Journal of Mathematical Research with Applications May, 2018, Vol. 38, No. 3, pp. 253–258 DOI:10.3770/j.issn:2095-2651.2018.03.004 Http://jmre.dlut.edu.cn

The Norm of a Class of Singular Integral Operators from L^{∞} onto Bloch-Type Spaces

Xiaoyang $HOU^{1,2,*}$, Yi XU^2

1. Basic Department, Wenzhou Business College, Zhejiang 325035, P. R. China;

2. Department of Mathematics, Wenzhou University, Zhejiang 325035, P. R. China

Abstract In this paper, we obtain the exact norm of a class of singular integral operators $Q_{\alpha}, \alpha > 0$, defined by

$$Q_{\alpha}f(z) = \alpha \int_{\mathbb{D}} \frac{f(w)}{(1 - z\bar{w})^{\alpha+1}} dA(w),$$

from $L^{\infty}(\mathbb{D})$ onto Bloch-type space \mathcal{B}_{α} over the unit disk \mathbb{D} , which is an extension of the Bergman projection P. We also consider the norm for this operator from $C(\overline{\mathbb{D}})$ onto the little Bloch-type space $\mathcal{B}_{\alpha,0}$.

 ${\bf Keywords} \quad {\rm operator\ norm;\ singular\ integral\ operator;\ Bloch-type\ space}$

MR(2010) Subject Classification 30H30; 32A55; 47G10

1. Introduction and main result

Let $H(\mathbb{D})$ be the class of all analytic functions on \mathbb{D} . For each $\alpha > 0$, the Bloch-type space \mathcal{B}_{α} denotes the space of analytic functions f on \mathbb{D} satisfying

$$\|f\|_{\mathcal{B}_{\alpha}} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty,$$
(1.1)

where $||f||_{\mathcal{B}_{\alpha}}$ is a semi-norm, and \mathcal{B}_{α} is a Banach space [1] with the corresponding norm

$$||f||_{\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)|.$$
(1.2)

In the case for the semi-norm $||f||_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)|$, Perälä [2] determined the norm of the Bergman projection P from $L^{\infty}(\mathbb{D})$ onto Bloch space \mathcal{B} , he obtained that $||P||_{\mathcal{B}} = \frac{8}{\pi}$. A generalization of this result in the unit ball \mathbb{B}_n was done by Kalaj and Marković [3]. Later in [4], Perälä completed his earlier result [2] by finding the norm of the Bergman projection with the norm of (1.2), where the author got $||P|| = 1 + \frac{8}{\pi}$. Recently, Kalaj and Vujadinović extended this result to the case of unit ball \mathbb{B}_n , interesting readers can see [5].

This paper is devoted to study the norm of a class of singular integral operator $Q_{\alpha} : L^{\infty}(\mathbb{D}) \to \mathcal{B}_{\alpha}, \alpha > 0$, which is another extension of the Bergman projection, defined as

$$Q_{\alpha}f(z) = \alpha \int_{\mathbb{D}} \frac{f(w)}{(1 - z\bar{w})^{\alpha+1}} \mathrm{d}A(w), \qquad (1.3)$$

Received March 21, 2017; Accepted March 1, 2018

Supported by the Natural Science Foundation of Zhejiang Province (Grant No. LY14A010021).

* Corresponding author

E-mail address: xyhou@wzbc.edu.cn (Xiaoyang HOU); xuyimath@gmail.com (Yi XU)

where dA denotes the normalized Lebesgue measure over the unit disk \mathbb{D} in the complex plane \mathbb{C} . This operator was introduced by Zhu [1], and the author had proved that Q_{α} maps $L^{\infty}(\mathbb{D})$ boundedly onto \mathcal{B}_{α} .

Now, we state the main result of this paper.

Theorem 1.1 Let $0 < \alpha < \infty$. Then the norm of operator $Q_{\alpha} : L^{\infty}(\mathbb{D}) \to \mathcal{B}_{\alpha}$ is

$$\|Q_{\alpha}\| = \alpha + \alpha(\alpha + 1) \frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})}$$

If $\alpha = 1$, Q_{α} is the well-known Bergman projection P, and the norm $P : L^{\infty}(\mathbb{D}) \to \mathcal{B}$ is $\|P\| = 1 + \frac{8}{\pi}$, which coincides with the main result of Perälä in [4].

2. Preliminaries

Before the proof of Theorem 1.1, we present some lemmas.

Lemma 2.1 ([6]) Let $s > -1, t \in \mathbb{R}$, and $J_{s,t}(z)$ defined as

$$J_{s,t}(z) = \int_{\mathbb{D}} \frac{(1 - |w|^2)^s}{|1 - z\bar{w}|^{2+s+t}} \mathrm{d}A(w)$$

Then

(i) If t < 0, then for all $z \in \mathbb{D}$,

$$\frac{\Gamma(1+s)}{\Gamma(2+s)} \le J_{s,t}(z) \le \frac{\Gamma(1+s)\Gamma(-t)}{\Gamma^2(\frac{2+s-t}{2})}.$$

(ii) If t > 0, then for all $z \in \mathbb{D}$,

$$\frac{\Gamma(1+s)}{\Gamma(2+s)} \le (1-|z|^2) J_{s,t}(z) \le \frac{\Gamma(1+s)\Gamma(t)}{\Gamma^2(\frac{2+s+t}{2})}.$$

(iii) Finally, t = 0, then for all $z \in \mathbb{D}$,

$$\frac{\Gamma(1+s)}{\Gamma^2(1+\frac{s}{2})} \le |z|^2 (\log \frac{1}{1-|z|^2})^{-1} J_{s,0}(z) \le \frac{1}{1+s}.$$

In fact, Lemma 2.1 is the case of n = 1 of [6, Theorem 1.3]. Moreover, the following integral equality is also needed.

Lemma 2.2 If $\alpha > 0$, we have

$$\int_{\mathbb{D}} \frac{1}{|1-w|^{2-\alpha}} \mathrm{d}A(w) = \frac{\Gamma(\alpha)}{\Gamma^2(\frac{2+\alpha}{2})}.$$

It seems that Lemma 2.2 may be known, but we cannot find any relative reference.

Proof We use the classical notation ${}_{2}F_{1}[a, b, c, \lambda]$ to denote hyper geometric function

$${}_{2}F_{1}[a,b,c,\lambda] \triangleq \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{\lambda^{n}}{n!},$$
(2.1)

with $c \neq 0, -1, -2, \dots$, where $(a)_n = a(a+1)\cdots(a+n-1), n \ge 1$.

The norm of a class of singular integral operators from L^{∞} onto Bloch-type spaces

This series gives an analytic function for $|\lambda| < 1$, called the Gauss hypergeometric function associated to (a, b, c). We refer to [7, Chapter II] for one property which will be used.

$${}_{2}F_{1}[a,b,c,1^{-}] = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}, \quad \text{Re}(c-a-b) > 0.$$
(2.2)

Using Taylor series expansion of $(1 - w)^t$, where $t = \frac{\alpha - 2}{2}, \alpha \neq 2$, and combining (2.1), (2.2), we obtain

$$\begin{split} \int_{\mathbb{D}} \frac{1}{|1-w|^{2-\alpha}} \mathrm{d}A(w) &= \int_{\mathbb{D}} |1-w|^{\alpha-2} \mathrm{d}A(w) = \int_{\mathbb{D}} (1-w)^t (1-\bar{w})^t \mathrm{d}A(w), \quad t = \frac{\alpha-2}{2} \\ &= \sum_{n=0}^{\infty} \frac{[t(t-1)\cdots(t-n+1)]^2}{(n!)^2} \int_{\mathbb{D}} |w|^{2n} \mathrm{d}A(w) \\ &= \sum_{n=0}^{\infty} \frac{[(n-1-t)(n-2-t)\cdots(-t)]^2}{(n+1)!} \frac{1}{n!} \\ &= \sum_{n=0}^{\infty} \frac{(-t)_n(-t)_n}{(2)_n} \frac{1^n}{n!} = {}_2F_1[\frac{2-\alpha}{2}, \frac{2-\alpha}{2}, 2, 1^-] \\ &= \frac{\Gamma(2)\Gamma(2-\frac{2-\alpha}{2}-\frac{2-\alpha}{2})}{\Gamma(2-\frac{2-\alpha}{2})\Gamma(2-\frac{2-\alpha}{2})} = \frac{\Gamma(\alpha)}{\Gamma^2(\frac{2+\alpha}{2})}. \end{split}$$

The above formula is obviously true for $\alpha = 2$. \Box

3. Norm of $Q_{\alpha} : L^{\infty}(\mathbb{D}) \to \mathcal{B}_{\alpha}$

This section is devoted to the proof of Theorem 1.1, based on the Section 2, we can now prove the main result of this paper.

Proof of Theorem 1.1 The proof is divided into three steps.

Step 1. We will prove that $\|Q_{\alpha}\| \leq \alpha + \alpha(\alpha + 1) \frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})}$. For any $g(z) \in L^{\infty}(\mathbb{D})$, we have

$$f(z) = Q_{\alpha}g(z) = \alpha \int_{\mathbb{D}} \frac{g(w)}{(1 - z\bar{w})^{\alpha+1}} \mathrm{d}A(w).$$

Differentiating on the two sides of the above equality, we get

$$f'(z) = \alpha(\alpha+1) \int_{\mathbb{D}} \frac{\bar{w}g(w)}{(1-z\bar{w})^{\alpha+2}} \mathrm{d}A(w),$$

thus, Lemma 2.1 implies

$$|f'(z)| \leq \alpha(\alpha+1)||g||_{\infty} \int_{\mathbb{D}} \frac{1}{|1-z\bar{w}|^{\alpha+2}} \mathrm{d}A(w)$$
$$\leq \alpha(\alpha+1)||g||_{\infty} \frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})} (1-|z|^2)^{-\alpha}.$$

Now, we have

$$\begin{aligned} \|Q_{\alpha}g\|_{\alpha} &= \|f\|_{\alpha} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| \\ &\leq \left(\alpha + \alpha(\alpha + 1) \frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha + 2}{2})}\right) \|g\|_{\infty}, \end{aligned}$$

Xiaoyang HOU and Yi XU

it follows that

$$\|Q_{\alpha}\| \le \alpha + \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})}.$$
(3.1)

In the next two steps, we will give function sequences to show that the equality can be achieved. In detail, in Step 2, we construct a function $g_z \in L^{\infty}(\mathbb{D})$ for any fixed $z \in \mathbb{D}$, such that $\|Q_{\alpha}g_z\|_{\mathcal{B}_{\alpha}} \to \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})}\|g_z\|_{\infty}$ as $|z| \to 1^-$. Based on Step 2, we will give test functions $g_z^r \in L^{\infty}(\mathbb{D})$, such that $\|Q_{\alpha}\| \ge \alpha + \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})}$.

Step 2. For any $z \in \mathbb{D}$, let

$$g_z(w) = \frac{w|1 - z\bar{w}|^{2+\alpha}}{|w|(1 - \bar{z}w)^{2+\alpha}}.$$
(3.2)

Then $||g_z||_{\infty} = 1$, and

$$Q_{\alpha}g_{z}(w) = \alpha \int_{\mathbb{D}} \frac{g_{z}(u)}{(1 - w\bar{u})^{\alpha + 1}} dA(u) = \alpha \int_{\mathbb{D}} \frac{u|1 - z\bar{u}|^{2 + \alpha}}{|u|(1 - \bar{z}u)^{2 + \alpha}(1 - w\bar{u})^{\alpha + 1}} dA(u).$$

Taking the derivative of this on the two sides with respect to w, we obtain

$$(Q_{\alpha}g_{z})'(w) = \alpha(\alpha+1) \int_{\mathbb{D}} \frac{u|1-z\bar{u}|^{2+\alpha}\bar{u}}{|u|(1-\bar{z}u)^{2+\alpha}(1-w\bar{u})^{\alpha+2}} dA(u)$$

= $\alpha(\alpha+1) \int_{\mathbb{D}} \frac{|u||1-z\bar{u}|^{2+\alpha}}{(1-\bar{z}u)^{2+\alpha}(1-w\bar{u})^{\alpha+2}} dA(u).$

Then

$$(1 - |z|^{2})^{\alpha} |(Q_{\alpha}g_{z})'(z)| = \alpha(\alpha + 1) \int_{\mathbb{D}} \frac{|u|(1 - |z|^{2})^{\alpha}}{|1 - z\bar{u}|^{\alpha + 2}} dA(u)$$

$$= \alpha(\alpha + 1) \int_{\mathbb{D}} \frac{|\varphi_{z}(w)|(1 - |z|^{2})^{\alpha}}{|1 - z\overline{\varphi_{z}(w)}|^{\alpha + 2}} J_{z} dA(w)$$
(3.3)
$$= \alpha(\alpha + 1) \int_{\mathbb{D}} \frac{|z - w|}{|1 - z\bar{w}|^{3 - \alpha}} dA(w),$$
(3.4)

where $J_z = \frac{(1-|z|^2)^2}{|1-z\overline{w}|^4}$ in (3.3) is the Jacobi of the mobius transformation. Let

$$F(z) = \int_{\mathbb{D}} \frac{|z-w|}{|1-z\bar{w}|^{3-\alpha}} \mathrm{d}A(w).$$

Claim The function F(z) is radial, i.e., F(z) = F(|z|) for every $z \in \mathbb{D}$.

In fact, suppose $z = re^{i\theta}$, and make a change of variables $w \to e^{i\theta}w$, then

$$\begin{split} F(z) &= \int_{\mathbb{D}} \frac{|z-w|}{|1-z\bar{w}|^{3-\alpha}} \mathrm{d}A(w) = \int_{\mathbb{D}} \frac{|re^{i\theta} - we^{i\theta}|}{|1-re^{i\theta}\bar{w}e^{-i\theta}|^{3-\alpha}} \mathrm{d}A(w) \\ &= \int_{\mathbb{D}} \frac{|r-w|}{|1-r\bar{w}|^{3-\alpha}} \mathrm{d}A(w) = F(r) = F(|z|), \end{split}$$

and so F(z) is radial.

By the claim, we set

$$F(1) = \lim_{r \to 1^{-}} F(r) = \int_{\mathbb{D}} \frac{|1 - w|}{|1 - \bar{w}|^{3 - \alpha}} dA(w) = \int_{\mathbb{D}} \frac{1}{|1 - w|^{2 - \alpha}} dA(w),$$
(3.5)

thus we have extended the function F to a continuous function on $\overline{\mathbb{D}}$, and it is not difficult to prove F is subharmonic, so F obtains its maximum on the boundary by maximum principle.

256

The norm of a class of singular integral operators from L^{∞} onto Bloch-type spaces

Based on (3.4), (3.5) and the Claim, Lemma 2.2 implies

$$\begin{split} \|Q_{\alpha}g_{z}\|_{\mathcal{B}_{\alpha}} &= \sup_{w\in\mathbb{D}} (1-|w|^{2})^{\alpha} |(Q_{\alpha}g_{z})'(w)| \\ &\geq (1-|z|^{2})^{\alpha} |(Q_{\alpha}g_{z})'(z)| \\ &\to \alpha(\alpha+1)F(1) \\ &= \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^{2}(\frac{2+\alpha}{2})}, \text{ as } |z| \to 1^{-}. \end{split}$$
(3.6)

Step 3. Now, we define new test functions g_z^r with $||g_z^r||_{\infty} = 1$ as follows:

$$g_z^r(w) = \begin{cases} g_z(w), & \text{if } |w| \ge r; \\ 1, & \text{if } |w| \le r^2, \end{cases}$$

and define g_z^r on $r^2 < |w| < r$ so that g_z^r is continuous on $\overline{\mathbb{D}}$, where $g_z(w)$ is as in (3.2). So

$$\begin{aligned} |Q_{\alpha}g_{z}^{r}(0)| &= \left| \alpha \int_{\mathbb{D}} g_{z}^{r}(w) \mathrm{d}A(w) \right| \\ &\geq \alpha \Big(\int_{B(0,r^{2})} \mathrm{d}A(w) - \int_{\mathbb{D}/B(0,r^{2})} |g_{z}^{r}(w)| \mathrm{d}A(w) \Big) \\ &\geq \alpha \Big(r^{4} - \int_{\mathbb{D}/B(0,r^{2})} \mathrm{d}A(w) \Big) \\ &= \alpha (2r^{4} - 1) \to \alpha, \quad \text{as} \quad r \to 1^{-}. \end{aligned}$$
(3.7)

By the definition of $g_z^r(w)$, it is easy to find that $|g_z(w) - g_z^r(w)| \le 2$ on \mathbb{D} , and $|g_z(w) - g_z^r(w)| = 0$ on $|w| \ge r$, so

$$(1 - |z|^{2})^{\alpha} |(Q_{\alpha}(g_{z} - g_{z}^{r}))'(z)| = (1 - |z|^{2})^{\alpha} \alpha(\alpha + 1) \left| \int_{\mathbb{D}} \frac{\bar{w}(g_{z}(w) - g_{z}^{r}(w))}{(1 - z\bar{w})^{\alpha + 2}} \mathrm{d}A(w) \right| \\ \leq \alpha(\alpha + 1) \int_{B(0,r)} \frac{2|w|(1 - |z|^{2})^{\alpha}}{|1 - z\bar{w}|^{\alpha + 2}} \mathrm{d}A(w) \to 0, \quad \text{as} \quad |z| \to 1^{-}.$$

$$(3.8)$$

For any $\epsilon > 0$, from (3.7) we may pick r > 0 such that

$$|Q_{\alpha}g_z^r(0)| > \alpha - \frac{\epsilon}{2}.$$
(3.9)

Fix such r, combining (3.6) and (3.8), we can pick $z \in \mathbb{D}$, such that

$$(1-|z|^2)^{\alpha}|(Q_{\alpha}g_z^r)'(z)| > \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})} - \frac{\epsilon}{2}.$$

Thus

$$\begin{aligned} \|Q_{\alpha}\| &\geq \|Q_{\alpha}g_{z}^{r}\|_{\alpha} = |Q_{\alpha}g_{z}^{r}(0)| + \sup_{w\in\mathbb{D}}(1-|w|^{2})^{\alpha}|(Q_{\alpha}g_{z}^{r})'(w)| \\ &> \alpha - \frac{\epsilon}{2} + (1-|z|^{2})^{\alpha}|(Q_{\alpha}g_{z}^{r})'(z)| \\ &> \alpha - \frac{\epsilon}{2} + \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^{2}(\frac{\alpha+2}{2})} - \frac{\epsilon}{2} \\ &= \alpha + \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^{2}(\frac{2+\alpha}{2})} - \epsilon. \end{aligned}$$

257

Therefore, $||Q_{\alpha}|| \ge \alpha + \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^2(\frac{2+\alpha}{2})}$, which together with (3.1) in Step 1 proves Theorem 1.1. \Box

Let $\mathcal{B}_{\alpha,0}$ stand for little Bloch-type space, consisting of analytic functions f with $\lim_{|z|\to 1^-}(1-|z|^2)^{\alpha}|f'(z)|=0$. We equip $\mathcal{B}_{\alpha,0}$ also with the norm $||f||_{\alpha}$ used for the Bloch-type space in (1.2). It is known that $\mathcal{B}_{\alpha,0}$ is a closed subspace of \mathcal{B}_{α} , i.e., $\mathcal{B}_{\alpha,0}$ is the closure in \mathcal{B}_{α} of the polynomials.

Zhu [1] proved that $Q_{\alpha} : C(\overline{\mathbb{D}}) \to \mathcal{B}_{\alpha,0}$ is bounded and onto, where $C(\overline{\mathbb{D}})$ stands for the functions continuous on $\overline{\mathbb{D}}$. Notice that $g_z^r(w) \in C(\overline{\mathbb{D}})$, which shows the following corollary.

Corollary 3.1 Let $0 < \alpha < \infty$. Then the norm of operator $Q_{\alpha} : C(\overline{\mathbb{D}}) \to \mathcal{B}_{\alpha,0}$ is

$$\|Q_{\alpha}\| = \alpha + \alpha(\alpha+1)\frac{\Gamma(\alpha)}{\Gamma^2(\frac{\alpha+2}{2})}.$$

Acknowledgements We thank the referees for their time and comments.

References

- [1] Kehe ZHU. Bloch type spaces of analytic functions. Rock. Moun. J. Math., 1993, 23(3): 1143-1177.
- [2] A. PERÄLÄ. On the optimal constant for the Bergman projection onto the Bloch space. Ann. Acad. Sci. Fenn. Math., 2012, 37(1): 245–249.
- [3] D. KALAJ, M. MARKOVIĆ. Norm of the Bergman projection. Math. Scand, 2014, 115(1): 143-160.
- [4] A. PERÄLÄ. Bloch space and the norm of the Bergman projection. Ann. Acad. Sci. Fenn. Math., 2013, 38(2): 849–853.
- [5] D. KALAJ, D. VUJADINOVIĆ. Norm of the Bergman projection onto the Bloch space. J. Oper. Theory, 2015, 73(1): 113–126.
- [6] Congwen LIU. Sharp Forelli-Rudin estimates and the norm of the Bergman projection. J. Funt. Anal., 2015, 268(2): 255–277.
- [7] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER, et al. Higher Transcendental Functions. McGraw-Hill, New York, 1973.