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Abstract Covering-based rough sets, as a technique of granular computing, can be a useful

tool for dealing with inexact, uncertain or vague knowledge in information systems. Matroid-

s generalize linear independence in vector spaces, graph theory and provide well established

platforms for greedy algorithm design. In this paper, we construct three types of matroidal

structures of covering-based rough sets. Moreover, through these three types of matroids, we

study the relationships among these matroids induced by six types of covering-based upper ap-

proximation operators. First, we construct three families of sets by indiscernible neighborhoods,

neighborhoods and close friends, respectively. Moreover, we prove that they satisfy independent

set axioms of matroids. In this way, three types of matroidal structures of covering-based rough

sets are constructed. Secondly, we study some characteristics of the three types of matroid,

such as dependent sets, circuits, rank function and closure. Finally, by comparing independent

sets, we study relationships among these matroids induced by six types of covering-based upper

approximation operators.

Keywords covering; matroid; rough set; upper approximation operator; indiscernible neigh-

borhood; neighborhood; close friend
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1. Introduction

Rough sets provide an important tool to deal with data characterized by uncertainty and

vagueness. Since it was proposed by Pawlak [1], rough sets have been generalized from different

viewpoints such as the similarity relation [2] or the tolerance relations [3,4] instead of the equiv-

alence relation, and a covering over the universe [5] instead of a partition, and the neighborhood

instead of the equivalence class [6]. Covering-based rough set theory is more general and complex

than rough sets [7, 8]. Currently, the connections between covering-based rough sets and other

theories are attracting increasing attention. For example, covering-based rough sets have been

connected with matroids [9, 10], with topology [11], and with fuzzy sets [12, 13]. Many other

important contributions are presented in [14,15].

Matroids proposed by Whitney [16] are a generalization of linear algebra and graph theory.

Integrating the characteristics of linear algebra and graph theory, matroids have sound theoretical
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foundations and wide applications. In theory, matroids have powerful axiomatic systems which

provide a platform for connecting them with other theories, such as rough sets [17,18], generalized

rough sets based on relations, covering-based rough sets and geometric lattices [19, 20]. In

application, matroids have been successfully applied to diverse fields, such as combinatorial

optimization, algorithm design and cryptology [21,22]. In order to broaden the theoretical areas

and application areas of covering-based rough sets and matroids, some researchers have combined

them with each other. Matroids provide an interesting and natural research topic in rough set

theory [23–25].

In our previous work [26], we studied the relationships between five types of covering-based

upper approximation operators and closure operators and presented the necessary and sufficient

conditions for five types of covering-based upper approximation operators to be closure operators.

In fact, the conditions for the fifth and the sixth type of covering-based upper approximation

operators to be closure operators are the same. In a word, based the above conditions, the six

types of closure operators all can determine a matroid, respectively.

In particular, in [27] the modularity of matroidal structure of covering-based rough sets was

studied from the viewpoint of lattices. And algebraic and topological structures of covering-based

rough were established through down-sets and up-sets in [8]. Different from the above results, we

mainly investigate the characteristics of matroidal structures of covering-based rough sets from

the viewpoint of closure axiom and the relationships between them.

In this paper, we construct three types of matroidal structures of covering-based rough sets

and study some characteristics of them. Furthermore, the relationships among these matroids

induced by six types of covering-based upper approximation operators are studied through these

three types of matroidal structures of covering-based rough sets. First, we construct three families

of sets by using indiscernible neighborhoods, neighborhoods and close friends, respectively. And

we further prove these three families of sets satisfy independent set axiom of matroids. In other

words, three types of matroidal structures of covering-based rough sets are established in this

way. Secondly, we study some characteristics of these three types of matroidal structures of

covering-based rough sets, such as dependent sets, circuits, rank function and closure. Thirdly,

through comparing independent set, we point out a one-to-one relationship between these three

types of matroids and three matroids induced by the second, third and sixth types of covering-

based upper approximation operators, respectively. Finally, combining with these three types

of matroidal structures of covering-based rough sets, we study the relationships among these

matroids induced by six types of covering-based upper approximation operators, respectively.

The remainder of this paper is organized as follows. In Section 2, we review some basic

knowledge about covering-based rough sets and matroids. In Section 3, we construct three types

of matroidal structures of covering-based rough sets and study their characteristics, such as

dependent sets, circuits, rank function and closure sets. In Section 4, the relationships among

the matroids induced by six types of covering-based upper approximation operators are studied.

This paper concludes in Section 5.
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2. Preliminaries

In this section, we review some fundamental definitions of classical rough sets, covering rough

sets and matroids.

2.1. Classical rough sets

Let U be a finite and nonempty set, and let R be an equivalence relation on U . R generates

a partition U/R = {[x]R : x ∈ U} on U , where [x]R is an equivalence class of x. We call it an

elementary set of R in rough sets. For any X ⊆ U , we describe X by the elementary set of R,

and the following two sets:

R∗(X) = {x ∈ U |[x]R ⊆ X}, R∗(X) = {x ∈ U |[x]R ∩X ̸= ∅}

are called the lower and upper approximations of X, respectively.

Propositions 2.1 ([1]) Let ∅ be the empty set and ∼ X the complement of X in U . Pawlak’s

rough sets have the following properties:

(1L) R∗(U) = U ; (1H) R∗(U) = U ;

(2L) R∗(∅) = ∅; (2H) R∗(∅) = ∅;
(3L) R∗(X) ⊆ X; (3H) X ⊆ R∗(X);

(4L) R∗(X ∩ Y ) = R∗(X) ∩R∗(Y ); (4H) R∗(X ∪ Y ) = R∗(X) ∪R∗(Y );

(5L) R∗(R∗(X)) = R∗(X); (5H) R∗(R∗(X)) = R∗(X);

(6LH) R∗(X) =∼ R∗(∼ X); (7H) X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y );

(7L) X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y ); (8H) R∗(∼ R∗(X)) =∼ R∗(X);

(8L) R∗(∼ R∗(X)) =∼ R∗(X); (9H) ∀K ∈ U/R, R∗(K) = K.

2.2. Covering-based rough sets

In this section, we present some basic concepts of covering-based rough sets, such as indis-

cernible neighborhood, minimal description and six types of covering-based upper approximation

operators.

Definition 2.2 ([23]) Let U be a universe of discourse and C be a family of subsets of U . If

none of subsets in C is empty and ∪C = U , then C is called a covering of U .

In the following, we introduce the concept of covering approximation space.

Definition 2.3 ([23]) Let U be a universe of discourse and C be a family of subsets of U . If

none of subsets in C is empty and ∪C = U , then C is called a covering of U .

Definition 2.4 ([23]) Let C be a covering of U . ∀x ∈ U ,

Md(x) = {K ∈ C : x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K → K = S)}

is called the minimal description of x with respect to C.

Definition 2.5 ([24]) Let C be a covering of U . C is called unary if ∀x ∈ U, |Md(x)| = 1.
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Example 2.6 (A unary covering) Let U = {a, b, c, d}, K1 = {a, b, c}, K2 = {a, b}, K3 =

{a, b, c, d}, C = {K1,K2,K3}. C is a unary covering of U .

Example 2.7 (Not a unary covering) Let U = {a, b, c, d}, K1 = {b, c}, K2 = {a, b}, K3 =

{a, b, c, d}, C = {K1,K2,K3}. C is a covering of U , but it is not a unary covering because

Md(b) = {K1,K2}.
Neighborhood, indiscernible neighborhood and close friend are important concepts of covering-

based rough sets. And they have different properties.

Definition 2.8 ([24]) Let (U, C) be a covering approximation space. For all x ∈ U , ∩{K ∈ C :

x ∈ K} is called the neighborhood of x with respect to C and denoted as NC(x).

Definition 2.9 ([24]) Let (U, C) be a covering approximation space. ∀x ∈ U,∪{K ∈ C : x ∈ K}
is called the indiscernible neighborhood of x and denoted as IC(x).

Definition 2.10 ([24]) Let (U, C) be a covering approximation space. ∪Md(x) is called the

close friends of x and denoted as CFC(x).

When the covering is clear, we omit the lowercase C in the minimal description. NC(x), IC(x)

and CFC(x) are denoted by N(x), I(x) and CFC(x), respectively.

The reducible element of a covering is an important concept which is first proposed by Zhu

and Wang in [23].

Definition 2.11 ([23]) Let C be a covering of U , and K ∈ C. If K is a union of some elements

in C − {K}, then we say K is a reducible element of C, otherwise, K is an irreducible element of

C.
Based on the reducible element, we know that some blocks of a covering is redundant and

some blocks of the covering is essential. The reduction of a covering is used to express the essence

of the covering.

Definition 2.12 ([23]) Let C be a covering of U . If every element in C is an irreducible element,

we say C is irreducible, otherwise C is reducible. And the family of irreducible elements of C is

called the reduction of C, denoted by reduct(C).

Definition 2.13 ([23]) Let C be a covering of U . The operations CL: P (U) −→ P (U) are

defined as follows: ∀X ∈ P (U),

CL(X) = ∪{K ∈ C|K ⊆ X}.

We call CL(X) the covering lower approximation operator.

The operations FH, SH, TH, RH, IH and XH: P (U) −→ P (U) are defined as follows: for

∀X ∈ P (U),

FH(X) = CL(X) ∪ {Md(x)|x ∈ X − CL(X)},

SH(X) = ∪{K ∈ C|K ∩X ̸= ∅} = ∪{I(x)|x ∈ X},

TH(X) = ∪{Md(x)|x ∈ X},
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RH(X) = CL(X) ∪ {K|K ∩ (X − CL(X)) ̸= ∅},

IH(X) = CL(X) ∪ {N(x)|x ∈ X − CL(X)},

XH(X) = {x|X ∩N(x) ̸= ∅}.

FH, SH, TH,RH, IH and XH are called the first, the second, the third, the fourth, the fifth

and the sixth covering upper approximation operators with respect to the covering C, respectively.

2.3. Matroids

Matroids largely borrow from matrix theory and graph theory. They represent the linear

independence with high abstraction and serve as a useful tool for dealing with discrete data. In

this subsection, matroid and some important characteristics of it such as circuit, rank function

and closure are introduced.

Definition 2.14 ([16]) A matroid M is an ordered pair (U, I), where U (the ground set) is a

finite set, and I (the independent sets) a family of subsets of U with the following properties

(Independent set axiom):

(I1) ∅ ∈ I;
(I2) If I ∈ I, I ′ ⊆ I, then I ′ ∈ I;
(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists e ∈ I2 − I1 such that I1

∪
{e} ∈ I, where

|I| denotes the cardinality of I.

For convenience of illustration, for any family A of subsets of U , we denote the following

symbols.

Definition 2.15 Let U be a finite universe and A a family of subsets of U . Two symbols are

defined as follows:

Min(A) = {X ∈ A : ∀Y ∈ A, Y ⊆ X ⇒ X = Y },

Opp(A) = {X ⊆ U : X /∈ A}.

In the following proposition, we will introduce the concept of dependent set of matroid.

Definition 2.16 ([16]) Let M = (U, I) be a matroid and X ⊆ U . If X /∈ I, then X is

called a dependent set. The family of all dependent sets of M is denoted by D(M), where

D(M) = Opp(I).
The dependent set of a matroid generalizes the linear dependence in vector spaces and the

cycle in graphs. A circuit of a matroid is a minimal dependent set.

Definition 2.17 ([16]) Let M = (U, I) be a matroid. Any minimal dependent set in M is called

a circuit ofM , and we denote the family of all circuits ofM byC(M), i.e., C(M) = Min(Opp(I)).
In matroid theory, the rank function serves as a quantitative tool. The cardinality of a

maximal independent set of any subset can be expressed by the rank function.

Definition 2.18 ([16]) Let M = (U, I) be a matroid. The rank function rM : P (U) −→ Z+ of
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M is defined as follows: for all X ⊆ U ,

rM (X) = max{|I| : I ⊆ X, I ∈ I}.

Based on the rank function of a matroid, the closure operator which reflects the dependency

between a set and elements is defined.

Definition 2.19 ([16]) Let M = (U, I) be a matroid. For all X ⊆ U , the closure operator

clM : P (U) −→ P (U) of M is defined as

clM (X) = {e ∈ U : rM (X) = rM (X ∪ {e})}.

clM (X) is called the closure of X in M .

There are many different but equivalent ways to define a matroid. We can generate a matroid

in terms of closure axiom. In other words, an operator satisfies the following four conditions if

and only if it is a closure operator of a matroid.

Proposition 2.20 ([16]) Let cl: P (U) −→ P (U) be an operator. Then there exists a matroid

M such that cl = clM if and only if cl satisfies the following conditions:

(CL1) If ∀X ⊆ U , then X ⊆ cl(X);

(CL2) If X ⊆ Y ⊆ U , then cl(X) ⊆ cl(Y );

(CL3) If ∀X ⊆ U , then cl(cl(X)) = cl(X);

(CL4) If x, y ∈ U , and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

3. Matroidal structure of covering-based rough sets

In this section, we construct three types of matroidal structures of covering-based rough sets.

In the following, we define three families of sets by indiscernible neighborhoods, neighborhoods

and close friends of a covering, respectively. Moreover, some characteristics of the three types of

matroidal structures are presented.

Definition 3.1 Let C be a covering of U . Then we define three families of sets as follows:

IF (C) = {X ⊆ U : ∀x, y ∈ X,x ̸= y → IC(x) ̸= IC(y)}.

IN (C) = {X ⊆ U : ∀x, y ∈ X,x ̸= y → NC(x) ̸= NC(y)}.

ICF (C) = {X ⊆ U : ∀x, y ∈ X,x ̸= y → CFC(x) ≠ CFC(y)}.

In the following proposition, the three families of sets will be proved to satisfy the independent

set axiom.

Proposition 3.2 Let C be a covering of U . Then IF (C), IN (C) and ICF (C) satisfy (I1), (I2)

and (I3) of Definition 2.14.

Proof Firstly, we prove that IF (C) satisfies (I1), (I2) and (I3) of Definition 2.14.

(I1) It is obvious that IF (C) satisfies (I1).
(I2) If I ∈ IF (C), I ′ ⊆ I, suppose I ′ /∈ IF (C), according to Definition 3.1, then there exist
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x, y ∈ I ′ such that IC(x) = IC(y). Since I ′ ⊆ I, there exist x, y ∈ I such thatIC(x) = IC(y),

which is contradictory to I ∈ IF (C). Hence I ′ /∈ IF (C), therefore IF (C) satisfies (I2).
(I3) Suppose that I1, I2 ∈ IF (C) and |I1| < |I2|. According to Definition 3.1, since I1, I2 ∈

IF (C), we have that for all x1, y1 ∈ I1, x1 ̸= y1, IC(x1) ̸= IC(y1) and x2, y2 ∈ I2, x2 ̸= y2, IC(x2) ̸=
IC(y2). Suppose that for all u ∈ I2 − I1. If I1 ∪ {u} /∈ IF (C), then there exists one and only

one x ∈ I1 − I2 such that IC(u) = IC(x). Hence |I2 − I1| = |I1 − I2|, which is contradictory to

|I1| < |I2|. Therefore, there exists u ∈ I2 − I1 such that I1 ∪ {u} ∈ IF (C). �
Similar to the above proof, it is easy to prove that IN (C) and ICF (C) also satisfy (I1), (I2)

and (I3) of Definition 2.14.

As shown in the above proposition, IF (C), IN (C) and ICF (C) are independent sets, so they

can generate a matroid, respectively.

Definition 3.3 Let C be a covering of U . The matroid with IF (C) as its independent set is

denoted by MF (C). The matroid with IN (C) as its independent set is denoted by MN (C). And

the matroid with ICF (C) as its independent set is denoted by MCF (C). We call MF (C), MN (C)
and MCF (C) the friend matroid, neighborhood matroid and close friend matroid induced by

covering C, respectively.
An example is provided to illustrate friend matroid, neighborhood matroid and close friend

matroid induced by a covering.

Example 3.4 Let U = {1, 2, 3, 4} and covering C = {K1,K2,K3}, K1 = {1, 3}, K2 = {2, 3, 4},
K3 = {1, 4}. Then I(1) = {1, 3, 4}, I(2) = {2, 3, 4}, I(3) = I(4) = {1, 2, 3, 4}. N(1) = {1},
N(2) = {2, 3, 4}, N(3) = {3}, N(4) = {4}. CF (1) = {1, 3, 4}, CF (2) = {2, 3, 4}, CF (3) =

CF (4) = {1, 2, 3, 4}. Hence IF (C) = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4},
{1, 2, 3}, {1, 2, 4}}, IN (C) = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}} and ICF (C) = {∅, {1}, {2}, {3}, {4}, {1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}}. Therefore, MF (C), MN (C) and MCF (C) are

the friend matroid, neighborhood matroid and close friend matroid introduced by covering C,
respectively.

In the above, the three types of matroids are established from the viewpoint of rough sets.

In the following, we will formulate some characteristics of the three types of matroids.

Proposition 3.5 Let C be a covering of U and MF (C) be the friend matroid induced by covering

C. Then D(MF (C)) = {X ⊆ U : ∃x, y ∈ X,x ̸= y ∧ IC(x) = IC(y)}.

Proof According to Definition 2.16, we need only to prove D(MF (C)) = Opp(IF (C)). On the

one hand, for all X ∈ D(MF (C)), there exist x, y ∈ X and x ̸= y such that IC(x) = IC(y).

Hence X /∈ {X ⊆ U : ∀x, y ∈ X,x ̸= y → IC(x) ̸= IC(y)}, i.e., X ∈ Opp(IF (C)), which implies

D(MF (C)) ⊆ Opp(IF (C)). On the other hand, for all X ∈ Opp(I(C))), i.e., X /∈ I(C)) = {X ⊆
U : ∀x, y ∈ X,x ̸= y → IC(x) ̸= IC(y)}. Then there exist x, y ∈ X and x ̸= y such that

IC(x) = IC(y)}, which implies X ∈ D(MF (C)). Hence Opp(IF (C)) ⊆ D(MF (C)). To sum up,

D(MF (C)) = Opp(IF (C)). �
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A circuit of a matroid is a minimal dependent set, in the following proposition, we will the

characteristic of the circuits of the friend matroid.

Proposition 3.6 Let C be a covering of U and MF (C) be the friend matroid induced by covering

C. Then C(MF (C)) = {{x, y} : x, y ∈ U ∧ x ̸= y ∧ IC(x) = IC(y)}.

Proof According to Definition 2.17 and Proposition 3.2, we get that C(M(C)) = Min(D(

MF (C)) and D(MF (C)) = {X ⊆ U : ∃x, y ∈ X,x ̸= y ∧ IC(x) = IC(y)}. Then it is obvious that

C(MF (C)) = {{x, y} : x, y ∈ U ∧ x ̸= y ∧ IC(x) = IC(y)}}. �
In all the characteristics of a matroid introduced in this paper, the rank function of a matroid

is the one and only one numeric characteristic. In the following proposition, we will investigate

the rank function of friend matroid.

Proposition 3.7 Let C be a covering of U and MF (C) be the friend matroid induced by covering

C. Then for all X ⊆ U , rMF (C)(X) = |{IC(x) : x ∈ X}|.

Proof According to Definition 3.1, we have for all I ∈ I(C)), |I| = |I(x) : x ∈ I|. According to

Definition 2.15, we can obtain rMF (C)(X) = |{IC(x) : x ∈ X}|. �
The closure of a subset is a set of all elements depending on the subset in matroids. In other

words, the closure of a subset is all those elements when added to the subset, the rank is the

same. We will formulate the closure operator of friend matroid in the following proposition.

Proposition 3.8 Let C be a covering of U and MF (C) be the friend matroid induced by covering

C. Then for all X ⊆ U , clMF (C)(X) = {e ∈ U : ∃x ∈ X s.t. IC(x) = IC(e)}.

Proof We only need to prove that

{e ∈ U : ∃x ∈ X s.t. I(x) = I(e)} = {e ∈ U : rMF (C) = rMF (C)(X ∪ {e})}.

In fact, for all e ∈ {e ∈ U : ∃x ∈ X s.t. I(x) = I(e)} ⇔ there exists a circuit C = {x, e} ∈
C(MF (C)) such that

e ∈ C ⇔ rMF (C)(X) = rMF (C)(X ∪ {e})} ⇔ e ∈ {e ∈ U : rMF (C)(X) = rMF (C)(X ∪ {e})}. �

Because the three types of matroidal structure induced by a covering are similar, we can

use the same method to study neighborhood matroid and close friend matroid introduced by a

covering. And we obtain the following results.

Proposition 3.9 Let C be a covering of U and MN (C) be the neighborhood matroid induced

by covering C. Then
(1) For all X ⊆ U , X is a dependent set of MN (C) if and only if ∀x, y ∈ X,NC(x) = NC(y).

(2) For all X ⊆ U , X is a circuit of MN (C) if and only if |X| = 2 and ∀x, y ∈ X,NC(x) =

NC(y).

(3) For all X ⊆ U , rMN (C)(X) = |{NC(x) : x ∈ X}|.
(4) For all X ⊆ U , clMN (C)(X) = {e ∈ U : ∃x ∈ X s.t. NC(x) = NC(e)}.
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Proposition 3.10 Let C be a covering of U and MCF (C) be the close friend matroid induced

by covering C. Then
(1) For all X ⊆ U , X is a dependent set of MCF (C) if and only if ∀x, y ∈ X,CFC(x) =

CFC(y).

(2) For all X ⊆ U , X is a circuit of MCF (C) if and only if |X| = 2 and ∀x, y ∈ X,CFC(x) =

CFC(y).

(3) For all X ⊆ U , rMCF (C)(X) = |{CFC(x) : x ∈ X}|.
(4) For all X ⊆ U , clMCF (C)(X) = {e ∈ U : ∃x ∈ X s.t. CFC(x) = CFC(e)}.
The proofs of Propositions 3.9 and 3.10 are similar to those of Propositions 3.5–3.8. Hence

we omit the proofs of them.

4. Relationship among these matroids induced by six types of covering-
based upper approximation operators

In [26], we present the necessary and sufficient conditions for five types of covering-based

upper approximation operators to be closure operators of matroids. In fact, the condition for the

fifth and sixth types of covering-based upper approximation operators to be closure operators of

matroids are the same. According to the closure axiom of matroids and the above necessary and

sufficient conditions, these six types of covering-based upper approximation operators can induce

a matroid, respectively. In this section, we discuss the relationships among these six types of

matroids induced by six types of covering-based rough sets through comparing their independent

sets.

In the following, we recall the necessary and sufficient conditions for six types of covering-

based upper approximation operators to be closure operators of matroids.

Proposition 4.1 ([26]) Let C be a covering of U . Then

(1) FH is the closure operator of a matroid if and only if reduct(C) forms a partition on U .

(2) SH is the closure operator of a matroid if and only if {I(x) : x ∈ U} forms a partition

on U .

(3) TH is the closure operator of a matroid if and only if {CFriends(x) : x ∈ U} forms a

partition on U .

(4) RH is the closure operator of a matroid if and only if RH and C satisfy:

(i) For all K1,K2 ∈ C, if K1 ̸= K2 and K1 ∩K2 ̸= ∅, then ∀x ∈ K1 ∩K2, {x} ∈ C.
(ii) For all y ∈ RH({x}), if {x} /∈ C, then {y} /∈ C.
(5) IH is the closure operator of a matroid if and only if {N(x) : x ∈ U} forms a partition

on U .

Remark 4.2 XH is the closure operator of a matroid if and only if {N(x) : x ∈ U} forms a

partition on U .

Based on the above results, if FH,SH, TH,RH, IH and XH form the closure operator of a

matroid, respectively according to Proposition 2.20, they can determine a matroid, respectively.
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Moreover, according to [16], we know the independent sets of the matroids induced by these six

types of covering-based upper approximation operators can be represented as follows:

(1) IFH = {I ⊆ E : ∀x ∈ I, x /∈ FH(I − {x})}.
(2) ISH = {I ⊆ E : ∀x ∈ I, x /∈ SH(I − {x})}.
(3) ITH = {I ⊆ E : ∀x ∈ I, x /∈ TH(I − {x})}. (∗)
(4) IRH = {I ⊆ E : ∀x ∈ I, x /∈ RH(I − {x})}.
(5) IIH = {I ⊆ E : ∀x ∈ I, x /∈ IH(I − {x})}.
(6) IXH = {I ⊆ E : ∀x ∈ I, x /∈ XH(I − {x})}.
Through comparing the above independent sets, we study the relationships among these

matroids induced by six types of upper approximation operators in the following propositions.

First, the relationships among ISH , ITH , IIH , IF , IN and ICF will be obtained when

SH, TH and IH form closure operators. Moreover, we also formulate ISH , ITH and IIH .

The condition under which ISH = IF is presented as follows.

Proposition 4.3 Let C be a covering of U . If {I(x) : x ∈ U} induced by C forms a partition on

U . Then ISH = IF .

Proof Suppose {I(x) : x ∈ U} induced by C forms a partition on U , then SH is the closure

operator of matroid M = (U, ISH). In fact, on the one hand, if I ∈ ISH , i.e., ∀x ∈ I, x /∈
SH(I − {x}) = ∪y∈(I−{x})I(y), then for ∀x, y ∈ I, x ̸= y, we have I(x) ̸= I(y), i.e., I ∈ IF . On

the other hand, if I ∈ IF , namely ∀x, y ∈ I, x ̸= y, I(x) ̸= I(y). If ∀x ∈ I, x /∈ SH(I − {x}),
then there exists y ∈ I such that I(x) = I(y), which is a contradiction. Therefore, ISH = IF . �

The condition under which ITH = ICF is presented as follows.

Proposition 4.4 Let C be a covering of U . If {CF (x) : x ∈ U} induced by C forms a partition

on U . Then ITH = ICF .

Proof Suppose {CF (x) : x ∈ U} induced by C forms a partition on U . Then TH is the closure

operator of matroid M = (U, ITH). On the one hand, for all I ∈ ITH , ∀x ∈ I, x /∈ TH(I−{x}) =
∪y∈(I−{x})CF (y) which implies that ∀x, y ∈ I, x ̸= y → CF (x) ̸= CF (y). Hence I ∈ ICF and

ITH ⊆ ICF . On the other hand, for all I ∈ ICF , we have ∀x, y ∈ X,x ̸= y → CF (x) ̸= CF (y).

Since {CF (x) : x ∈ U} induced by C forms a partition on U . Hence ∀x ∈ I, x /∈ TH(I − {x}) =
∪y∈(I−{x})CF (y), i.e., I ∈ ITH . Therefore, ICF ⊆ ITH . �

The following proposition presents the condition under which IIH = IN .

Proposition 4.5 Let C be a covering of U . If {N(x) : x ∈ U} induced by C forms a partition

on U . Then IIH = IN .

Proof Suppose {N(x) : x ∈ U} induced by C forms a partition on U , then IH is the closure

operator of M = (U, IIH). In fact, I ∈ IIH ⇐⇒ ∀x ∈ I, x /∈ IH(I−{x}) = ∪y∈(I−{x})N(y) ⇐⇒
∀x, y ∈ I, x ̸= y → N(x) ̸= N(y) ⇐⇒ I ∈ IF . Therefore, IIH = IF . �

Combined with the above results, the relationship among these matroids induced by six types
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of covering-based upper approximation operators respectively will be shown through comparing

their independent sets. First, based on Remark 4.2, we present the relationship between IIH
and IXH .

Proposition 4.6 Let C be a covering on U . If {N(x) : x ∈ U} induced by C forms a partition

on U . Then IIH = IXH .

Proof According to the Definition of IIH , IXH , IH and XH, it is straightway. �
In order to study the relationships among the first, third and fourth types of covering-based

upper approximation operators, we introduce the following four lemmas.

Lemma 4.7 ([26]) C is unary and {CF (x) : x ∈ U} forms a partition on U if and only if

reduct(C) forms a partition on U .

Lemma 4.8 ([25]) Let C be a covering of U , and TH and RH be the third and fourth types of

upper approximation operators, respectively. If TH = RH, then C is unary.

Lemma 4.9 ([25]) Let C be a covering on U , and TH and RH be the third and fourth types

of upper approximation operators, respectively. TH = RH if and only if for all K1,K2 ∈ C,
K1 ̸= K2 and ∀x ∈ K1 ∩K2 ̸= ∅, {x} ∈ C.

Lemma 4.10 ([25]) TH = FH if and only if C is a unary covering.

Based on the above four lemmas, the following proposition points out that IFH = ITH when

FH and TH form a closure operator of a matroid, respectively.

Proposition 4.11 Let C be a covering on U . If FH and TH induced by C are closure operators

of matroids. Then IFH = ITH .

Proof If FH is a closure operator of a matroid. Then reduct(C) induced by C forms a partition

on U . According to Lemmas 4.7 and 4.10, we have TH = FH and IFH = ITH . �
In the following result, we will show that IRH is equal to IFH when RH forms a closure

operator of a matroid. Hence we only discuss the relationships between IFH and other indepen-

dent sets.

Proposition 4.12 Let C be a covering on U . If RH induced by C is a closure operator of a

matroid, then IRH = IFH .

Proof According to Proposition 4.1, if RH induced by C is a closure operator of a matroid,

then for all K1,K2 ∈ C, K1 ̸= K2 and ∀x ∈ K1 ∩K2 ̸= ∅, {x} ∈ C. According to Lemmas 4.9

and 4.10, we have that RH = FH, which implies that FH also forms a closure operator of a

matroid. Hence IRH = IFH . �
In order to illustrate, we denote the following remark.

Remark 4.13 Let U be a finite set and F1,F2 be two families of subsets on U . If for ∀A ∈ F1,

there exist B ∈ F2 such A ⊂ B, we say that F1 is finer than F2, denoted by F2 ≼ F1.



362 Lirun SU

Based on the above results, the relationships among the six types of matroids will be discussed

by studying the relationships among their independent sets as follows.

Proposition 4.14 Let C be a covering on U . If FH and SH induced by C are closure operators

of matroids, then ISH ⊆ IFH .

Proof Suppose FH and SH induced by C are closure operators of matroids. Then {I(x) : x ∈ U}
and reduct(C) induced by C form a partition on U . According to Lemmas 4.7 and 4.10, we

have C is unary, {CF (x) : x ∈ U} forms a partition on U and IFH = ITH = ICF . Since

CF (x) = ∪Md(x) ⊆ ∪x∈K∈CK = I(x), {CF (x) : x ∈ U} is finer than {I(x) : x ∈ U}, in other

words, reduct(C) is finer than {I(x) : x ∈ U}. Based on the result, we have ∀I ∈ ISH , then

I ∈ IFH . Hence ISH ⊆ IFH . �

Example 4.15 Let U = {1, 2, 3} and C = {{1}, {2}, {1, 2}, {3}}. reduct(C) = {{1}, {2}, {3}},
I(1) = I(2) = {1, 2} and I(3) = {3}. Hence IFH = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},
{1, 2, 3}} and ISH = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}. Therefore, ISH ⊆ IFH .

Proposition 4.16 Let C be a covering on U . If FH and IH induced by C are closure operators

of matroids, then IFH = IIH .

Proof Suppose FH and IH induced by C are closure operators of matroids. Then C is unary,

{CF (x) : x ∈ U} and {N(x) : x ∈ U} form a partition on U . Since C is unary and N(x) =

∩Md(x), CF (x) = ∪Md(x) = ∩Md(x) = N(x) and {CF (x) : x ∈ U} = {N(x) : x ∈ U}.
According to the definition of IFH and IIH , we can obtain IFH = IIH . �

Example 4.17 (Continued from Example 4.15) We have that reduct(C) = {{1}, {2}, {3}},
N(1) = {1}, N(2) = {2} and N(3) = {3}. Hence IFH = IIH = {∅, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3}}. Therefore, IFH = IIH .

Proposition 4.18 Let C be a covering on U . If SH and TH induced by C are closure operators

of matroids, then ISH ⊆ ITH .

Proof If SH and TH induced by C are closure operators of matroids, then {I(x) : x ∈ U}
and {CF (x) : x ∈ U} form a partition on U . Since CF (x) = ∪Md(x) ⊆ ∪x∈K∈CK = I(x),

{CF (x) : x ∈ U} is finer than {I(x) : x ∈ U}. Based on this result, we have ISH ⊆ ITH . �

Example 4.19 Let U = {1, 2, 3} and C = {{1}, {2}, {1, 2}, {3}}. CF (1) = {1}, CF (2) = {2},
CF (3) = {3}, I(1) = I(2) = {1, 2} and I(3) = {3}. Hence ITH = {∅, {1}, {2}, {3}, {1, 2},
{1, 3}, {2, 3}, {1, 2, 3}} and ISH = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}. Therefore, ISH ⊆ ITH .

Example 4.20 Let U = {1, 2, 3, 4} and C = {{1, 2}, {1, 3}, {2, 3}, {4}}. I(1) = I(2) = I(3) =

{1, 2, 3}, I(4) = {4}, CF (1) = CF (2) = CF (3) = {1, 2, 3} and CF (4) = {4}. Then ISH = ITH .

Proposition 4.21 Let C be a covering on U . If SH and IH induced by C are closure operators

of matroids, then ISH ⊆ IIH .
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Proof If SH and TH induced by C are closure operators of matroids, then {I(x) : x ∈ U}
and {N(x) : x ∈ U} form a partition on U . Since N(x) = ∩Md(x) ⊆ ∪x∈K∈CK = I(x),

{N(x) : x ∈ U} is finer than {I(x) : x ∈ U}. Based on the fact, we have that ISH ⊆ IIH . �

Example 4.22 Let U = {1, 2, 3, 4} and C = {{1, 2}, {1, 3}, {2, 3}, {4}}. We have that N(1) =

{1}, N(2) = {2}, N(3) = {3}, N(4) = {4}, I(1) = I(2) = I(3) = {1, 2, 3} and I(4) = {4}. Hence

ISH = {∅, {1}, {2}, {3}, {4}, {1, 4}, {2, 4}, {3, 4}} and IIH = {∅, {1}, {2}, {3}, {4}, {1, 2},
{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}. Therefore,

ISH ⊆ IIH .

Proposition 4.23 Let C be a covering on U . If TH and IH induced by C are closure operators

of matroids, then ITH ⊆ IIH .

Proof If TH and IH induced by C are closure operators of matroids, then {CFriends(x) : x ∈ U}
and {N(x) : x ∈ U} form a partition on U . Since for all x ∈ U , N(x) = ∩Md(x) ⊆ ∪Md(x) =

CF (x), {N(x) : x ∈ U} is finer than {CF (x) : x ∈ U}. Based on this fact, we have that

ITH ⊆ IIH . �

Example 4.24 (Continued from Example 4.20) Let U = {1, 2, 3, 4} and C = {{1, 2}, {1, 3},
{2, 3}, {4}}. We have that N(1) = {1}, N(2) = {2}, N(3) = {3}, N(4) = {4}, I(1) = I(2) =

I(3) = {1, 2, 3} and I(4) = {4}. Hence ISH = {∅, {1}, {2}, {3}, {4}, {1, 4}, {2, 4}, {3, 4}}
and IIH = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4},
{1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}. Therefore, ISH ⊆ IIH .

Based on the above results, we have the following two remarks.

Remark 4.25 If FH (FH ̸= TH), SH and IH are closure operators of matroids, then ISH ⊆
IFH = IIH .

Remark 4.26 If SH, TH (TH ̸= FH) and IH are closure operators of matroids, then ISH =

ITH ⊆ IIH .

5. Conclusions

In this paper, we constructed three types of matroidal structures of covering-based rough

sets by indiscernible neighborhoods, neighborhoods and close friends, respectively and studied

some characteristics of these three types of matroid. We also studied the relationships between

these three types of matroid and these matroids induced by the six types of covering-based

upper approximation operators. Moreover, through our study, the relationships among these

matroids induced by the six types of covering-based upper approximation operators are attribute

to the relationships among three types of matroidal structures of covering-based rough sets. The

relationships among them are presented as follows
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When the following covering-based upper ap-

proximation operators are closure operators

The relationship among their indepen-

dence

FH and SH ISH ⊆ IFH

FH and TH IFH = ITH

FH and RH IRH = IFH

SH and TH ISH ⊆ ITH

SH and IH ISH ⊆ IIH

TH and IH ITH ⊆ IIH

IH and XH IIH = IXH

FH(FH ̸= TH), SH and IH ISH ⊆ IFH = IIH

SH, TH (TH ̸= FH) and IH ISH = ITH ⊆ IIH

Table 1 The relationships among the six types of covering-based upper approximation operators
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