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Abstract In this paper, we obtain the exact norm of a class of singular integral operators

Qα, α > 0, defined by

Qαf(z) = α

∫
D

f(w)

(1− zw̄)α+1
dA(w),

from L∞(D) onto Bloch-type space Bα over the unit disk D, which is an extension of the Bergman

projection P . We also consider the norm for this operator from C(D) onto the little Bloch-type

space Bα,0.
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1. Introduction and main result

Let H(D) be the class of all analytic functions on D. For each α > 0, the Bloch-type space

Bα denotes the space of analytic functions f on D satisfying

∥f∥Bα = sup
z∈D

(1− |z|2)α|f ′(z)| < ∞, (1.1)

where ||f ||Bα is a semi-norm, and Bα is a Banach space [1] with the corresponding norm

∥f∥α = |f(0)|+ sup
z∈D

(1− |z|2)α|f ′(z)|. (1.2)

In the case for the semi-norm ∥f∥B = supz∈D(1−|z|2)|f ′(z)|, Perälä [2] determined the norm

of the Bergman projection P from L∞(D) onto Bloch space B, he obtained that ∥P∥B = 8
π . A

generalization of this result in the unit ball Bn was done by Kalaj and Marković [3]. Later in

[4], Perälä completed his earlier result [2] by finding the norm of the Bergman projection with

the norm of (1.2), where the author got ∥P∥ = 1+ 8
π . Recently, Kalaj and Vujadinović extended

this result to the case of unit ball Bn, interesting readers can see [5].

This paper is devoted to study the norm of a class of singular integral operator Qα : L∞(D) →
Bα, α > 0, which is another extension of the Bergman projection, defined as

Qαf(z) = α

∫
D

f(w)

(1− zw̄)α+1
dA(w), (1.3)
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where dA denotes the normalized Lebesgue measure over the unit disk D in the complex plane

C. This operator was introduced by Zhu [1], and the author had proved that Qα maps L∞(D)
boundedly onto Bα.

Now, we state the main result of this paper.

Theorem 1.1 Let 0 < α < ∞. Then the norm of operator Qα : L∞(D) → Bα is

∥Qα∥ = α+ α(α+ 1)
Γ(α)

Γ2(α+2
2 )

.

If α = 1, Qα is the well-known Bergman projection P , and the norm P : L∞(D) → B is

∥P∥ = 1 + 8
π , which coincides with the main result of Perälä in [4].

2. Preliminaries

Before the proof of Theorem 1.1, we present some lemmas.

Lemma 2.1 ([6]) Let s > −1, t ∈ R, and Js,t(z) defined as

Js,t(z) =

∫
D

(1− |w|2)s

|1− zw̄|2+s+t
dA(w).

Then

(i) If t < 0, then for all z ∈ D,

Γ(1 + s)

Γ(2 + s)
≤ Js,t(z) ≤

Γ(1 + s)Γ(−t)

Γ2( 2+s−t
2 )

.

(ii) If t > 0, then for all z ∈ D,

Γ(1 + s)

Γ(2 + s)
≤ (1− |z|2)Js,t(z) ≤

Γ(1 + s)Γ(t)

Γ2( 2+s+t
2 )

.

(iii) Finally, t = 0, then for all z ∈ D,

Γ(1 + s)

Γ2(1 + s
2 )

≤ |z|2(log 1

1− |z|2
)−1Js,0(z) ≤

1

1 + s
.

In fact, Lemma 2.1 is the case of n = 1 of [6, Theorem 1.3]. Moreover, the following integral

equality is also needed.

Lemma 2.2 If α > 0, we have∫
D

1

|1− w|2−α
dA(w) =

Γ(α)

Γ2( 2+α
2 )

.

It seems that Lemma 2.2 may be known, but we cannot find any relative reference.

Proof We use the classical notation 2F1[a, b, c, λ] to denote hyper geometric function

2F1[a, b, c, λ] ,
∞∑

n=0

(a)n(b)n
(c)n

λn

n!
, (2.1)

with c ̸= 0,−1,−2, . . . , where (a)n = a(a+ 1) · · · (a+ n− 1), n ≥ 1.
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This series gives an analytic function for |λ| < 1, called the Gauss hypergeometric function

associated to (a, b, c). We refer to [7, Chapter II] for one property which will be used.

2F1[a, b, c, 1
−] =

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, Re(c− a− b) > 0. (2.2)

Using Taylor series expansion of (1− w)t, where t = α−2
2 , α ̸= 2, and combining (2.1), (2.2),

we obtain∫
D

1

|1− w|2−α
dA(w) =

∫
D
|1− w|α−2dA(w) =

∫
D
(1− w)t(1− w̄)tdA(w), t =

α− 2

2

=
∞∑

n=0

[t(t− 1) · · · (t− n+ 1)]2

(n!)2

∫
D
|w|2ndA(w)

=

∞∑
n=0

[(n− 1− t)(n− 2− t) · · · (−t)]2

(n+ 1)!

1

n!

=

∞∑
n=0

(−t)n(−t)n
(2)n

1n

n!
= 2F1[

2− α

2
,
2− α

2
, 2, 1−]

=
Γ(2)Γ(2− 2−α

2 − 2−α
2 )

Γ(2− 2−α
2 )Γ(2− 2−α

2 )
=

Γ(α)

Γ2( 2+α
2 )

.

The above formula is obviously true for α = 2. �

3. Norm of Qα : L∞(D) → Bα

This section is devoted to the proof of Theorem 1.1, based on the Section 2, we can now

prove the main result of this paper.

Proof of Theorem 1.1 The proof is divided into three steps.

Step 1. We will prove that ∥Qα∥ ≤ α+ α(α+ 1) Γ(α)

Γ2(α+2
2 )

.

For any g(z) ∈ L∞(D), we have

f(z) = Qαg(z) = α

∫
D

g(w)

(1− zw̄)α+1
dA(w).

Differentiating on the two sides of the above equality, we get

f ′(z) = α(α+ 1)

∫
D

w̄g(w)

(1− zw̄)α+2
dA(w),

thus, Lemma 2.1 implies

|f ′(z)| ≤ α(α+ 1)||g||∞
∫
D

1

|1− zw̄|α+2
dA(w)

≤ α(α+ 1)||g||∞
Γ(α)

Γ2(α+2
2 )

(1− |z|2)−α.

Now, we have
∥Qαg∥α = ∥f∥α = |f(0)|+ sup

z∈D
(1− |z|2)α|f ′(z)|

≤
(
α+ α(α+ 1)

Γ(α)

Γ2(α+2
2 )

)
∥g∥∞,
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it follows that

∥Qα∥ ≤ α+ α(α+ 1)
Γ(α)

Γ2(α+2
2 )

. (3.1)

In the next two steps, we will give function sequences to show that the equality can be

achieved. In detail, in Step 2, we construct a function gz ∈ L∞(D) for any fixed z ∈ D, such that

∥Qαgz∥Bα → α(α + 1) Γ(α)

Γ2(α+2
2 )

∥gz∥∞ as |z| → 1−. Based on Step 2, we will give test functions

grz ∈ L∞(D), such that ∥Qα∥ ≥ α+ α(α+ 1) Γ(α)

Γ2(α+2
2 )

.

Step 2. For any z ∈ D, let

gz(w) =
w|1− zw̄|2+α

|w|(1− z̄w)2+α
. (3.2)

Then ∥gz∥∞ = 1, and

Qαgz(w) = α

∫
D

gz(u)

(1− wū)α+1
dA(u) = α

∫
D

u|1− zū|2+α

|u|(1− z̄u)2+α(1− wū)α+1
dA(u).

Taking the derivative of this on the two sides with respect to w, we obtain

(Qαgz)
′(w) = α(α+ 1)

∫
D

u|1− zū|2+αū

|u|(1− z̄u)2+α(1− wū)α+2
dA(u)

= α(α+ 1)

∫
D

|u||1− zū|2+α

(1− z̄u)2+α(1− wū)α+2
dA(u).

Then

(1− |z|2)α|(Qαgz)
′(z)| =α(α+ 1)

∫
D

|u|(1− |z|2)α

|1− zū|α+2
dA(u)

=α(α+ 1)

∫
D

|φz(w)|(1− |z|2)α

|1− zφz(w)|α+2
JzdA(w) (3.3)

=α(α+ 1)

∫
D

|z − w|
|1− zw̄|3−α

dA(w), (3.4)

where Jz = (1−|z|2)2
|1−zw̄|4 in (3.3) is the Jacobi of the mobius transformation. Let

F (z) =

∫
D

|z − w|
|1− zw̄|3−α

dA(w).

Claim The function F (z) is radial, i.e., F (z) = F (|z|) for every z ∈ D.
In fact, suppose z = reiθ, and make a change of variables w → eiθw, then

F (z) =

∫
D

|z − w|
|1− zw̄|3−α

dA(w) =

∫
D

|reiθ − weiθ|
|1− reiθw̄e−iθ|3−α

dA(w)

=

∫
D

|r − w|
|1− rw̄|3−α

dA(w) = F (r) = F (|z|),

and so F (z) is radial.

By the claim, we set

F (1) = lim
r→1−

F (r) =

∫
D

|1− w|
|1− w̄|3−α

dA(w) =

∫
D

1

|1− w|2−α
dA(w), (3.5)

thus we have extended the function F to a continuous function on D, and it is not difficult to

prove F is subharmonic, so F obtains its maximum on the boundary by maximum principle.
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Based on (3.4), (3.5) and the Claim, Lemma 2.2 implies

∥Qαgz∥Bα = sup
w∈D

(1− |w|2)α|(Qαgz)
′(w)|

≥ (1− |z|2)α|(Qαgz)
′(z)|

→ α(α+ 1)F (1)

= α(α+ 1)
Γ(α)

Γ2( 2+α
2 )

, as |z| → 1−. (3.6)

Step 3. Now, we define new test functions grz with ||grz ||∞ = 1 as follows:

grz(w) =

{
gz(w), if |w| ≥ r;

1, if |w| ≤ r2,

and define grz on r2 < |w| < r so that grz is continuous on D, where gz(w) is as in (3.2). So

|Qαg
r
z(0)| =

∣∣∣α ∫
D
grz(w)dA(w)

∣∣∣
≥α

(∫
B(0,r2)

dA(w)−
∫
D/B(0,r2)

|grz(w)|dA(w)
)

≥α
(
r4 −

∫
D/B(0,r2)

dA(w)
)

=α(2r4 − 1) → α, as r → 1−. (3.7)

By the definition of grz(w), it is easy to find that |gz(w) − grz(w)| ≤ 2 on D, and |gz(w) −
grz(w)| = 0 on |w| ≥ r, so

(1− |z|2)α|(Qα(gz − grz))
′(z)| =(1− |z|2)αα(α+ 1)

∣∣∣ ∫
D

w̄(gz(w)− grz(w))

(1− zw̄)α+2
dA(w)

∣∣∣
≤α(α+ 1)

∫
B(0,r)

2|w|(1− |z|2)α

|1− zw̄|α+2
dA(w) → 0, as |z| → 1−.

(3.8)

For any ϵ > 0, from (3.7) we may pick r > 0 such that

|Qαg
r
z(0)| > α− ϵ

2
. (3.9)

Fix such r, combining (3.6) and (3.8), we can pick z ∈ D, such that

(1− |z|2)α|(Qαg
r
z)

′(z)| > α(α+ 1)
Γ(α)

Γ2(α+2
2 )

− ϵ

2
.

Thus
∥Qα∥ ≥ ∥Qαg

r
z∥α = |Qαg

r
z(0)|+ sup

w∈D
(1− |w|2)α|(Qαg

r
z)

′(w)|

> α− ϵ

2
+ (1− |z|2)α|(Qαg

r
z)

′(z)|

> α− ϵ

2
+ α(α+ 1)

Γ(α)

Γ2(α+2
2 )

− ϵ

2

= α+ α(α+ 1)
Γ(α)

Γ2( 2+α
2 )

− ϵ.
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Therefore, ∥Qα∥ ≥ α+α(α+1) Γ(α)

Γ2( 2+α
2 )

, which together with (3.1) in Step 1 proves Theorem

1.1. �
Let Bα,0 stand for little Bloch-type space, consisting of analytic functions f with lim|z|→1−(1−

|z|2)α|f ′(z)| = 0. We equip Bα,0 also with the norm ||f ||α used for the Bloch-type space in (1.2).

It is known that Bα,0 is a closed subspace of Bα, i.e., Bα,0 is the closure in Bα of the polynomials.

Zhu [1] proved that Qα : C(D) → Bα,0 is bounded and onto, where C(D) stands for the

functions continuous on D. Notice that grz(w) ∈ C(D), which shows the following corollary.

Corollary 3.1 Let 0 < α < ∞. Then the norm of operator Qα : C(D) → Bα,0 is

∥Qα∥ = α+ α(α+ 1)
Γ(α)

Γ2(α+2
2 )

.
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