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Gronwll-Bellman Type Nonlinear Sums-Difference
Inequalities and Applications in Difference Equations
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Abstract In this paper, we establish some general sums-difference inequalities with two vari-
ables. The inequalities involve finite sum and every term contains the unknown function of the
composite function with the power of p;. In the end, we study boundedness of the solution of
the difference equations as applications.
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1. Introduction

Integral inequalities provide a very useful and important device in the study of many qual-
itative as well as quantitative properties of solutions of differential equations. Various general-
izations of Gronwall-Bellman type inequality [1,2] and their applications have attracted great
interests of many mathematicians [3-11]. Some recent works can be found, e.g., in [12-14] and
some references therein. Agarwal et al. [15] investigated the inequality

n. rbi(t)
u(t) < a(t) + Z/ gi(t, s)w;(u(s))ds, to <t <tj.

i—1 v bi(to)

Chen et al. [16] studied the following retarded integral inequality

a(z)  rB(y)
Plu(z,y) <c+ / u(s, t)dtds+
B

a(zo) (yo)

/ - /(;(yo) (s, t)p(u(s, t))dtds,

where c¢ is a constant. Wang et al. [17] 1nvest1gated the inequality

Bi(y)
Y(u(z,y)) <a(z,y +Z / ul(s,t)g;(z,y, s, t)dsdt+

a;(xo) J Bi(yo)

6i(x)
| / (s, 1) i, . 5, )i(u(s, ))dsd }.
di(xo) L(yo)
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Zhou et al. [18] studied the following retarded integral inequality

where p; > 1,a, b;, fi, ¢;, u are nonnegative continuous functions for ¢ = 1,2,...,n.
With the progress of the theory of difference equations, more attentions are paid to some
discrete versions of Gronwall type inequalities (e.g., [19,20] for some early works). Some recent

works can be found, e.g., in [21-26] and some references therein. Cheung [27] discussed the

inequality
m—1 n—1 m—1 n—1
(m,n <c+ZZ (s,t)u Zstt Yo(u(s,t)),
s=mg t=ng s=mg t=ng

where ¢ > 0, and a, b are nonnegative real-valued functions in Z%r, and ¢ is a continuous nonde-

creasing function with ¢(r) > 0, for r > 0. Ma and Cheung [28] studied the inequality

W(u(m,n)) < almn) +clm.n) 3 S ' (uls. O)[d(s, uw(u(s. 1)) + e(s.1)]

s=0 t=n+1
Wang et al. [29] investigated the inequality

m—1 n—1

P(u(m,n)) < c(m,n) +ZZ Zflmnstgoz( (s,1)).

1=1 s=mg t=no
Zheng et al. [30] studied the inequality

i m—1 n-—1

(mn<cmn+ZZZ{ (s, t,m,n)uli(s,t) + ZZczén,mn ”‘(f,n)}—k

i=1 s=mg t=ng E=mgo N=no

la M—1 N-1

ST Y [detmnntsn+ 3 e manin)

i=1 s=mg t=ng E=mo N=no

Feng et al. [31] discussed the inequalities including four sums

uP(m,n) <c(m,n) + i w(s,n)uf(m,n)
Z [stmnuqst ZZ (&, mym,n)u (fﬂ?)}‘f‘
[d(s,t,m,n)uh(s,t) + Z Z 6(57777m,n)uj(f»77)]

s=mg t=ng E=mo N=no
In this paper, we establish some new more general form of sums-difference inequalities, give the
upper bound estimation and apply the obtained results to the boundedness of the solution of the

difference equations.

2. Main result
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Throughout this paper, R denotes the set of all real numbers. Let Ry := [0,00) and Ny :=
{0,1,...}. m1,n1 € NoUoo are given numbers, I := [0, m1)NNg and J := [0, n1)NNy are two fixed
lattices of integer points in R, A := I x J C N2. For any (s,t) € A, let A(s,+) denote the sublattice
[0,s) x [0,¢) N A of A. For functions w(m), z(m,n),m,n € Ny, let Aw(m) := w(m + 1) — w(m)
and Ayz(m,n) := z(m+1,n) —z(m,n). Obviously, the linear difference equation Az(m) = b(m)
with the initial condition 2(0) = 0 has the solution Z;n:_ol b(s). For convenience, in the sequel
we define that Zg;é b(s) = 0.

Consider

=

1s—1t

p(u(m,n)) < c(m,n) + Y hi(s,t, g, Du? ey (u(3, 1)),

7j=01

3
|

n

I
<
-
Il
<

=1 s

I
o

and suppose that
(Hy) v is a strictly increasing continuous function on Ry, t(w) > 0 for all u > 0;
(Hz) All p; (i =1,2,...,k) are continuous functions on Ry and positive on (0, 00);
(Hs) ¢(m,n) >0on I x J,and c¢(m,n) is nondecreasing in each variable;
(Hy) p; > 1,q > 0 are constants;
(Hs) All h; (i=1,2,...,k) are nonnegative functions on A x A.

We technically consider a sequence of functions wj;(s), which can be calculated recursively by

wi(s) = max,¢p,s) P1(7),
{ wiy1(8) == Max,¢g[o ] “’EET )}wz( ), i=1,2,....k—1. 1)
We define the functions: .
U(u) ::/0 (Yﬁ(li((:))q, u >0, (2.2)
Wi(u)::/u _ds =12,k u>0. (2.3)
1w (T ET(s))

Obviously, both ¥ and W; are strictly increasing and continuous functions. Let &1, VV;1 denote
U, W; inverse function, respectively. Then both ¥~! and Wi_1 are also continuous and increasing

functions. Furthermore, let

h; m,n,s,t) = max hi(m,n,s,t), 2.4
il ) (1,€)€[0,m]x [0,n] il ) (24)

fi m,n,s,t) = max film,n,s,t),
( ) (1,€)€[0,m]x[0,n] ( )

which are nondecreasing in m and n for each fixed s and ¢ and satisfies
ﬁi(m,n,s,t) > hi(m,n,s,t) >0, foralli=12... k.

Lemma 2.1 Suppose w is continuous and positive functions on R,, f is nonnegative function
on A x A, u is a nonnegative function on A, then we can obtain

m—1n—1s—1t—1 m—1n—1

Y Y s i i) = 3 S ws ) S fG L),

s=0 t=0 j=0 [=0 s=0 t=0 j=s+1l=t+1



396 Zizun LI

Proof We use mathematical induction with respect to m and n. If m = n = 2, we obtain

SOSTSTS At Dwlu(i,)) = £(1,1,0,00w(u(0,0)),
s=0 t=0 j=0 1=0
1 1 1 1
SO Twulst) Yo Y fG s t) = w(u(0,0))£(1,1,0,0).
s=0 t=0 j=s+1li=t+1

Thus
1¢—1

ZZ f(s,t,3,0) ZZw(u(s,t)) Z Z f,1 s, t).

s=0 t=0 j=0 s=0 t=0 j=s+11=t+1

@
|

&~
|

I§
=
Il
<

It means that the lemma is true for m = n = 2. Suppose that the lemma is true for m = mi,n =

ny, that is
mi—1ny—1s—11¢t—1 mi—1n;—1 mi1—1 ni—1
> flot g Do) = > Y wlu(s,t) Y > [ lsb).
s=0 t=0 j=01=0 s=0 t=0 j=s+11=t+1

Consider m = mq + 1,n = n; + 1, then we have

mi1 ni mi ni
SN wluls, ) SN flGLst)
s=0 t=0 Jj=s+11=t+1
mi—1n;—1 mi ni
=D D wuls,t) Do D fGls)
0 t=0 Jj=s+1ll=t+1
mi—1ln;—1 mi—1 ni—1 mi—1n;—1
= Z Z w(u(s,t)) Z Z f, 1, s,t)+ Z Z w(u(s,t))f(my,ny,s,t)
s=0 t=0 Jj=s+11l=t+1 s=0 t=0
mlfl 77,171 mlfl nlfl mlfl ’I’Llfl
= wlu(s, ) Y Y fLs )+ fma,my, g, Dw(u(j,1)
s=0 t=0 Jj=s+1ll=t+1 7j=0 1=0

= f(s,t,],l)w(u(j,l))

Using the inductive assumption, thus

ma nlsl mi1 N1

> Zfstﬂ’ =33 wlu(s, 1)) Z Z £, 1, 8,1).
=0

s=0t=0 j=0 s=0 t=0 j=s+1li=t+1
It implies that it is true for m = my + 1,n = ny 4+ 1. Therefore, it is true for any natural number
m>2,n>20

Theorem 2.2 Suppose that (H; —Hs) hold and u(m,n) is a nonnegative function on A satisfying

Balm,m) < clmm) + 3 3 33 S hils. b Dut (u(i D). (25)
i=1 s=0 t=0 j5=0 (=0
Then iy
u(m,n) < w—l{\p—l (W (Wi(Ey(m,n)) + ge(m,n, s,t))] }, (2.6)

Il
=}
~
Il
<

S
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for (m,n) € A, n,), where

Ei(m,n) :=¥(c(m,n)),

E;(m,n) := W;ll (Wi_l(Ei_l(m,n)) + Z Z gi—1(m,n, s,t)), 1=2,3,...,k,
s=0 t=0

and (M1, N1) € A is arbitrarily given on the boundary of the lattice

m—1n—1

= m,n, S, h ds
R mm) € & Wil mm) + 323 dim o) <[ wwmaTy
m—1n—1 00 ds
Wz_l(W (m,n) +ZZglmnst) / W,i:l,z...,k}.

5=0 t=0
Proof We monotonize some given functions ¢; in the sums. The sequence w;(s) defined by ¢;(s)
in (2.1) are nondecreasing and nonnegative functions and satisfy w?*(s) > ¢ (s), i =1,2,... k.
Moreover, the ratio w}{,(s)/w}’(s) are also nondecreasing, i = 1,2,...,k. By (2.4), (2.5), from
(2.1), we have

Plu(m,n)) < cfm,n) + 3 SO s, g (s, Ol (i ). (27)

t =01

I
<}
Il
<
I
o

i=1 s
By Hs, from (2.7), we have

—1n—-1s—-1t-1

k
Y(u(m,n)) < e«(M,N) + ) D hals,t 5, Du (s, twf (u(j. 1)), (2.8)

t=0 j=0 =0

for all (m,n) € Aar, vy, where 0 < M < My and 0 < N < N are chosen arbitrarily. Let z(m,n)
denote the function on the right-hand side of (2.8), which is a nonnegative and nondecreasing
function on Az, vy and 2(0,n) = C(M, N). Then we obtain the equivalent form of (2.8)

3

Il
<

i=1 s

u(m,n) <P~ z(m,n)), V(m,n) € A, N (2.9)

Since w; is nondecreasing and satisfies w;(u) > 0, for u > 0. By the definition of z and (2.9),

from (2.8), we have

Arz(m,n) =) ) hi(m, t, j, Du (m, t) (wi(u(m, 1)))?*

hi(m, t, 3, D) (" (z(m, £)) 4 (wi( ™ (2(m, 1))))P". (2.10)
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By the mean-value theorem for integrals, for arbitrarily given (m,n), (m+1,n) € Ay Ny, in the

open interval (z(m,n), z(m + 1,n)), there exists £, which satisfies

B B z(m+1,n) ds B Alz(m,n)
U(z(m+1,n)) = ¥(z(m,n)) _/z(m,n> W=ls)e (w719

< Ajz(m,n)
~ (@ (z(m, )T
where we use the definition of ¥ in (2.2). From (2.12) and (2.13), we obtain

(2.13)

k
U(z(m+1,n)) < W(z(m,n)) + Z hi(m,t, 5, D) (wi($ ™" (2(m, D). (2.14)

Keep n fixed and substitute m with s in (2.14). Then, taking the sums on both sides of
(2.14) over s =0,1,...,m — 1, we have

W(a(m,m) S WEO.M) + 30D D S ol D) (e (0, 1))

<UL N) + 30 S SIS bl g D (6 (G, D)
i=1 s=0 t=0 j=0 [=0
m—1n—1s—1t-1 ~
:Ck(M7N) +Z hi(sﬂtvjﬂl)(wi(l/]_l(z(j>l))))pi7 (215)
i=1 s=0 t=0 j=0 [=0
where
Cr(M,N) = ¥(c(M,N)). (2.16)
Let
v(im,n) = ¥(z(m,n)). (2.17)
From (2.15), we have
k m—1n—1s—1 t—l
v(m,n) < CR(M,N)+> > ) hi(sst, 3,0 (wi (™1 (U (05, 1)) (2.18)
i=1 s=0 t=0 =0 [=0

for all (m,n) € A, n). Using Lemma 2.1, (2.18) can be written as

3
|

n

v(m,n) < Cp(M,N) + Z Gi(m,n, s, t)(w; (1T (v(s,1)))))P, (2.19)

t

H
<
Il
<

=1 s

where g;(m,n,s,t) = Z;"::}H ?::i—l hi(j,1,s,t). Obviously, g;(m,n,s,t), i = 1,2,...,k are

nondecreasing in m and n for each fixed s and ¢ and g;(m,n,s,t) > 0. Then from (2.19), we

have

—

1

3

k n
v(m,n) < Cp(M,N)+>_ (M, N, s, )w? (=1 (T (u(s, 1)))), (2.20)

=1 s

@M

Il
o

for all (m, TL) < A(]V[, N)-
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From (2.20), we can conclude that

m—1n—1
v(m,n) < W,;I(Wk(Ek(mm)) +3° Y g, N7s,t)>, (2.21)
s=0 t=0
for all (m,n) € Ay, Ny, where
M—-1N-1
E;(M,N) := W;_ll(wi,l( i (MN) + 30 Y G (MUN s t)) i=2,.. .k (2.22)
s=0 t=0

El(M,N) = Cl(M,N)

For k = 1, let z1(m,n) denote the function on the right-hand side of (2.20), which is a nonnegative
and nondecreasing function on Ay, ), 21(0,n) = C1(M, N) and v(m,n) < z1(m,n). Then we

get

3
|
—

Avzi(m,n) =) gi(M, N, s, t)(wi (v~ (T (u(s, 1))

3
[l
- O

IN

g1 (Ma N, s, t)(wl(w_l(\l’_l(zl(sa t)))))m’ (2'23)

t

Il
=)

for all (m,n) € Ay, n). From (2.23), we have

Aqz1(m,n) -
wit (Y1 (U (z1(m, n) ; 1(M, N,m, ). (2.24)

By the mean-value theorem for integrals, there exists £ in the open interval (z1(m,n), z1(m +

1,n)), for arbitrarily given (m,n), (m + 1,n) € Ay Ny, such that
z1(m+1,n) ds
(many W1 (@THET(s)))
Alzl(mvn) Alzl(man)
= < . 2.25
W@ (€)W (@ (U (1 (m, ) (22
From (2.24) and (2.25), we have

Wi(zi(m+1,n)) — Wi(z1(m,n)) = /

n—1
Wi(z1(m+1,n)) < Wi(z1(m,n)) + Z g1(M, N,m,t). (2.26)
t=0
Keep n fixed and substitute m with s in (2.26). Then, taking the sums on both sides of (2.26)

over s =0,1,...,m — 1, we have

Wi(zi(m,n)) < Wi(z1(0,n)) + Z Z (M,N,s,t)
s=mg t=0
In—1

Wi(CL (M, N)) + Z > G1(M, N, s,1), (2.27)
s=0 t=0

for all (m,n) € Ay, ny. Using v(m,n) < z1(m,n), from (2.27), we get

v(m,n) < z(m,n) < W; ! (Wl(Cl(M7 N)) + iﬁl(M, N,s,t)), (2.28)
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for all (m,n) € Ay, vy. This proves that (2.21) is true for k& = 1.
Next, we make the inductive assumption that (2.21) is true for k = [, then

m—1n—1

v(m,n) < Wt (Wl(El(M M)+ 33 G, N.s t)) (2.29)
s=0 t=0
for all (m,n) € ANy, where
El(MvN) L= CI(M7N)7
M—-1N-1
Ei(M,N): =W} (Wl (B (M, N)) + i1 (M, N,s,t)), i=2,3,....1.
s=0 t=0
Now we consider
+1 m—1n—1
v(m,n) < Cip1(M,N) + Gi(M, N, s, tywl (v~ (T (v(s, 1)))), (2.30)

for all (m,n) € Aar,n). Let zo(m,n) denote the nonnegative and nondecreasing function of the
right-hand of (2.30). Then 25(0,n) = C;4+1(M, N) and v(m,n) < z3(m,n).
Let

wiy1(u) .
Gigr(u) = —A2 =121 (2.31)
’LUi)l/pHrl(u)

By (2.1), we conclude that ¢;, i = 1,2,...,l 4+ 1 are nondecreasing functions.

From (2.30), we have

Aqza(m,n)
W (=T (z2(m, m))))
X 0 Gi(M, N m (= (I (v(m, 1))
w?(w T
_ i Yy Gi(M, N m (= (I (2 (m, 1))
- WP (1@ (25(m, n))))

— I+1 n—1
Zg (M,N,m,t) —|—z:z:gZ M, N,m,t)¢? (v~ (T (22(m, 1))))
t=0 =2 t=0
n—1 I n—-1
=3 G(M,N,m,t) + > > gia (M, N,m, )@} (7 (T (22(m, 1)) (2.32)
t=0 i=1 t=0

By the mean-value theorem for integrals, there exists € in the open interval (z5(m,n), zo(m+
1,n)), for arbitrarily given (m,n), (m + 1,n) € Ay, ), then, we obtain

z2(m+1,n) s
Wi(za(m +1,n)) — Wi(z2(m,n)) = / () wzln (w—ld(\:[;—l(s)))

G

Ajza(m,n) Ay zo(m, )
1(6))) = W (W (T (za(m,n)))) (2.33)
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From (2.32) and (2.33), we get

Wl(zg(m +1,n)) — Wi(za(m,n))

- ! n-1
Z (M, Nymt) + Y 0> Gipa (M, Nym, )@l (0 (B (22(m, 1)), (2.34)
t=0 i=1 t=0
Substitute m with s in (2.34) and keep n fixed, then taking the sum on both sides of (2.34) over
s=0,1,...,m—1, we have
m—1n—1
Wi(z2(m,n)) <Wi(Cr1(M,N)) + g1(M,N,s,t)+
s=0 t=0
I m—1n-1
Z Zgi+l(M7 N7S’t) frrll(’l/)_l(\l/_l('z?(sﬁt))))’ (2'35)
i=1 s=0 t=0
for all (m,n) € A, ny-
Let
0(m7 77,)) =W (22 (mv 77,)), (236)
M—-1N-1
pr(M,N) := Wi (Crpr (M, N)) + > > Gi(M, N, s,1). (2.37)
s=0 t=0

Using (2.36) and (2.37), from (2.35) we have, for V(m,n) € A, ),

I m—1n-1

0(m,m) < pr(M.N) + 37 37 S i (MUN, s, 00605 [0 (0 (W (0, ). (238)

i=1 s=0 t=0
It has the same form as (2.20). We are ready to use the inductive assumption for (2.38). Let
5(s) == =1 (W 1(s))). Since yp=, U1 W1, ¢; are continuous, nondecreasing and positive

n (0,00), each ¢;(0(s)) is continuous and nondecreasing on (0, c0). Moreover

P 0(s) _ wli (00s) _ o)y
TCE) Wl G st Uy TR

which is also continuous and nondecreasing on [0, c0) and positive on (0,00). Therefore, by the

inductive assumption in (2.29), from (2.38), we have

m—1n—1

0(m,n) < @} (‘1>l+1(pz(M, N)+ DD aia(M, N,s,w), (2.39)
s=0 n=0
for all (m,n) € A, Ny, where
B (u) = /u ds >0 i=12,...,1 (2.40)
i+1 i1 _ — ) y E= L4000, :
0o Or (@TIETL (W H(s))))
M-1N-1

pi(M,N) = &Y (q)i,l(pi,l(M, M)+ 3N g, N7s7t)), i=2,3,...0. (241
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Note that
! (T (T W (s))ds ds
Cbi 1\u) = 1_ P ! 1 == - 1
il / Wl (0 (P (W (s))) / Wl (W (25 (s)))
= Wi (W (W), i=1,2,...,1 (2.42)

Thus, from (2.36), (2.39) and (2.42), we have

v(m,n) < zo(m,n) = W; H(0(m,n))

< W (@5 (@ (M) + 30 3 (M N5, 1)) )
s=0 n=0

m—1n—1

Wl+1<Wl+1 (W; (o(M, N)) ) + 575 G (M Ns t)) (2.43)

s=0 n=0
for all (m,n) € A, vy We can prove that the term of Wy ' (p;(M, N)) in (2.43) is just the same
as By 1(M, N) defined in (2.22). Let p;(M, N) := W, ' (p;(M, N)). By (2.37), we have

M—-1N-1
pLM,N) = Wi (py (M, N)) = Wi (WI(CIJrl MN)+ 33 G1(M, N, s,1) ) = Ey(M, N).
s=0 t=0
Then using (2.41) and (2.42), we get
M—-1N-1
pi(M, N) = Wi (@7 (Dica (s (M, V) + Y Z G(M,N,5,)))
s=0 t=0
M—-1N-—
= Wiil [Wi(Wlil(Pifl(Mv N))) + Gi(M, N, S7t>]
s=0 t=0
M—-1N-1
= W [Wi(pi_1 (M, N)) + G:(M, N, 5,1)]
s=0 t=0
= B (M,N), i=2,3...,L. (2.44)

This proves that W, ' (p,(M, N)) in (2.43) is just the same as Ej (M, N) defined in (2.22).
Hence (2.43) can be equivalently written as

m—1n—1

o(m,n) < Wik (Wi (Bia (M, V) + X Y (M,N,5,8)), V(m,n) € Ay ny.  (245)
s=0 t=0

The estimation (2.21) of unknown function v in the inequality (2.18) is proved by induction. By
(2.9), (2.21) and (2.45), we have

u(m,n) <Y~ (z(m,n)) <yt (\I/_1 (v(m,n)))
_|_

m—1n—

1n—1
< zp*l(qf*l(w,;l Wi (B (M Gk(M, N, s,1) ))) (2.46)
s=0 t=0
for all (m,n) € Ay, ny. Let m = M,n = N. From (2.46), we have
M—-1N-1

w(M,N) < (\11‘1 (W,;1 (Wk(Ek(M, N)) + k(M N, s,t)))).
s=0 t=0
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This proves (2.6), since M and N are chosen arbitrarily.
This completes the proof of Theorem 2.2. O

Corollary 2.3 Suppose that (H;—Hs) hold and u(m, n) is a nonnegative function on A satisfying

w(u(mﬂ ?”L)) < C(m7 n) + Z hi(57 t,J, l)soli)i (u(ja l)) (2'47)

i=1 s=0 t=0 5=0 (=0

Then
m—1n—1
u(m,n) <=t [Wk—l(Wk(Ek(m,n)) + Z ng(m,n, s,t))}, (2.48)
s=0 t=0
for (m,n) € Aqar, n,), where
Ey(m,n) = c(m,n),
m—1n—1
Ei(mv n) = Wz:11 (Wi—l(Ei—l(mv n)) + Z Z gi—l(m7 n,s, t))a 1= 27 3a teey ka
s=0 t=0

and (M1, N1) € A is arbitrarily given on the boundary of the lattice

mflnfl~ 0o ds
Ri={onm e WiBonm) + 3 Satmns < [ Sy

m—1n—1

Wil(W (m,n) +ZZglmnst / ¢ds '—1,2,...,k}.

The proof of Corollary 2.3 is similar to the argument in the proof of Theorem 2.2 with

appropriate modification. We omit the details here.
Remark 2.4 If p; = 1 and h;(s,t,4,1) = hi(m,n, s,t), Corollary 2.3 reduces to [29, Theorem 1].

Remark 2.5 If £k = [; + I and ¢;(u) = u, Corollary 2.3 reduces to [30, Theorem 1] and [31,
Theorem 1].

Theorem 2.6 Suppose that (Hy — Hs) hold and all f; (i =1,2,...,k) are nonnegative functions

on A XA, p>q>0. u(m,n) is a nonnegative function on A satisfying

,_.
-
|
—

Slatmn) <elmn) +3 (5555 Aot o4
i e
ha(s, ., 1u (s, ) (u(j. 1)) (2.49)
Then
u(m,n) < = LW W (Wi(Ei(m,n) + gr(m,n,s.0)] b, (2.50)

for (m,n) € Mg, n,), where
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and (M1, N1) € A is arbitrarily given on the boundary of the lattice

m—1n—1 0o ds
R =13 (m,n) € A: Wi(E;i(m,n)) + gi(m,n, s, t) < — 7
{ 220 J w1 (5 1 (5))
Wi_l(Wi(Ei(m,n))+ Z Zéi(m,n,s t / wds '—1,2,...,k}_
s=0 t=0

Proof First of all, we monotonize some given functions ¢; in the sums. Obviously, the sequence
w;(s) defined by ¢;(s) in (2.1) are nondecreasing and nonnegative functions and satisfy w?*(s) >
@ (s),i=1,2,..., k. Moreover, the ratio w}},(s)/w}’(s) are also nondecreasing, i = 1,2,..., k.
By (2.49), from (2.1), we have

Y(u(m,n)) <c(m,n) +i(

=1 s=0 t=0 j=0 l:O
m—1n—1s—-1t—-1 B
Ba(s, b, D (s, Dt (u(j, 1)) (2.52)
s=0 t=0 j=0 1=0
By Hj, from(2.52), we have
m—1n—1s—1t-1

E
-

/pjw
™M

P(u(m,n)) <c(M, fi(s,t, 4, DuP (s, t)+

1 s=0 t=0 j=01(

I
=)

> ol £, D s, ) (u, 0), (2.53)

for all (m,n) € A, Ny, where 0 < M < My and 0 < N < Nj are chosen arbitrarily. Let z(m,n)
denote the function on the right-hand side of (2.53), which is a nonnegative and nondecreasing

function on A/, ny and 2(0,n) = ¢(M, N). Then we obtain

u(m,n) <Y~ (z(m,n)), Y(m,n) € A, n)- (2.54)
Since w; is nondecreasing and satisfies w;(u) > 0, for u > 0. By the definition of z and (2.54),
we have
k n—1m—-1t—1 B
Aqrz(m,n) Z i(m,t, 7, D)uP (m, 1)+
i=1 t=0 j=0 1=0

3
[
—
3
|
—
~
[
—

hi(m,t, j, Dud(m, tw? (u(g,1))

-

@
Il
-
-
Il
o
<.
I
o
Il
<
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D Filmat, 5,0 (@ (z(m, 1))+
=0
k ~
> hi(m. t, 3,0 (0" (z(m. ) Tl (071 (2(7,1))- (255

1
Let v~ 1(2(m,t)) > 1. Then (v»"1(z(m,n)))? > (~1(z(m,n)))?. Using the monotonicity of
=1 and z, from (2.55), we have

S 33 bt D (57 (:(1) ). (256)

That is
Aqz(m,n) k onolm-li-1 .
(=1 (z(m,n)))? S(ZZ_;;O parfiar i(m, t, 5, 1)+
k n—1m—1t—1
> hilm,t, . Dl (71 ((5,)))- (2.57)

On the other hand, by the mean-value theorem for integrals, for arbitrarily given (m,n), (m +

1,n) € ANy, in the open interval (z(m,n), z(m + 1,n)), there exists ¢, which satisfies

#(m+1n) ds ~ Agz(m,n)

Ty (z(m + 1,n)) — Up(z(m,n)) /z(m’n) (=) (WL Q)P
_ Bazlmin)

(2.58)

k
> hi(m,t, . Du? (07 ((5.0)))- (2:59)

Keep n fixed and substitute m with s in (2.59). Then, taking the sums on both sides of

(2.59) over s =0,1,...,m — 1, we have

hals, .3, Dwt (6™ (2(7,0))) )
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where

Let v(m,n) = ¥,(z(m,n)). From (2.60), we have

for all (m,n) € A, ny-
(2.62) has the same form of (2.47), from Corollary 2.3, we can obtain the estimation (2.50).
This completes the proof of Theorem 2.6. [

3. Applications

In this section, we apply our results to study the boundedness of the solutions of difference

equations.

Example 3.1 We consider the difference equation

m—1n—1 m—1n—1 m—1n—1 52
v(m,n) =1+ 22275\/|U(8,t)|+ 225375 s,t) + Z 220000 ev(s:t), (3.1)
s=0 t=0 s=0 t=0 s=0 t=0

for all (m,n) € A, where A is defined as in Section 2. From (3.1), we have

m—1n—1 m—1n—1 m—1n—1
<1 275/ Ju(s, t 37%|u(s, t elv(0l
NEIETES 35 SERNTer FS 9) S RTIRIRS B gk
s=0 t=0 s=0 t=0 s=0 t=0
Let |v(m,n)| = u(m,n). We obtain
m—1n—1 m—1n—1 m—1n—1 59—
—s —s u(s7t)
<14 Z 22 u(s,t) + Z Zs?) u(s,t) + Z 20000° , (3.2)
s=0 t=0 s=0 t=0 s=0 t=0
where c(m,n) = 1, fi(m,n,s,t) = 27 wi(u) = Vu, fa(m,n,s,t) = $37°, we(u) = u,
fa(m,n,s,t) = %, ws(u) = e*. We can conclude that %g = % and Z—f = % are non-

decreasing for u > 0, then, we have
Eqi(m) =é(m) =1,
fi(m,n,s,t) = fi(m,n,s,t), i=1,2,3,

" ds U

=/ ﬁzz(\/ﬂ—u, Wfl(u):(§+1)2,
Wa(u) = . is Inu, Wy'(u)=e",

Wi (u)
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“ds -1 —u -1 1
Ws(u) = ! i Wy (u):lne_l_u. (3.3)
From (3.3), we have
m—1n—1
By(m,n) = Wy [Wi(Er(m,n) + > Y 277,
s=0 t=0
_ 1.
= W (VB () — 1) + 2 (),
1 2
= 2 — (=™
(2- ™),
and
m—1n—1
Es(m,n) = Wy ' [Wa(Ea(m,n)) + Y Y s37°],
s=0 t=0
3 5 1m—2
_ —1 m—2
=W, [lnEQ(m,n)JrZ*E(g) *573,”_1]»
_ 3 5 m—o 1m—2
= E3(m,n) eXP(Z - E(g) 5 gm—1 ).
Using Theorem 2.2, we obtain
m—1n—1 9
-1
u(m,n) < Wy [Ws(Es(m,n)) + 2 2 20000],
1 3 1 m—2
— W—l -1 —E3(m) 9_ %
3 [6 € + 20000( 4 9m—3 om—1 )]7
=In L
exp(—E3(m)) — 55500 (2 — =5 — 1)

=In

exp ( — Es(m) exp(% - 15

=In

2 m— m— )
exp (= (2= (3)™) exp(3 = 5(3)™ % = 55=1)) — z0006 (2~ T3 — 31)
)

The above function In 1 always makes sense, since exp(—(2—(3)™)? exp(3— 5 (3)" 2 -3 #=2)) is
a decreasing function, and 20(1)00 (2— % 2,,11,3 — 2”},;21 ) is an increasing function. When m = 2,n = 2
we have ) 5 s . .
22 2 -
exp(—(2— (5) ) exp(i - E)) =exp (- (1) exp(g)) ~ 0.0139,
1 3 1
- = = 0.000025.
20000 ( 4 22*3)
When m — oo, n — 0o, we have
: 1 m\2 3 5 1 m—2 1m—2 3
W}gn exp (— (2—(5) ) exp(z—ﬁ(?)) —53771771)) :exp(—4exp(i)) ~ 0.00021,
1 3 1 m — 2
lim ———(2— - — ———) =0.0001
A1 50000 2 " 13m  gmt)

Therefore, for lné7 0 < s < 1 always holds true. This implies that u(m,n) is bounded for
(m,n) € N2.

Example 3.2 We consider the partial difference equation with the initial boundary value
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conditions.
A2 A19p(z(m,n)) = F(m,n, ¢1(z(m,n)), ..., pe(z(m,n))), (3.4)

P(2(m, 0)) = ar(m), ¥(2(0,n)) = az(n), a1(0) = a2(0) =0, (3.5)

for all (m,n) € A, where A = I x J is defined as in Section 2, v is a continuous and strictly
increasing odd function on R, satisfying ¢(0) = 0 and +(u) > 0 for u > 0, F : A x R¥ — R,
a;: I > Randas:J— R, ¢ : Ri = R, are nondecreasing continuous functions and the ratio
©i+1/ei are also nondecreasing, ¢;(u) >0 for u > 0,7i=1,2,... k.

In the following corollary, we apply our result to discuss boundedness on the solution of
problem (3.4).

Corollary 3.3 Assume that F : A x RF — R is a continuous function satisfying

k
|F(m’ n, Sol(u)v HERE) @k(u)” < Zgi(Mv N,m, n)‘ulqgofi (|u|)’ (36)
|ar(m) + az(n)| < a(m,n), (3.7)

for all (m,n) € A, where p > ¢ > 0 is a constant, f;(M,N,m,n),g;(M,N,m,n),i=1,2,...,k,
are continuous nonnegative functions and nondecreasing in M and N for each fixed m and n,
a(m,n) : A — R, is nondecreasing in each variable. If z(m,n) is any solution of (3.4) with the
condition (3.5), then

elmom)] < o {0 [G7 Gulelmom) + Y0 S ar N s )]} @)
s=0 t=0
for all (m,n) € Ay, Ny, where W(u) is defined by (2.2), and

~ “ ds

6= | ey

Hy(m,n) := ¥(a(m,n)),

fIz(m,n) = é;jl [éi_1(ﬁi_1(m,n)) + Z Zgi_l(M, N, S,t)],

s=0 t=0

\Ifzjl and é,;l denote the inverse functions of ¥,, and G, respectively.

Proof The solution z(m,n) of (3.4) satisfies the following equivalent difference equation

Y(z(m,n)) = ar1(m) + az(n) + z_: z_: F(s,t,p1(2(s,1)), ..., pr(2(s,1))). (3.9)
s=0 t=0
By (3.6), (3.7) and (3.9), we obtain
(e m, )] <lar(m) + ax()] + 3 S 1E G, o1 (2(5,)s - or(2(5, )
s=0 t=0
Salmn) + 303 B0 N O (25,0 (310)
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Since [¥(z(m,n))| = ¥(|z(m,n)]), (3.10) has the same form of (2.5). Applying Theorem 2.2 to
inequality (3.10), we obtain the estimation of z(m,n) as given in (3.8).
If there exists a constant M > 0,
m—1n—1
Hi(m,n) <M, > > gi(M,N,s,t)<M, i=12,..k (3.11)
s=0 t=0

for all (m,n) € ANy, then every solution z(m,n) of (3.4) is bounded on Ay ny. O
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