2), we have

ϕn =

Pn+2 Pn+3 Pn+1

Pn+1 Pn+2 Pn

Pn Pn+1 Pn−1

 . (2.4)

Remark 2.3 Formula (2.4) was derived in Yilmaz and Bozkurt [6] by using an approach

associated with Hessenberg matrices shown in [5]. A similar result can be derived from the

cordonnier number sequence defined in [2] by Pn = Pn−2 + Pn−3 (n > 3) with initial conditions

P1 = P2 = P3 = 1. Another similar result can be found from the third-order Pell number

sequence studied in Shannon and Wong in [9]: tm,n = 2mtm,n−2+ tm,n−3, which is a special case

of Theorem 2.1 with p = 0, q = 2m, and r = 1. Particularly, when m = 1, the corresponding

sequence is the third-order Fibonacci sequence.

Corollary 2.4 Let {Tn} be the Tribonacci sequence, i.e., Tn = Tn−1 + Tn−2 + Tn−3 (n ≥ 3)

with initial conditions T0 = T1 = 0 and T2 = 1, and let

ϕ =

 1 1 1

1 0 0

0 1 0

 . (2.5)

Then by substituting p = q = r = 1 into (2.2), we have

ϕn =

Tn+2 Tn+1 + Tn Tn+1

Tn+1 Tn + Tn−1 Tn

Tn Tn−1 + Tn−2 Tn−1

 . (2.6)

We may establish a result similar to Theorem 2.1 for the recursive polynomial sequence of

order 3.

Theorem 2.5 Let an(x) = px2an−1(x) + qxan−2(x) + ran−3(x), a0(x) = a1(x) = 0, a2(x) =

a ̸= 0, and let

ϕ(x) =

 px2 qx r

1 0 0

0 1 0

 . (2.7)

Then we have the following matrix representation of {an(x)}:

ϕn(x) =
1

a

 an+2(x) qxan+1(x) + ran(x) ran+1(x)

an+1(x) qxan(x) + ran−1(x) ran(x)

an(x) qxan−1(x) + ran−2(x) ran−1(x)

 . (2.8)

Corollary 2.6 Let {Tn(x)} be the Tribonacci polynomial sequence [6], i.e., Tn = x2Tn−1 +



224 Tianxiao HE, Jeff H.-C. LIAO and Peter J.-S. SHIUE

xTn−2 + Tn−3 (n ≥ 3) with initial conditions T0 = T1 = 0 and T2 = 1 , and let

ϕ(x) =

x2 x 1

1 0 0

0 1 0

 . (2.9)

Then by substituting p = q = r = 1 into (2.8) we have

ϕn(x) =

Tn+2(x) xTn+1(x) + Tn(x) Tn+1(x)

Tn+1(x) xTn(x) + Tn−1(x) Tn(x)

Tn(x) xTn−1(x) + Tn−2(x) Tn−1(x)

 . (2.10)

Theorem 2.7 Let an = pan−1 + qan−2 + ran−3 with arbitrary initial conditions a0, a1, and a2,

and let

ϕ =

 p q r

1 0 0

0 1 0

 . (2.11)

Then we have the following matrix representation of {an}: an+2

an+1

an

 = ϕn

 a2
a1
a0

 . (2.12)

Proof For n = 1,

ϕ

 a2
a1
a0

 =

 pa2 + qa1 + ra0
a2
a1

 =

 a3
a2
a1

 .

From the induction assumption for n = k

ϕk

 a2
a1
a0

 =

 ak+2

ak+1

ak

 ,

there hold

ϕk+1

 a2
a1
a0

 = ϕ

 ak+2

ak+1

ak

 =

 pak+2 + qak+1 + rak
ak+2

ak+1

 =

 ak+3

ak+2

ak+1

 .

The result is proved by using mathematical induction. �

Corollary 2.8 Let an = pan−1 + qan−2 + ran−3 with initial conditions a0, a1, and a2, and let

bn = pbn−1 + qbn−2 + rbn−3 with initial conditions a0 = a1 = 0, a2 = b ̸= 0. Then we have

ban = bman−m+2 + (qbm−1 + rbm−2)an−m+1 + rbm−1an−m. (2.13)

Proof Let ϕ be defined by (2.11). Then from (2.2) an+2

an+1

an

 = ϕn

 a2
a1
a0

 = ϕmϕn−m

 a2
a1
a0


=

1

b

 bm+2 qbm+1 + rbm rbm+1

bm+1 qbm + rbm−1 rbm
bm qbm−1 + rbm−2 rbm−1

 an−m+2

an−m+1

an−m

 ,

which implies (2.13). �
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Corollary 2.9 Let sequences {an} and {bn} be defined as Corollary 2.8 with p = 0 and

q = r = b = 1. Then from (2.4),

an = Pman−m+2 + Pm+1an−m+1 + Pm−1an−m, (2.14)

where Pn are Padovan numbers.

If a0 = a1 = 0 and a2 = 1 and a0 = 3, a1 = 0, and a2 = 2, then we have

Pn = PmPn−m+2 + Pm+1Pn−m+1 + Pm−1Pn−m,

P̂n = PmP̂n−m+2 + Pm+1P̂n−m+1 + Pm−1P̂n−m,

that is, [3, Proposition 2.2]. Here P̂n are Perrin numbers.

Similarly we may establish a polynomial sequence analogy of Theorem 2.7.

Theorem 2.10 Let an(x) = px2an−1(x) + qxan−2(x) + ran−3(x), with initial conditions a0(x),

a1(x), and a2(x), and let

ϕ(x) =

 px2 qx r

1 0 0

0 1 0

 . (2.15)

Then we have the following matrix representation of {an(x)}: an+2(x)

an+1(x)

an(x)

 = ϕn(x)

 a2(x)

a1(x)

a0(x)

 . (2.16)

Similar to Corollary 2.8, there holds

Corollary 2.11 Let an(x) = px2an−1 + qxan−2(x) + ran−3(x) with initial conditions a0(x),

a1(x), and a2(x), and let bn(x) = px2bn−1(x) + qxbn−2(x) + rbn−3(x) with initial conditions

b0(x) = b1(x) = 0, b2(x) = b ̸= 0. Then we have

ban(x) = bm(x)an−m+2(x) + (qxbm−1(x) + rbm−2(x))an−m+1(x) + rbm−1(x)an−m(x). (2.17)

Particularly, if p = q = r = 1, a0(x) = b0(x) = a1(x) = b1(x) = 0 and a2(x) = b2(x) = 1, then

Tn(x) = Tm(x)Tn−m+2(x) + (xTm−1(x) + Tm−2(x))Tn−m+1(x) + Tm−1(x)Tn−m(x). (2.18)

Theorem 2.12 Let {an} and ϕn (n ≥ 1) be defined as in Theorem 2.1, and let r := |ϕ| be the

determinant of ϕ. Then ∣∣∣∣∣∣
an an+1 an+2

an−1 an an+1

an−2 an−1 an

∣∣∣∣∣∣ = rn−2a (2.19)

for all n ≥ 2.

Proof From the definitions shown above, we have

rn = |ϕn| = 1

a

∣∣∣∣∣∣
an+2 qan+1 + ran ran+1

an+1 qan + ran−1 ran
an qan−1 + ran−2 ran−1

∣∣∣∣∣∣
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=
1

a

∣∣∣∣∣∣
an+2 ran ran+1

an+1 ran−1 ran
an ran−2 ran−1

∣∣∣∣∣∣ = r2

a

∣∣∣∣∣∣
an an+1 an+2

an−1 an an+1

an−2 an−1 an

∣∣∣∣∣∣ ,
which implies (2.19). �

Corollary 2.13 Let {Pn} be the Padovan sequence. Then∣∣∣∣∣∣
Pn Pn+1 Pn+2

Pn−1 Pn Pn+1

Pn−2 Pn−1 Pn

∣∣∣∣∣∣ = 1

for all n ≥ 2.

Denote by {Tn(x)} the Tribonacci polynomial sequence. Then∣∣∣∣∣∣
Tn(x) Tn+1(x) Tn+2(x)

Tn−1(x) Tn(x) Tn+1(x)

Tn−2(x) Tn−1(x) Tn(x)

∣∣∣∣∣∣ = 1

for n ≥ 2. Particularly, for x = 1 we notice that Tn(1) = Tn, the Tribonacci numbers, satisfy∣∣∣∣∣∣
Tn Tn+1 Tn+2

Tn−1 Tn Tn+1

Tn−2 Tn−1 Tn

∣∣∣∣∣∣ = 1

for n ≥ 2.

Proof By noting r = |ϕ| = 1 and a = 1, we immediately obtain the corollary from Theorem

2.12. �

Remark 2.14 Similar results can be derived from the Perrin polynomial sequence {Qn(x)}:
Qn(x) = x2Qn−2(x) + Qn−3(x) (n > 3) with initial conditions Q1(x) = 0, Q2(x) = 2, and

Q3(x) = 3x, and the cordonnier polynomial sequence {Pn(x)}: Pn(x) = x2Pn−2(x) + Pn−3(x)

(n > 3) with initial conditions P1(x) = 1, P2(x) = x, and P3(x) = x2, studied in [2]. {Pn(1)} is

the cordonnier number sequence (see Remark 2.3).

3. Applications of the matrices

The characteristic polynomial of the recursive relation (1.1) with p = 0, q = r = 1 is

p(x) = x3 − x− 1, which can be written as

p(x) = det(xI − ϕ),

where

ϕ =

 0 1 1

1 0 0

0 1 0

 . (3.1)

From the Cayley-Hamilton Theorem, ϕ satisfies p(ϕ) = 0, i.e.,

ϕ3 − ϕ− I = 0. (3.2)

Hence, we have
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Proposition 3.1 Let ϕ be defined as (3.1). Then

I = ϕ3 − ϕ = ϕ5 − ϕ4, (3.3)

or equivalently

ϕn = ϕn+3 − ϕn+1 = ϕn+5 − ϕn+4. (3.4)

Furthermore, (3.4) implies(
ϕn+5 − ϕn+4

)
−
(
ϕn+3 − ϕn+2

)
= ϕn+2 − ϕn+1. (3.5)

Particularly, for n = 3 we have

ϕ8 − ϕ7 − ϕ6 + ϕ5 = ϕ5 − ϕ4 = I. (3.6)

Proof From (3.2), we have the first equation of (3.3) and

I = ϕ3 − ϕ = (ϕ+ I)(ϕ2 − ϕ) = ϕ3(ϕ2 − ϕ),

which implies the second equation of (3.3). Equations (3.4) follow. From the second equation of

(3.4), there holds

(ϕn+5 − ϕn+4)− (ϕn+3 − ϕn+2) = (ϕn+3 − ϕn+1)− (ϕn+3 − ϕn+2),

which yields (3.5). The special case follows. �
The second equation of (3.4) gives immediately the well known identity of Padovan numbers

Pn+5 = Pn+4 + Pn. (3.7)

More results of the Padovan number identities can be derived from the first equation and the

second equation of (3.3), which are presented in the following two propositions, respectively.

Proposition 3.2 Let ϕ be defined by (3.1). Then for the Padovan sequence {Pn} we have

Pm =
n∑

k=0

(−1)n−k

(
n

k

)
Pn+2k+m, (3.8)

P(ℓ+3)n+m =
n∑

k=0

(
n

k

)
Pℓn+k+m, (3.9)

P2n+m+3 − Pm+1 =
n∑

k=0

P2k+m, (3.10)

P3n+m+2 − Pm−1 =
n∑

k=0

P3k+m. (3.11)

Particularly,
n∑

k=0

(−1)n−k

(
n

k

)
Pn+2k =

n∑
k=0

(−1)n−k

(
n

k

)
Pn+2k+1 = 0,

P(ℓ+3)n =
n∑

k=0

(
n

k

)
Pℓn+k, P(ℓ+3)n+1 =

n∑
k=0

(
n

k

)
Pℓn+k+1,
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P2n+3 =

n∑
k=0

P2k, P2n+4 = 1 +

n∑
k=0

P2k+1, P3n+3 =

n∑
k=0

P3k+1.

Proof From the first equation of (3.3),

ϕm = ϕmIn = ϕn+m(ϕ2 − I)n =
n∑

k=0

(−1)n−k

(
n

k

)
ϕn+2k+m,

which implies (3.8) by comparing the entries at the position of the third row and the first column

of the matrices on the left-hand and right-hand sides of the above equation. Following the first

equation of (3.3), we may have ϕℓ+3 = ϕℓ(ϕ+ I). Thus

ϕ(ℓ+3)n = ϕℓn(ϕ+ I)n =

n∑
k=0

ϕℓn+k,

which implies (3.9). Since the first equation of (3.3) gives (ϕ2 − I)−1 = ϕ, we have

ϕ(ϕ2n+2 − I) =
ϕ2n+2 − I

ϕ2 − I
=

n∑
k=0

ϕ2k.

Therefore,

ϕ2n+m+3 − ϕm+1 =
n∑

k=0

ϕ2k+m,

which leads to (3.10). Similarly, (3.3) also gives ϕ−1 = (ϕ3 − I)−1. Thus

ϕ−1(ϕ3(n+1) − ϕ) =
ϕ3(n+1) − I

ϕ3 − I
=

n∑
k=0

ϕ3k,

which is equivalent to (3.11). The special cases of (3.8)–(3.11) for m = 0 and/or m = 1 immedi-

ately follow. This completes the proof of the theorem. �
Similar to Proposition 3.2, we may prove the following results from the second equation of

(3.3).

Proposition 3.3 Let ϕ be defined by (3.1). Then for the Padovan sequence {Pn}. Then

Pm =
n∑

k=0

(−1)n−k

(
n

k

)
P4n+k+m, (3.12)

P(ℓ+5)n+m =
n∑

k=0

(
n

k

)
Pℓn+4k+m, (3.13)

P5n+m+1 − Pm−4 =
n∑

k=0

P5k+m, (3.14)

Pn+m+5 − Pm+4 =

n∑
k=0

Pk+m. (3.15)

Particularly,
n∑

k=0

(−1)n−k

(
n

k

)
P4n+k =

n∑
k=0

(−1)n−k

(
n

k

)
P4n+k+1 = 0,
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P(ℓ+5)n =

n∑
k=0

(
n

k

)
Pℓn+4k, P(ℓ+5)n+1 =

n∑
k=0

(
n

k

)
Pℓn+4k+1,

P5n+5 =

n∑
k=0

P5k+4, P5n+6 =

n∑
k=0

P5k+5,

P5n+7 = 1 +
n∑

k=0

P2k+6, Pn+5 = 1 +
n∑

k=0

Pk.

We now extend all of the identities shown in Propositions 3.2 and 3.3 to other recursive

sequences including the Perrin number sequence.

Proposition 3.4 Let ϕ be defined as (3.1), and let sequence {an} be defined by an = an−2+an−3

with arbitrary initial conditions a0, a1, and a2. Then

ϕn

 a2
a1
a0

 = (ϕn+3 − ϕn+1)

 a2
a1
a0

 = (ϕn+5 − ϕn+4)

 a2
a1
a0

 , (3.16)

or equivalently,

an = an+3 − an+1 = an+5 − an+4. (3.17)

Particularly, for Perrin numbers P̂n

P̂n+5 = P̂n+4 + P̂n. (3.18)

Proof Multiplying all sides of (3.4) by (a2, a1, a0)
T , we may obtain (3.14). Comparing the

entries on both sides of (3.14) leads to (3.15). Taking a0 = 3, a1 = 0, and a2 = 2, we have (3.16),

a special case of (3.15). �
Similar to Proposition 3.2, we can establish

Proposition 3.5 Let ϕ be defined by (3.1), and let sequence {an} be defined by an = an−2+an−3

with arbitrary initial conditions a0, a1, and a2. Then we have

am =

n∑
k=0

(−1)n−k

(
n

k

)
an+2k+m, (3.19)

a(ℓ+3)n+m =

n∑
k=0

(
n

k

)
aℓn+k+m, (3.20)

a2n+m+3 − am+1 =

n∑
k=0

a2k+m, (3.21)

a3n+m+2 − am−1 =
n∑

k=0

a3k+m. (3.22)

Particularly,
n∑

k=0

(−1)n−k

(
n

k

)
an+2k =

n∑
k=0

(−1)n−k

(
n

k

)
an+2k+1 = 0,
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a(ℓ+3)n =

n∑
k=0

(
n

k

)
aℓn+k, a(ℓ+3)n+1 =

n∑
k=0

(
n

k

)
aℓn+k+1,

a2n+3 =
n∑

k=0

a2k, a2n+4 = 1 +
n∑

k=0

a2k+1, a3n+3 =
n∑

k=0

a3k+1.

Furthermore, for the Perrin sequence {P̂n} we have

P̂m =
n∑

k=0

(−1)n−k

(
n

k

)
P̂n+2k+m, (3.23)

P̂(ℓ+3)n+m =
n∑

k=0

(
n

k

)
P̂ℓn+k+m, (3.24)

P̂2n+m+3 − P̂m+1 =

n∑
k=0

P̂2k+m, (3.25)

P̂3n+m+2 − P̂m−1 =
n∑

k=0

P̂3k+m. (3.26)

Particularly,
n∑

k=0

(−1)n−k

(
n

k

)
P̂n+2k =

n∑
k=0

(−1)n−k

(
n

k

)
P̂n+2k+1 = 0,

P̂(ℓ+3)n =

n∑
k=0

(
n

k

)
P̂ℓn+k, P̂(ℓ+3)n+1 =

n∑
k=0

(
n

k

)
P̂ℓn+k+1,

P̂2n+3 =
n∑

k=0

P̂2k, P̂2n+4 = 1 +
n∑

k=0

P̂2k+1,

P̂3n+3 =
n∑

k=0

P̂3k+1.

Proposition 3.6 Let ϕ be defined by (3.1), and let sequence {an} be defined by an = an−2+an−3

with arbitrary initial conditions a0, a1, and a2. Then we have

am =

n∑
k=0

(−1)n−k

(
n

k

)
a4n+k+m, (3.27)

a(ℓ+5)n+m =
n∑

k=0

(
n

k

)
aℓn+4k+m, (3.28)

a5n+m+1 − am−4 =

n∑
k=0

a5k+m, (3.29)

an+m+5 − am+4 =
n∑

k=0

ak+m. (3.30)

Particularly,
n∑

k=0

(−1)n−k

(
n

k

)
a4n+k =

n∑
k=0

(−1)n−k

(
n

k

)
a4n+k+1 = 0,
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a(ℓ+5)n =

n∑
k=0

(
n

k

)
aℓn+4k, a(ℓ+5)n+1 =

n∑
k=0

(
n

k

)
aℓn+4k+1,

a5n+5 =
n∑

k=0

a5k+4, a5n+6 =
n∑

k=0

a5k+5,

a5n+7 = 1 +
n∑

k=0

a2k+6, an+5 = 1 +
n∑

k=0

ak.

Furthermore, for the Perrin sequence {P̂n} we have

P̂m =
n∑

k=0

(−1)n−k

(
n

k

)
P̂4n+k+m, (3.31)

P̂(ℓ+5)n+m =
n∑

k=0

(
n

k

)
P̂ℓn+4k+m, (3.32)

P̂5n+m+1 − P̂m−4 =
n∑

k=0

P̂5k+m, (3.33)

P̂n+m+5 − P̂m+4 =
n∑

k=0

P̂k+m. (3.34)

Particularly,
n∑

k=0

(−1)n−k

(
n

k

)
P̂4n+k =

n∑
k=0

(−1)n−k

(
n

k

)
P̂4n+k+1 = 0,

P̂(ℓ+5)n =

n∑
k=0

(
n

k

)
P̂ℓn+4k, P̂(ℓ+5)n+1 =

n∑
k=0

(
n

k

)
P̂ℓn+4k+1,

P̂5n+5 =

n∑
k=0

P̂5k+4, P̂5n+6 =

n∑
k=0

P̂5k+5,

P̂5n+7 = 1 +

n∑
k=0

P̂2k+6, P̂n+5 = 1 +

n∑
k=0

P̂k.

4. More applications of the general recursive sequences of the third
order

We now consider the recursive number sequences of order 3 defined by an+3 = pan+2 +

qan+1+ran, n ≥ 0, with arbitrary initial conditions a0, a1, and a2. The characteristic polynomial

of the recursive relation is p(x) = x3 − px2 − qx− r, which can be written as

p(x) = det(xI − ϕ),

where

ϕ =

 p q r

1 0 0

0 1 0

 . (4.1)
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From the Cayley-Hamilton Theorem, ϕ satisfies p(ϕ) = 0, i.e.,

ϕ3 − pϕ2 − qϕ− rI = 0. (4.2)

Hence, we have

Proposition 4.1 Let ϕ be defined as (4.1). Then

(ϕ3 − rI)n = ϕn(pϕ+ qI)n, (4.3)

or equivalently
n∑

k=0

(−r)n−k

(
n

k

)
ϕ3k+ℓ =

n∑
k=0

(
n

k

)
pkqn−kϕn+k+ℓ (4.4)

for all integers ℓ ≥ 0. Furthermore, (4.4) implies

n∑
k=0

(−r)n−k

(
n

k

)
a3k+ℓ =

n∑
k=0

(
n

k

)
pkqn−kan+k+ℓ. (4.5)

Particularly, for p = q = r = 1, we have

n∑
k=0

(−1)n−k

(
n

k

)
T3k+ℓ =

n∑
k=0

(
n

k

)
Tn+k+ℓ, (4.6)

where {Tn} is the Tribonacci sequence, i.e., Tn = Tn−1 + Tn−2 + Tn−3 (n ≥ 3) with initial

conditions T0 = T1 = 0 and T2 = 1.

Similarly, from (4.2) there is ϕ2(ϕ− pI) = qϕ+ rI. Hence, we have

Proposition 4.2 Let ϕ be defined as (4.1). Then

ϕ2n(ϕ− pI)n = (qϕ+ rI)n, (4.7)

or equivalently
n∑

k=0

(−p)n−k

(
n

k

)
ϕ2n+k+ℓ =

n∑
k=0

(
n

k

)
qkrn−kϕk+ℓ (4.8)

for all integer ℓ ≥ 0. Furthermore, (4.4) implies

n∑
k=0

(−p)n−k

(
n

k

)
a2n+k+ℓ =

n∑
k=0

(
n

k

)
qkrn−kak+ℓ. (4.9)

Particularly, for p = q = r = 1, we have

n∑
k=0

(−1)n−k

(
n

k

)
T2n+k+ℓ =

n∑
k=0

(
n

k

)
Tk+ℓ (4.10)

for Tribonacci sequence {Tn}.
Inspired by the properties of sequence {FnFn+1}, where {Fn} is the Fibonacci sequence,

shown in Barry [10], we now present a unified approach to connect recursive sequences of order

two and certain recursive sequences of order three.

Proposition 4.3 Let {an} be the recursive number sequences of order 3 defined by an+3 =
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pan+2+ qan+1+ ran, n ≥ 0, with arbitrary initial conditions a0, a1, and a2. If p, q, and r satisfy

q = −pr1/3 (4.11)

then sequence {a} can be written as an = bnbn+1 for a recursive sequence {bn} of order 2 that

satisfies bn+2 = abn+1 + bbn with initial conditions b0 and b1 and the recursive coefficients

a = (p+ r1/3)1/2 and b = −r1/3. (4.12)

Conversely, if {bn} is a recursive sequence of order 2 satisfying bn+2 = abn+1 + bbn with initial

conditions b0 and b1, then sequence {an = bnbn+1} is a recursive sequence of order 3 satisfying

an+3 = (a2 + b)an+2 + b(a2 + b)an+1 − b3an. (4.13)

Proof We prove the converse case first. If {bn} is the recursive sequence of order 2 satisfying

bn+2 = abn+1 + bbn with initial conditions b0 and b1, then

an+3 = bn+3bn+4 = bn+3(abn+3 + bbn+2)

= bbn+2bn+3 + abn+3(abn+2 + bbn+1)

= (a2 + b)bn+2bn+3 + abbn+1(abn+2 + bbn+1)

= (a2 + b)bn+2bn+3 + a2bbn+1bn+2 + b2bn+1(an+2 − bbn)

= (a2 + b)bn+2bn+3 + b(a2 + b)bn+1bn+2 − b3bnbn+1,

which implies (4.13). Let {an} be the recursive number sequences of order 3 defined by an+3 =

pan+2 + qan+1 + ran, n ≥ 0, with arbitrary initial conditions a0, a1, and a2, where p, q, and r

satisfy (4.11). By defining a and b as (4.12), we have p = a2 + b, q = b(a2 + b), and r = −b3,

which implies that {an} can be written as an = bnbn+1, where {bn} is the recursive sequence

satisfying bn+3 = bn+2 + bn+1 + bn. �
The result shown in Barry [2] can be considered as a special case of Proposition 4.3.

Corollary 4.4 Let {Fn} and {Ln} be the Fibonacci and Lucas number sequences, respectively.

Then {FnFn+1} and {LnLn+1} are the recursive sequences of order 3 satisfying

Fn+3Fn+4 = 2Fn+2Fn+3 + 2Fn+1Fn+2 − FnFn+1, (4.14)

Ln+3Ln+4 = 2Ln+2Ln+3 + 2Ln+1Ln+2 − LnLn+1, (4.15)

respectively.

Proof Since Fn+2 = Fn+1 + Fn, we may use Proposition 4.3 with a = b = 1 to obtain that

{FnFn+1} is the recursive sequence with recursive coefficients p = a2 + b = 2, q = b(a2 + b) = 2,

and r = −b3 = −1. �
Let matrix ϕ be defined by (4.1). By using the Cayley-Hamilton Theorem, from the char-

acteristic polynomial of the recursive relation shown in (4.13), we obtain ϕ3− (a2+ b)ϕ2− b(a2+

b)ϕ+ b3I = 0. Hence, there is

(ϕ3 + b3I)n = (a2 + b)nϕn(ϕ+ b)n,
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or equivalently,
n∑

k=0

(
n

k

)
b3(n−k)ϕ3k = (a2 + b)n

n∑
k=0

bn−k

(
n

k

)
ϕn+k. (4.16)

Therefore, we have

Proposition 4.5 Let {bn} be the recursive sequence of order 2 satisfying bn+2 = abn+1 + bbn

with initial conditions b0 and b1. Then
n∑

k=0

(
n

k

)
b3(n−k)b3k+ℓb3k+ℓ+1 = (a2 + b)n

n∑
k=0

bn−k

(
n

k

)
bn+k+ℓbn+k+ℓ+1. (4.17)

Particularly, for the Fibonacci sequence {Fn} we have

n∑
k=0

(
n

k

)
F3k+ℓF3k+ℓ+1 = 2n

n∑
k=0

(
n

k

)
Fn+k+ℓFn+k+ℓ+1 (4.18)

and

F3k+ℓF3k+ℓ+1 =
n∑

k=0

k∑
j=0

2k(−1)n−k

(
n

k

)(
k

j

)
Fk+ℓ+jFk+ℓ+j+1. (4.19)

Proof Multiplying ϕℓ on the both sides of (4.16) and applying (2.12), one may obtain (4.17).

For the Fibonacci sequence, (4.18) follows from (4.17) due to a = b = 1. Since there exists an

inverse relationship

fn =
n∑

k=0

(
n

k

)
gk ⇔ gn =

n∑
k=0

(−1)n−k

(
n

k

)
fk

for all n ≥ 0, we immediately obtain (4.19) by applying the above relationship to the both sides

of (4.18). �
There are two ways to treat a non-homogeneous recessive relationship: One way is to change

it to a homogeneous recursive relationship of the same order, and another way is to change it to

a homogeneous recursive relationship of one higher order. For instance, [11] finds the equivalence

between the non-homogeneous recurrence relation of order 2, an = pan−1 + qan−2 + k, and the

homogeneous recurrence relation of order 3, an = (p + 1)an−1 + (q − p)an−2 − qan−3, where

k = a2 − pa1 − qa0. If p + q ̸= 1, by denoting ℓ = k/(1 − p − q) and bn = an + ℓ, then the

non-homogeneous recursive relation of an can be changed to the homogeneous recursive relation

of bn as bn = pbn−1 + qbn−2.

The above results can be extended to the higher order recursive sequences. More precisely,

a number sequence {an} is called a sequence of order r ≥ 4 if it satisfies the linear recurrence

relation of order r

an =

r∑
j=1

pjan−j , n ≥ r, (4.20)

for some constants pj (j = 1, 2, . . . , r), and initial conditions aj (j = 0, 1, . . . , r − 1). In [4] the

generating function Pr(t) of the sequence {an} is presented as

Pr(t) = {a0 +
r−1∑
n=1

(
an −

n∑
j=1

pjan−j

)
tn}/{1−

r∑
j=1

pjt
j}. (4.21)
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We define the impulse response sequence (IRS) satisfying (4.20) with initial conditions a0 =

ar−2 = 0 and ar−1 = a, a ̸= 0. Then its generating function is

P̃r(t) =
tr−1

1−
∑r

j=1 pjt
j
. (4.22)

Some other properties of IRS were given in [11]. Denote

ϕ =


p1 p2 · · · pr−1 pr
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (4.23)

Then we have the following matrix representation of {an}:

ϕn =
1

a


an+r−1 p2an+r−2 + · · ·+ pran · · · pran+r−2

an+r−2 p2an+r−3 + · · ·+ pran−1 · · · pran+r−3

...
...

. . .
...

an p2an−1 + · · ·+ pran−r+1 · · · pran−1

 . (4.24)

The matrix representation can be used to derive similar results about {an} as those of recursive

sequences of order 3 by using the same arguments shown before and their generating functions.
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