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Abstract In this paper, the authors obtain the existence of one-signed periodic solutions of the

first-order functional difference equation

∆u(n) = a(n)u(n)− λb(n)f(u(n− τ(n))), n ∈ Z

by using global bifurcation techniques, where a, b : Z → [0,∞) are T -periodic functions with∑T
n=1 a(n) > 0,

∑T
n=1 b(n) > 0; τ : Z → Z is T -periodic function, λ > 0 is a parameter;

f ∈ C(R,R) and there exist two constants s2 < 0 < s1 such that f(s2) = f(0) = f(s1) = 0,

f(s) > 0 for s ∈ (0, s1) ∪ (s1,∞), and f(s) < 0 for s ∈ (−∞, s2) ∪ (s2, 0).

Keywords one-signed periodic solutions; existence; functional difference equations; bifurcation

from infinity
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1. Introduction

Let T be a positive integer, R denote the real number set, and Z be the integer set.

In this paper, we investigate the existence of one-signed periodic solutions of the following

functional difference equation

∆u(n) = a(n)u(n)− λb(n)f(u(n− τ(n))), n ∈ Z, (1.1)

where a, b : Z → [0,∞) are T -periodic functions with
∑T

n=1 a(n) > 0,
∑T

n=1 b(n) > 0, τ : Z → Z
is T -periodic function, λ > 0 is a parameter. In recent years, there has been considerable interest

in the existence of positive solutions of the following differential equation

x′(t) = ã(t)x(t)− λb̃(t)f̃(x(t− τ(t))), (1.2)

where ã, b̃ ∈ C(R, [0,∞)) are ω-periodic functions with
∫ ω

0
ã(t)dt > 0,

∫ ω

0
b̃(t)dt > 0, τ is a contin-

uous ω-periodic function, λ > 0 is a parameter. (1.2) has been proposed as a model for a variety

of physiological processes and conditions including production of blood cells, respiration, and
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cardiac arrhythmias. Thus, the existence of periodic solutions of first-order differential equations

and first-order difference equations has been discussed by many authors, see, for example [1–12]

and the references therein.

Recently, Raffoul [11] dealt with the equation (1.1), determined values of λ for which there

exist T -periodic positive solutions by using Krasnosel’skii’s fixed point theorem under the as-

sumptions:

(H1) f ∈ C([0,∞), [0,∞)), and f(s) > 0 for s > 0.

(H2) a, b : Z → [0,∞) are T -periodic functions with
∑T

n=1 a(n) > 0,
∑T

n=1 b(n) > 0,

τ : Z → Z is T -periodic function.

(H3) There exist f0, f∞ ∈ (0,∞), such that

f0 = lim
|s|→0

f(s)

s
, f∞ = lim

|s|→∞

f(s)

s
.

He proved the following

Theorem 1.1 ([11]) Assume that (H1)–(H3) hold and λ satisfies

1

σBf∞
< λ <

1

Cf0
or

1

σCf0
< λ <

1

Bf∞
.

Then the equation (1.1) has a positive periodic solution. Here

C = max
n∈Z

T−1∑
s=0

G̃(n, s)b(s), B = min
n∈Z

T−1∑
s=0

G̃(n, s)b(s), σ =
T∏

i=1

(1 + a(i))−1.

In 2011, by using the Dancer global bifurcation theorem, Ma et al. [12] studied the positive

periodic solution of the following generalized form of (1.1)

∆u(n) = a(n)g(u(n))u(n)− λb(n)f(u(n− τ(n))), n ∈ Z, (1.3)

under the assumptions (H1), (H2) and g satisfies

(A1) g ∈ C([0,∞), [0,∞)), and there exist positive constants l, L, such that 0 < l ≤ g ≤
L < ∞.

They obtained the following

Theorem 1.2 ([12]) Let (H1), (H2) and (A1) hold. Assume that

(A2) There exist f0, f
¯∞

, f̄∞ ∈ (0,∞) such that

f
¯∞

= lim inf
s→∞

f(s)

s
, f̄∞ = lim sup

|s|→∞

f(s)

s
.

Then the equation (1.3) has a positive T -periodic solution if either

λ⋄(L)

f
¯∞

< λ <
λ⋄(g(0))

f0
or

λ⋄(g(0))

f0
< λ <

λ⋄(l)

f̄∞ ,

where λ⋄(c) is the first eigenvalue of the linear eigenvalue problem

∆u(n) = ca(n)u(n)− λb(n)f(u(n− τ(n))), n ∈ Z

and c is a positive constant.
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However, Raffoul [11] and Ma [12] only focused their attentions on the fact that f(s) > 0,

s ∈ (0,∞). Of course, the natural question is what would happen if f is allowed to have some

zeros in R \{0}? But it is a difficult job to study the global behavior of the components of nodal

solutions of (1.3) under the condition:

(H4) f ∈ C(R,R), there exist two constants s2 < 0 < s1 such that f(s2) = f(0) = f(s1) = 0,

f(s) > 0 for s ∈ (0, s1) ∪ (s1,∞), f(s) < 0 for s ∈ (−∞, s2) ∪ (s2, 0).

Moreover, we know from the proof of Theorem 1.2 that the assumptions (H1), (H2), (A1)

and (A2) imply that the component from the trivial solution at (λ
⋄(c)
f0

, 0)p and the component

from infinity at (λ
⋄(c)
f∞

,∞)p are coincident (notice that we use (λ
⋄(c)
f0

, 0)p and (λ
⋄(c)
f∞

, ∞)p to

denote the ‘ point ’ in some product spaces, and use (a, b) to denote the usual open interval in

this work). However, in Section 2, we will prove that these two components are disjoint under

the assumptions (H2)–(H4), in which the essential role is played by the fact whether f possesses

zeros in R \ {0}.
Therefore, in this paper, we are devoted to studying the global behavior of the components

of one-signed solutions of (1.1) under the condition (H4), and our main results are sharp.

The rest of this paper is organized as follows: in Section 2, we give some notations and the

main results. In Section 3, we are devoted to proving the main results, and we illustrate the

results with an appropriate example.

2. Statement of the main results

Let

E = {u : Z → R |u(n+ T ) = u(n)}

be the Banach space with the norm ∥u∥ = maxn∈T |u(n)|, where T = {0, 1, . . . , T − 1}.
By a positive solution of (1.1) we mean a pair (λ, u), where λ > 0 and u is a solution of (1.1)

with u > 0 in Z.
It is well known that (1.1) is equivalent to

u(n) = λ

n+T−1∑
s=n

G(n, s)b(s)f(u(s− τ(s))) =: (Au)(n), n ∈ Z, (2.1)

where

G(n, s) =

∏s
i=n(1 + a(i))−1

1−
∏T

i=1(1 + a(i))−1
, s ∈ {n, n+ 1, . . . , n+ T}. (2.2)

Notice that 0 <
∏T

i=1(1 + a(i))−1 < 1, we have that

σ

1− σ
≤ G(n, s) ≤ 1

1− σ
.

Define K be a cone in E by

K = {u ∈ E |u(n) ≥ 0, u(n) ≥ σ∥u∥}.

Proposition 2.1 A(K) ⊂ K, and A : K → K is completely continuous.
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Proof For any u ∈ K, it follows that

∥Au∥ = max
n∈Z

Au(n) = max
n∈Z

λ

n+T−1∑
s=n

G(n, s)b(s)f(u(s− τ(s)))

≤ λ

1− σ

n+T−1∑
s=n

b(s)f(u(s− τ(s))),

Au(n) = λ
n+T−1∑
s=n

G(n, s)b(s)f(u(s− τ(s)))

≥ λσ

1− σ

n+T−1∑
s=n

b(s)f(u(s− τ(s))) ≥ σ∥Au∥.

So A(K) ⊂ K. By Areza-Ascoli theorem, A : K → K is completely continuous. �
Next, let us consider the spectrum of the linear eigenvalue problem

∆u(n) = a(n)u(n)− λb(n)u(n− τ(n)), n ∈ Z. (2.3)

Lemma 2.2 Assume that (H2) holds. Then the equation (2.3) has a unique eigenvalue λ1,

which is positive and simple, and the corresponding eigenfunction φ(·) is of one sign.

Proof The equation (2.3) is equivalent to

u(n) = λ
n+T−1∑
s=n

G(n, s)b(s)u(s− τ(s)) =: (T u)(n), n ∈ Z.

By the same method as the one used to prove Proposition 2.1, it is easy to prove that T is

a strong positive operator. By the Krein-Rutman Theorem [13, Theorem 19.3], the spectrum

radius r(T ) > 0 and subsequently, the problem (2.3) has a unique eigenvalue λ1, which is positive

and simple, and the corresponding eigenfunction φ(·) is of one sign. �
Define L : E → E by setting

(Lu)(n) := −∆u(n) + a(n)u(n), u ∈ E. (2.4)

It is easy to verify that
∑T

n=1 a(n) = 0 is a resonant condition, so
∑T

i=1 a(i) > 0 is sufficient to

prove that L−1 exists. This together with Proposition 2.1 leads to L−1 : E → E is compact and

continuous.

Let ζ, ξ ∈ C(R, R) be such that

f(s) = f0s+ ζ(s), f(s) = f∞s+ ξ(s). (2.5)

Clearly,

lim
|s|→0

ζ(s)

s
= 0, lim

|s|→∞

ξ(s)

s
= 0. (2.6)

Let us consider

Lu(n)− λb(n)f0u(n− τ(n)) = λb(n)ζ(u(n− τ(n))) (2.7)

as a bifurcation problem from the trivial solution u ≡ 0, and

Lu(n)− λb(n)f∞u(n− τ(n)) = λb(n)ξ(u(n− τ(n))) (2.8)
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as a bifurcation problem from infinity. We note that (2.7) and (2.8) are the same, and each of

them is equivalent to (1.1).

Let E = R×E under the product topology. We add the points {(λ,∞)p |λ ∈ R} to our space

E. Let S+ denote the set of positive functions in E and S− = −S+, and S = S− ∪ S+. They

are disjoint and open in E. Finally, let Φ± = R× S± and Φ = R× S.

Remark 2.3 It is worth remarking that if u is a nontrivial solution of (1.1) and a, b and f

satisfy (H2)–(H4), then u ∈ Sν for some ν = {+,−}. To see this, define

q(n) =

{
f(u(n))
u(n) , u(n) ̸= 0,

f0, u(n) = 0.

Thus the equation (1.1) is equivalent to

∆u(n) = a(n)u(n)− λb(n)q(n− τ(n))u(n− τ(n)), n ∈ Z. (2.9)

Obviously, b(·)q(· − τ(·)) satisfies (H2). It follows from Lemma 2.2 that the nontrivial solution

u ∈ Sν for some ν ∈ {+, −}. �
The result of Rabinowitz [14] for (2.7) can be stated as follows: for each ν ∈ {+,−}, there

exists a continuum Cν of solutions of (2.7) joining (λ1

f0
, 0)p to infinity, and Cν\{(λ1

f0
, 0)p} ⊂ Φν .

The result of Rabinowitz [15] for (2.8) can be stated as follows: for each ν ∈ {+,−}, there
exists a continuum Dν of solutions of (2.8) meeting ( λ1

f∞
,∞)p, and Dν\{( λ1

f∞
,∞)p} ⊂ Φν .

Our main results are

Theorem 2.4 Assume that (H2)–(H4) hold, and let

(H5) f satisfies the Lipschitz condition in [s2, s1].

Then

(i) For (λ, u) ∈ C+ ∪ C−, s2 < u(n) < s1, n ∈ T;
(ii) For (λ, u) ∈ D+ ∪ D−, we have that either maxn∈T u(n) > s1 or minn∈T u(n) < s2.

Corollary 2.5 Let (H2)–(H5) hold. If f0 < f∞, then

(i) If λ ∈ ( λ1

f∞
, λ1

f0
], then (1.1) has at least two solutions u+

∞ and u−
∞, such that u+

∞ is positive

on T and u−
∞ is negative on T;

(ii) If λ ∈ (λ1

f0
,∞), then (1.1) has at least four solutions u+

∞, u−
∞, u+

0 , and u−
0 , such that u+

∞,

u+
0 are positive on T and u−

∞, u−
0 are negative on T.

Corollary 2.6 Let (H2)–(H5) hold. If f∞ < f0, then

(i) If λ ∈ (λ1

f0
, λ1

f∞
], then (1.1) has at least two solutions u+

0 and u−
0 , such that u+

0 is positive

on T and u−
0 is negative on T;

(ii) If λ ∈ ( λ1

f∞
,∞), then (1.1) has at least four solutions u+

∞, u−
∞, u+

0 , and u−
0 , such that

u+
∞, u+

0 are positive on T and u−
∞, u−

0 are negative on T.

3. Proof of the main results

To prove Theorem 2.4, we need the following proposition.
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Proposition 3.1 (i) The discrete first-order boundary value problem

∆u(n)− a(n)u(n) + h(n) = 0, n ∈ T, u(0) = u(T ) (3.1)

has a unique solution for all h ∈ l1(0, T ) if and only if
∏T−1

i=0 (1 + a(i)) ̸= 1.

(ii) Let
T−1∏
i=0

(1 + a(i)) > 1 hold. If h ≥ 0 and h(·) ̸≡ 0 on T, then the solution u of (3.1) is

positive on T.

Proof (i) The equation ∆u(n) − a(n)u(n) = 0 has a solution u(n) = C
∏n−1

i=0 (1 + a(i)), where

C is a constant. If u(n) is a nontrivial solution, then by u(0) = C, u(T ) = C
∏T−1

i=0 (1+ a(i)), we

deduce that
∏T−1

i=0 (1 + a(i)) = 1.

On the other hand, from
∏T−1

i=0 (1 + a(i)) = 1, we can get that ∆u(n) − a(n)u(n) = 0 has a

nontrivial solution u(n) = C
∏n−1

i=0 (1 + a(i)), where C ∈ R \ {0}.
(ii) The difference equation (3.1) can be rewritten to the form

u(n+ 1)
n∏

i=0

(1 + a(i))−1 − u(n)
n−1∏
i=0

(1 + a(i))−1 +
n∏

i=0

(1 + a(i))−1h(n) = 0.

By summing the above equation from s = n to s = n+ T − 1 we obtain

u(n) =
n+T−1∑
s=n

G(n, s)h(s).

Since
∏T−1

i=0 (1 + a(i)) > 1, it follows that G(n, s) > 0, s ∈ {n, n + 1, . . . , n + T}. If h ≥ 0 and

h(·) ̸≡ 0 on T, then u(n) > 0 on T. �

Proof of Theorem 2.4 Suppose on the contrary that there exists (λ, u) ∈ C+ ∪C− ∪D+ ∪D−

such that either

max{u(n) |n ∈ T} = s1,

or

min{u(n) |n ∈ T} = s2.

We divide the proof into two cases.

Case 1 max{u(n) |n ∈ T} = s1.

In this case, we know that

0 ≤ u(n) ≤ s1, 0 ≤ u(n− τ(n)) ≤ s1, n ∈ T.

Let us consider the equation (1.1). By (H2), (H4) and (H5), there exists m ≥ 0 such that

b(n)f(s) +ms is strictly increasing in s for s ∈ [s2, s1]. Then (1.1) can be rewritten to the form

Lu+ λmu(n− τ(n)) = λ[b(n)f(u(n− τ(n))) +mu(n− τ(n))]

since Ls1 − a(n)s1 = 0 = f(s1),

Ls1 − a(n)s1 + λms1 = λ[b(n)f(s1) +ms1].
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Subtracting, it follows that

L(s1 − u) + λm(s1 − u(n− τ(n)))− a(n)s1 ≥ 0,

i.e.,

L(s1 − u) + λms1 ≥ 0, n ∈ T

and

s1 − u(0) = s1 − u(T ) > 0.

From Proposition 3.1, we deduce that s1 > u(n), n ∈ T, which contradicts max{u(n) |n ∈ T} =

s1. Hence,

u(n) < s1, n ∈ T.

Case 2 min{u(n) |n ∈ T} = s2.

In this case, we know that

s2 ≤ u(n) ≤ 0, s2 ≤ u(n− τ(n)) ≤ 0, n ∈ T.

Let us consider the equation (1.1). By (H2), (H4) and (H5), there exists m ≥ 0 such that

b(n)f(s) +ms is strictly increasing on s for s ∈ [s2, s1]. Then we have

Lu+ λmu(n− τ(n)) = λ[b(n)f(u(n− τ(n))) +mu(n− τ(n))]

and since Ls2 − a(n)s2 = 0 = f(s2), we have

Ls2 − a(n)s2 + λms2 = λ[b(n)f(s2) +ms2].

Subtracting, we get that

L(s2 − u) + λm(s2 − u(n− τ(n)))− a(n)s2 ≤ 0,

i.e.,

L(s2 − u) + λms2 ≤ 0, n ∈ T

and

s2 − u(0) = s2 − u(T ) < 0.

From Proposition 3.1, we deduce that s2−u(n) < 0, n ∈ T, this contradicts min{u(n) |n ∈ T} =

s2. Therefore, s2 < u(n), n ∈ T. �
Next, we prove Corollaries 2.5 and 2.6.

Proof of Corollaries 2.5 and 2.6 Since boundary value problem

−∆u(n) + a(n)u(n) = 0, u(0) = u(T ) (3.2)

has a unique solution u ≡ 0, we get

(C+ ∪ C− ∪ D+ ∪ D−) ⊂ {(λ, u)p ∈ R× E |λ ≥ 0}.

Take Λ ∈ R as an interval such that Λ ∩ { λ1

f∞
} = { λ1

f∞
} and M is a neighborhood of ( λ1

f∞
, ∞)p

whose projection on R lies in Λ and whose projection on E is bounded away from 0. Then

by [15, Theorem 1.6 and Corollary 1.8], we have that for each ν ∈ {+, −}, either
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(1) Dν \M is bounded in R× E in which case Dν \M meets {(λ, 0)p |λ ∈ R}, or
(2) Dν \M is unbounded.

Moreover, if (1) occurs and Dν \M has a bounded projection on R, then Dν \M meets ( λk

f∞
, ∞)p

where λk ̸= λ1 is another eigenvalue of (2.3).

Obviously, Theorem 2.4 (ii) implies that (1) does not occur. So D+ \M is unbounded.

Remark 2.3 guarantees that D+ is a component of solutions of (2.8) in S+ which meets

( λ1

f∞
, ∞)p, and consequently ProjR(D+ \M) is unbounded. Thus

ProjR(D+) ⊃ (
λ1

f∞
,+∞). (3.3)

Similarly, we get

ProjR(D−) ⊃ (
λ1

f∞
,+∞). (3.4)

By Theorem 2.4, for any (λ, u) ∈ (C+ ∪ C−),

∥u∥ < max{s1, |s2|} := s∗. (3.5)

(3.5) and (2.7) imply that

∥u∥ < max{s∗, ∥a∥∞s∗ + λ∥b∥∞ max
|s|≤s∗

|f(s)|},

which means that the sets {(λ, u) ∈ C+ |λ ∈ [0, d]} and {(λ, u) ∈ C− |λ ∈ [0, d]} are bounded

for any fixed d ∈ (0, ∞). This together with the fact that C+ and C− join (λ1

f0
, 0)p to infinity

yields respectively that

ProjR(C+) ⊃ (
λ1

f0
,+∞) (3.6)

and

ProjR(C−) ⊃ (
λ1

f0
,+∞). (3.7)

Combining (3.3), (3.4), (3.6) and (3.7), we conclude the desired results. �

Remark 3.2 The methods used in the proof of Theorem 2.4, Corollaries 2.5 and 2.6 have been

used in the study of other kinds of boundary value problems, see [16–18] and the references

therein.

Remark 3.3 The conditions in Corollaries 2.5 and 2.6 are sharp. Let us take

a(n) ≡ a > 0, λ = a, b(n) = 1, f(s) = s+ h(s), τ(n) ≡ 0.

Let

h(s) =

 − 2s
s2+1 , s ∈ (−∞,−1) ∪ (1,+∞),

− 2s3

s2+1 , s ∈ [−1, 1],

and consider problem

∆u(n) = a(n)u(n)− a[u(n) + h(u(n))], n ∈ T, u(0) = u(T ). (3.8)
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It is easy to see that λ1 = a, f0 = f∞ = 1. Since

λ1

f∞
= a =

λ1

f0
,

the conditions of Corollaries 2.5 and 2.6 are not valid. In this case, (3.8) has no nontrivial

solution. In fact, if u is a nontrivial solution of (3.8), then

0 =

T−1∑
n=0

∆u(n) = a

T−1∑
n=0

h(u(n)) ̸= 0,

which is a contradiction.
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