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Abstract Let R be an (α, δ)-compatible ring. It is proved that R is a 2-primal ring if and only

if for every minimal prime ideal P in R[x;α, δ] there exists a minimal prime ideal P in R such

that P = P [x;α, δ], and that f(x) ∈ R[x;α, δ] is a unit if and only if its constant term is a unit

and other coefficients are nilpotent.
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1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring, End(R,+)

the ring of additive endomorphisms of R, and Φ a subset of End(R,+). According to Lam et

al. [1], an ideal I of R is said to be a Φ-ideal if φ(I) ⊆ I for all φ ∈ Φ, and a Φ-ideal P ̸= R

is called a Φ-prime ideal if for any Φ-ideals I and J such that IJ ⊆ P , we have either I ⊆ P

or J ⊆ P . Let Ω denote the multiplicative semigroup with unity generated in End(R,+) by Φ.

Obviously, an ideal I of R is a Φ-ideal if and only if I is an Ω-ideal, and so I is a Φ-prime ideal

if and only if I is an Ω-prime ideal. In some circumstance, one may assume that Φ additionally

satisfies (H1): Φ is closed under composition and idR ∈ Φ, i.e., Ω = Φ and (H2): For any a ∈ R,∑
φ∈Φ Rφ(a)R is a Φ-ideal of R. For instance, if α is an endomorphism and δ is an α-derivation

of R, i.e., δ is an additive endomorphism such that δ(ab) = δ(a)b + α(a)δ(b) for any a, b ∈ R,

then the multiplicative semigroup Φ with unity generated in End(R,+) by α and δ satisfies both

(H1) and (H2) (see [1, Example 1.3]). We denote by R[x;α, δ] the Ore extension whose elements

are all polynomials over R, the addition is defined as usual and the multiplication subject to the

relation xa = α(a)x + δ(a) for any a ∈ R. Ore extensions appear in several natural contexts,

including skew and differential polynomial rings, group algebras of polycyclic groups, universal

enveloping algebras of solvable Lie algebras, and coordinate rings of quantum groups. In the

sequel the set of nilpotent elements, the prime radical, the Jacobson radical of a ring R are

denoted by N(R), N∗(R), J(R), respectively. For a subset S of R, the symbol C(S) stands for

the complement of S in R.
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Let R be a ring, α an endomorphism, and δ an α-derivation of R. Following Annin [2], R

is said to be α-compatible in case ab = 0 ⇔ aα(b) = 0 for any a, b ∈ R. Similarly, a ring R

in [3] is called δ-compatible if ab = 0 implies aδ(b) = 0. Moreover, if R is both α-compatible and

δ-compatible, then it is said to be (α, δ)-compatible. A ring R is called reduced if N(R) = 0,

and R is called 2-primal if N(R) = N∗(R). Clearly, any reduced ring is a 2-primal ring. The

attraction of 2-primal rings lies in the structure of their prime ideals. It is well known that a

ring R is 2-primal if and only if every minimal prime ideal P of R is completely prime, i.e., R/P

is a domain [4]. More importantly, 2-primal rings provide a sort of bridge between commutative

and noncommutative ring theory [5]. Nasr-Isfahani [6] studied Ore extensions of 2-primal rings.

It is proved that if R is an (α, δ)-compatible ring, then R is a 2-primal ring if and only R[x;α, δ]

is a 2-primal ring if and only if every minimal (α, δ)-prime ideal in R is a completely prime ideal.

However the existing literature does not discuss the relationship between minimal prime ideals

in R and the ones in R[x;α, δ]. The main objective of this paper is to study this problem. It is

proved for an (α, δ)-compatible ring R that R is 2-primal ring if and only if for every minimal

prime ideal P in R[x;α, δ] there exists a minimal prime ideal P in R such that P = P [x;α, δ],

and that f(x) ∈ R[x;α, δ] is a unit if and only if its constant term is a unit and other coefficients

are nilpotent. It turns out that J(R[x;α, δ]) = N∗(R[x;α, δ]) and the stable range of R[x;α, δ]

is not equal to one.

2. Minimal prime ideals in 2-primal Ore extensions

Let R be a ring, α an endomorphism and δ an α-derivation of R. For integers i, j with

0 ≤ i ≤ j, we use the symbol f j
i ∈ End(R,+) to denote the map which is the sum of all possible

words in α, δ built with i letters α and j-i letters δ. For example, f0
0 = 1, f j

j = αj , f j
0 = δj ,

f j
j−1 = αj−1δ + αj−2δα+ · · ·+ δαj−1, and so forth [1].

Lemma 2.1 Let R be an (α, δ)-compatible ring and a1, a2, . . . , an in R. We have the following

(1) xnr =
∑n

i=0 f
n
i (r)x

i in R[x;α, δ] for any r ∈ R.

(2) a1a2 · · · an = 0 if and only if αk1(a1)α
k2(a2) · · ·αkn(an) = 0 for any integer ki ≥ 0.

(3) a1a2 · · · an = 0 implies f j1
i1
(a1)f

j2
i2
(a2) · · · f jn

in
(an) = 0.

Proof (1) It is true in any Ore extension by [1, Lemma 4.1]. (2) This is [7, Lemma 3.1]. (3) It

is a restatement of [8, Corollary 2.1]. �
Lemma 2.1(3) implies that if a1a2 · · · an = 0, then δk1(a1)δ

k2(a2) · · · δkn (an) = 0.

Let Φ ⊆ End(R,+) satisfy (H1) and (H2). A subset M of a ring R is called a Φ-m-system if

for any a, b ∈ M there exist φ1, φ2 ∈ Φ and r ∈ R such that φ1(a)rφ2(b) ∈ M . It is known that

a Φ-ideal P is a Φ-prime ideal if and only if C(P ) is a Φ-m-system [1].

Lemma 2.2 Any Φ-prime ideal P of a ring R contains a minimal Φ-prime ideal.

Proof We apply Zorn’s Lemma to the family of Φ-prime ideals contained in P . It suffices to

show that, for any chain of Φ-prime ideals {Pi|i ∈ I}, the intersection P ′ =
∩
Pi is a Φ-prime
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ideal. Clearly, P ′ is a Φ-ideal. Let a, b /∈ P ′. Then we have a /∈ Pi and b /∈ Pj for some i, j ∈ I.

If, say, Pi ⊆ Pj , then a, b /∈ Pi. Since Pi is a Φ-prime ideal, C(Pi) is a Φ-m-system. There exist

φ1, φ2 ∈ Φ and r ∈ R such that φ1(a)rφ2(b) /∈ Pi, and so φ1(a)rφ2(b) /∈ P ′. This means that

C(P ′) is a Φ-m-system, i.e., P ′ is a Φ-prime ideal. �
According to [9], an endomorphism α of a ring R is said to be rigid if aα(a) = 0 implies a = 0

for any a ∈ R, and a ring R in [10] is called α-rigid if there exists a rigid endomorphism α of R.

It is known by [9, Theorem 3.3] that if R is an α-rigid ring, then R[x;α, δ] is reduced.

Recall that if f : R → S is an epimorphism of rings with kernel K, then there exists a

one-to-one correspondence between the set of all prime ideals in R that contain K and the set of

all prime ideals in S, given by P 7→ f(P ). In particular, P is a minimal prime ideal containing

K in R if and only if f(P ) is a minimal prime ideal is S.

Lemma 2.3 If R is a 2-primal (α, δ)-compatible ring and P a minimal prime ideal of R, then

α(P ), α−1(P ), and δ(P ) are all contained in P . Thus α induces an endomorphism ᾱ, and δ

induces an ᾱ-derivation δ̄ of R = R/P via ᾱ(ā) = α(a), δ̄(ā) = δ(a) for any a ∈ R. Moreover

the ring R is an ᾱ-rigid ring, and so it is an (ᾱ, δ̄)-compatible ring.

Proof The Hypothesis implies N(R) = N∗(R), and so R/N∗(R) is a reduced ring. Let R̂ =

R/N∗(R) and r̂ = r+N(R) for any r ∈ R. Define α̂, δ̂: R → R via α̂(â) = α̂(a), and δ̂(â) = δ̂(a),

respectively for any a ∈ R. Lemma 2.1 and the (α, δ)-compatibility of R imply that N∗(R) is

an (α, δ)-ideal, so α̂ and δ̂ make sense. It is easy to check that α̂ is an ring endomorphism and

δ̂ is an α̂-derivation of R̂. We claim that R̂ is an α̂-rigid ring. To see this, let âα̂(â) = 0̂ for any

a ∈ R. Then we have âα̂(a) = 0̂ = âα(a). This means aα(a) ∈ N∗(R), and so a2 ∈ N∗(R) by

Lemma 2.1(2). It yields that a ∈ N∗(R) since R is a 2-primal ring, i.e., â = 0̂, as required. Since

P is a minimal prime ideal of R, P̂ is a minimal prime ideal in the reduced ring R̂. It follows

that α̂(P̂ ), α̂−1(P̂ ) ⊆ P̂ by [9, Lemma 3.2]. This implies that α(P ) and α−1(P ) are contained in

P . It is proved in [9, Theorem 3.3, p.295] that if R is an α-rigid ring and Q is a minimal prime

ideal of R, then one has δ(Q) ⊆ Q. Using this fact, we have δ̂(P̂ ) ⊆ P̂ . This implies δ(P ) ⊆ P .

Moreover, [11, Lemma 4] implies that R̂ is an (α̂, δ̂)-compatible ring. Finally, let R = R/P .

Because α(P ) and δ(P ) are in P , ᾱ and δ̄, as defined in Lemma 2.3, make sense. Applying the

fact that P is a completely prime ideal in R, and α−1(P ) ⊆ P , it is easily proved that R is an

ᾱ-rigid ring, and so it is an (ᾱ, δ̄)-compatible ring by [11, Lemma 4]. �
Combining Lemma 2.3 with Lemma 2.1(1), it can be concluded that if P is a minimal prime

ideal of a 2-primal (α, δ)-compatible ring R, then P [x;α, δ] is an ideal of R[x;α, δ].

Lemma 2.4 If R is a reduced (α, δ)-compatible ring, then an ideal P of R is a minimal prime

ideal if and only if P is a minimal (α, δ)-prime ideal.

Proof Assume that P is a minimal prime ideal of R. Then P is an (α, δ)-ideal by Lemma 2.3,

and P is also a completely prime ideal since a reduced ring is 2-primal. Thus for any a, b /∈ P ,

we have ab /∈ P . This means α(a)1α(b) = α(ab) /∈ P by Lemma 2.3. Let Φ be the multiplicative

semigroup with unity generated in End(R,+) by α and δ. The above argument implies that
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C(P ) is a Φ-m-system. Hence P is a Φ-prime ideal, i.e., P is an (α, δ)-prime ideal. If P is not

minimal, then there exists a minimal (α, δ)-prime ideal P ′ ⊂ P . Now [6, Lemma 2.7] implies

that P ′ is a completely prime ideal, this contradicts the minimality of P . Conversely, assume

that P is a minimal (α, δ)-prime ideal of R. Then P is a completely prime ideal by [6, Lemma

2.7]. If P is not a minimal prime ideal, then there exists a minimal prime ideal P ′ ⊂ P . On

the other hand, the above argument implies that P ′ is a minimal (α, δ)-prime ideal, an obvious

contradiction. �

Lemma 2.5 If R is a reduced (α, δ)-compatible ring, then P is a minimal prime ideal in

R[x;α, δ] if and only if there exists a minimal prime ideal P in R such that P = P [x;α, δ].

Proof First we show that R is an α-rigid ring. For any a ∈ R, if aα(a) = 0 then we have

a2 = 0 by Lemma 2.1(2), this gives a = 0 since R is reduced. It follows that R[x;α, δ] is a

reduced ring by [9, Theorem 3.3]. Assume that P is a minimal prime ideal in R[x;α, δ]. Then

P is a completely prime ideal by [4, Proposition 1.11]. Let P ′ = R
∩

P. It is easy to see

that P ′ is an ideal of R. If a, b ∈ P ′ satisfy ab ∈ P ′, then ab ∈ P, and so a ∈ P or b ∈ P.

This implies that P ′ is a completely prime ideal of R. There exists a minimal prime ideal P

of R such that P ⊆ P ′ and R/P is a domain. We claim that P = P [x;α, δ]. In fact, from

Lemmas 2.1(1) and 2.3, there is no difficulty to check that P [x;α, δ] is an ideal of R[x;α, δ].

By Lemma 2.3, R = R/P is an (ᾱ, δ̄)-compatible ring, and so R[x; ᾱ, δ̄] makes sense, where

the meaning of ᾱ and δ̄ are the same as in Lemma 2.3. Now we define a ring epimorphism

ϱ : R[x;α, δ] → R[x; ᾱ, δ̄] via ϱ(a0 + a1x + · · · + anx
n) = ā0 + ā1x + · · · + ānx

n. Clearly, ϱ

is an additive map. For any f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j ∈ R[x;α, δ], then one has

f(x)g(x) =
∑m+n

k=0 (
∑

s+t=k(
∑m

i=s aif
i
s(bt)))x

k (see [8, p.704]) from which it is easy to check

ϱ(f(x)g(x)) = ϱ(f(x))ϱ(g(x)). Observing kerϱ = P [x;α, δ], there exists a ring isomorphism

R[x;α, δ]/P [x;α, δ] ∼= R[x; ᾱ, δ̄]. Since the right hand side is a domain (cf. Corollary 3.3), we

conclude that P [x;α, δ] is a completely prime ideal of R[x;α, δ]. On the other hand, since P ⊆ P,

it is easy to see P [x;α, δ] ⊆ P, and thus P = P [x;α, δ] by the minimality of P.

Conversely, assume that P is a minimal prime ideal of R. Then P [x;α, δ] is a completely

prime ideal by the argument of the above paragraph. We claim that P [x;α, δ] is a minimal

prime ideal of R[x;α, δ]. Otherwise, there exists a minimal prime ideal P in R[x;α, δ] such that

P ⊂ P [x;α, δ]. Similarly to the proof in the above paragraph, there exists a minimal prime ideal

P ′ in R such that P = P ′[x;α, δ]. This means P ′[x;α, δ] ⊂ P [x;α, δ]. Thus we have P ′ ⊂ P ,

contradicting the minimality of P . This completes the proof. �

Theorem 2.6 If R is a 2-primal (α, δ)-compatible ring, then P is a minimal prime ideal in

R[x;α, δ] if and only if there exists a minimal prime ideal P in R such that P = P [x;α, δ].

Proof The hypothesis implies thatR[x;α, δ] is a 2-primal ring by [6, Theorem 2.10]. Assume that

P is a minimal prime ideal in R[x;α, δ]. Clearly, in R[x;α, δ]/N∗(R[x;α, δ]), P is a minimal

prime ideal. Since R[x;α, δ] is a 2-primal ring, one has N∗(R[x;α, δ]) = N∗(R)[x;α, δ] by [6,

Corollary 2.11]. In view of the proof in Lemma 2.3, α induces an endomorphism via α̂(â) = α̂(a),
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and δ induces an α̂-derivation of the reduced ring R̂ = R/N∗(R) via δ̂(â) = δ̂(a) for any a ∈ R,

such that R̂ is an (α̂, δ̂)-compatible ring. The canonical ring homomorphism π : R[x;α, δ] →
R/N∗(R)[x; α̂, δ̂] via a0+a1x+ · · ·+anx

n 7→ â0+ â1x+ · · ·+ ânx
n with ker(π) = N∗(R)[x;α, δ] =

N∗(R[x;α, δ]) induces a ring isomorphism ρ: R[x;α, δ]/N∗(R[x;α, δ]) ∼= R/N∗(R)[x; , α̂, δ̂]. Thus

ρ(P) is a minimal prime ideal in R/N∗(R)[x; α̂, δ̂], and so there exists minimal prime ideal P of

R such that ρ(P) = P/N∗(R)[x; α̂, δ̂] by Lemma 2.5. This means P = P [x;α, δ]/N∗(R[x;α, δ])

by the virtue of ρ, i.e., P = P [x;α, δ].

For the converse, suppose that P is a minimal prime ideal of R. Then P̂ is a minimal prime

ideal of the reduced ring R̂ = R/N∗(R), and so P̂ [x; α̂, δ̂] is a minimal prime ideal in R̂[x; α̂, δ̂] by

Lemma 2.5. From the ring isomorphism ρ, we know that P [x;α, δ]/N∗(R[x;α, δ]) is a minimal

prime ideal in R[x;α, δ]/N∗(R[x;α, δ]). This means that P [x;α, δ] is a minimal prime ideal in

R[x;α, δ]. The proof is completed. �

Corollary 2.7 If R is a 2-primal (α, δ)-compatible ring and Pi (i ∈ Λ) are all minimal prime

ideals of R, then N∗(R[x;α, δ]) =
∩

i∈Λ Pi[x;α, δ].

Proof It is a direct consequence of Lemma 2.2 and Theorem 2.6. �

Corollary 2.8 Let R be an (α, δ)-compatible ring. Then R[x;α, δ] is a 2-primal ring if and only

if for every minimal prime ideal P in R[x;α, δ] there exists a minimal prime ideal P in R such

that P = P [x;α, δ].

Proof The only if part follows by Theorem 2.6. Conversely, for any minimal prime ideal P in

R[x;α, δ], then P = P [x;α, δ] for some minimal prime ideal P in R by hypothesis. This means

that R[x;α, δ]/P ∼= R/P [x; ᾱ, δ̄] is a domain, and so P is a completely prime ideal. It follows

that R[x;α, δ] is a 2-primal ring by [4, Proposition 1.11]. �

3. Units in 2-primal Ore extensions

The main objective of this section is to determine all units in Ore extensions of 2-primal

(α, δ)-compatible rings, generalizing the main results on 2-primal polynomial rings in [12].

Lemma 3.1 Let R be a reduced (α, δ)-compatible ring. If f(x) = a0+a1x+ · · ·+amxm, g(x) =

b0 + b1x + · · · + bnx
n ∈ R[x;α, δ] satisfy f(x)g(x) = c ∈ R, then a0b0 = c and aibj = 0 for

i+ j > 0.

Proof First we claim that all aibj = 0 for i+j > 0. Assume this is not true. Then we can choose

f(x) =
∑m

i=0 aix
i, g(x) =

∑n
j=0 bjx

j with m + n minimal such that f(x)g(x) = c ∈ R but the

conclusions of the claim are not satisfied. The case of m+ n = 0 obviously gives a contradiction

and hence we may suppose that m + n > 0. The leading coefficient amαm(bn) = 0 of f(x)g(x)

and the (α, δ)-compatibility show that ambn = 0, and hence bnam = 0, since R is reduced. This

leads to bnf(x)g(x) = bnc and by the minimality of the degree of the counter-example. It can

be concluded that this cannot be a counter-example so that for any i, j such that i + j > 0
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we have bnaibj = 0 and so (bnai)
2 = 0. Since R is reduced, we get aibn = 0 for i > 0. The

(α, δ)-compatibility leads to aix
ibn = 0, in other words f(x)(g(x)− bnx

n) = c. The minimality

of m + n as the degree of a counter-example leads to the conclusion. This proves the claim.

Now applying the formula in [8, p.704], we have f(x)g(x) =
∑m+n

k=0 (
∑

s+t=k(
∑m

i=s aif
i
s(bt)))x

k.

Let ck =
∑

s+t=k(
∑m

i=s aif
i
s(bt)). Then c0 = a0f

0
0 (b0) + a1f

1
0 (b0) + · · · + amfm

0 (b0). The claim

implies a1b0 = · · · = amb0 = 0, and so a1f
1
0 (b0) = · · · = amfm

0 (b0) = 0 by Lemma 2.1(3). Thus

we conclude that c0 = a0b0 = f(x)g(x) = c, as desired. �

The next two corollaries are the direct results of Lemma 3.1.

Corollary 3.2 An (α, δ)-compatible ring R is a domain if and only if R[x;α, δ] is a domain.

Corollary 3.3 Let R be a reduced (α, δ)-compatible ring. If f(x) = a0 + a1x+ · · ·+ amxm is

a unit in R[x;α, δ], then a0 is a unit and ai = 0 for all i ≥ 1.

Theorem 3.4 If R is a 2-primal (α, δ)-compatible ring, then f(x) ∈ R[x;α, δ] is a unit if and

only if its constant term is a unit in R and other coefficients are nilpotent.

Proof Since R is 2-primal and (α, δ)-compatible, R[x;α, δ] is a 2-primal ring and N∗(R[x;α, δ])

= N∗(R)[x;α, δ] by [6, Corollary 2.11]. With help of the proof in Lemma 2.3, we know that

R̂ = R/N∗(R) is a reduced (α̂, δ̂)-compatible ring where α̂(â) = α̂(a), δ̂(â) = δ̂(a) for any a ∈ R.

There exists a ring homomorphism R[x;α, δ] → R̂[x; α̂, δ̂] via f(x) = a0 + · · ·+ amxm → f̂(x) =

â0+· · ·+ âmxm. If f(x) ∈ R[x;α, δ] is a unit, then f̂(x) is a unit in R̂[x; α̂, δ̂]. Applying Corollary

3.3, â0 is a unit and âi = 0̂ for each i ≥ 1, and so a0 is a unit in R and ai is nilpotent for i ≥ 1.

The converse is clear, since f(x) is a sum of a unit and an element in N∗(R[x;α, δ]). �

Theorem 3.5 If R is a 2-primal (α, δ)-compatible ring, then J(R[x;α, δ]) = N∗(R[x;α, δ]).

Proof Let f(x) = a0 + a1x+ · · ·+ amxm ∈ J(R[x;α, δ]). Then 1+ f(x)x is a unit, this implies

ai ∈ N∗(R) for all i ≥ 0 by Theorem 3.4. Thus we have f(x) ∈ N∗(R[x;α, δ]) by [6, Corollary

2.11], and so J(R[x;α, δ] ⊆ N∗(R[x;α, δ])). The reverse inclusion is clearly. �

A ring R is said to have stable range one, denoted by Sr(R) = 1, if for any a, b ∈ R whenever

aR+ bR = R, there exists r ∈ R such that a+ br is a unit. It is known that R has stable range

one if and only if so does R/I for any ideal I ⊆ J(R) (see [13, pp.319–321]).

Theorem 3.6 If R is a reduced (α, δ)-compatible ring, then Sr(R[x;α, δ]) ̸= 1.

Proof Assume the conclusion does not hold. Then x(−x)+ 1+x2 = 1 implies that there exists

f(x) ∈ R[x;α, δ] such that x+(1+x2)f(x) = u(x) is a unit. Write f(x) = a0+a1x+ · · ·+anx
n.

If n = 0, then x+ a0 + x2a0 is a unit. Applying Lemma 2.1, we have x2a0 = f2
0 (a0) + f2

1 (a0)x+

f2
2 (a0)x

2. Thus u(x) = a0 + f2
0 (a0) + (1 + f2

1 (a0))x + α2(a0)x
2 is a unit. By Corollary 3.3,

we have α2(a0) = 0, and so a0 = 0 by the α-compatibility of R. This means 1 is nilpotent,

a contradiction. Thus we may assume that n ≥ 1 and an ̸= 0. Now the leading coefficient of

u(x) = x+ f(x) + x2f(x) is α2(an). Since u(x) is a unit, we have α2(an) = 0 by Corollary 3.3,
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and thus an = 0 by the α-compatibility of R, which is a desired contradiction. �

Corollary 3.7 If R is a 2-primal (α, δ)-compatible ring, then Sr(R[x;α, δ]) ̸= 1.

Proof By hypothesis, R̂ = R/N∗(R) is a reduced ring. Define α̂, δ̂: R̂ → R̂ via α̂(â) = α̂(a),

and δ̂(â) = δ̂(a), respectively, for any a ∈ R. Then α̂ is an endomorphism and δ̂ is an α̂-

derivation of R̂ such that R̂ is an α̂-rigid ring by the proof of Lemma 2.3. This means that R̂

is an (α̂, δ̂)-compatible ring by [11, Lemma 4], and so R̂[x; α̂, δ̂] is a reduced ring by [9, Theorem

3.3]. Since there exists a canonical ring isomorphism R[x;α, δ]/N∗(R)[x;α, δ] ∼= R̂[x; α̂, δ̂], and

N∗(R)[x;α, δ] = N∗(R[x;α, δ]) (see [6, Corollary 2.11]), we conclude that Sr(R[x;α, δ]) ̸= 1 by

Theorem 3.6. This completes the proof of the corollary. �
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