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Abstract In this paper, the reliability of a parallel stress-strength model of exponentiated Pareto

distribution is discussed. Different point estimations and interval estimations are proposed.

The point estimators obtained are maximum likelihood and Bayesian estimators. The interval

estimations obtained are approximate, exact, bootstrap-p and bootstrap-t confidence intervals

and Bayesian credible interval. Different methods and the corresponding confidence intervals are

demonstrated using some simulation studies.

Keywords parallel stress-strength model; exponentiated Pareto distribution; maximum likeli-

hood estimation; Bayesian estimation; interval estimation

MR(2010) Subject Classification 62F10

1. Introduction

Several researchers have considered the statistical inference of the reliability of the stress-

strength model. In the early stage, the maximum likelihood estimator (MLE) of R when X and

Y are normally distributed has been considered by [1–4]. When X and Y are Weibull random

variables, the estimations of R was considered by McCool [5], Raqab et al. [6] considered the

problem when X and Y are generalized exponential distributions. An encyclopedical treatment

of the different stress-strength models can be found in the monograph of Kotz et al. [7].

This exponentiated Pareto distribution has been extensively used in the analysis of extreme

events (Pickands [8] was apparently the first to use this distribution in this context), especially in

hydrology [9], as well as in reliability studies when robustness is required against heavier tailed

or lighter tailed alternatives to an exponential distribution. It is flexible enough to accommodate

both monotonic as well as non-monotonic failure rates even though the baseline failure rate is

monotonic. Modeling survival data by non-monotonic failure rates is desirable, for example,

when the course of the disease is such that mortality reaches a peak after some finite period and

then slowly declines [10]. Some recent applications of exponentiated Pareto distribution function

include the estimation of the finite limit of human lifespan [11]. The estimators of the parameters

of exponentiated Pareto distribution had been obtained [12] under different estimation procedures
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for complete sample case. The estimation of parameters had also been obtained [13] under type-

I and type-II censoring scheme. Singh et al. [14] developed estimators for the parameters of

exponentiated Pareto distribution under progressive type-II censoring with binomial removals.

Chen and Cheng [15] discussed the reliability of a system when the strength and the stress

imposed on the system are independent, non-identical exponentiated Pareto distributed random

variables.

Until now, we only see the reliability R = P (X < Y ) of the stress-strength models with one

component with the strength Y and one stress X. In this paper, we generalize the traditional

system to a parallel model. The parallel stress-strength model occurs when a device under con-

sideration is a combination of k usually independent components with the strengths Y1, Y2, . . . , Yk

and each component of the system is subject to a common shock of a random magnitude X. If

the system is operating successfully whenever at least one of the k ∈ N+ components survives,

it is termed parallel in the analogy with electric circuits. For more details about the parallel

stress-strength model one can refer to the monograph [7]. In this paper, different point esti-

mators of R are derived, namely, MLE and Bayesian estimators with mean squared error loss

functions. Based on the MLE, we can obtain the exact confidence interval of R. Also, we obtain

the approximate confidence interval for R by using the approximate normal property of the MLE

of R. We also recommend two bootstrap confidence intervals of R. In addition, based on the

Bayesian estimator, we obtain the Bayesian credible interval of R. Different methods have been

demonstrated by using Monte Carlo simulations.

The rest of the paper is organized as follows. In Section 2, the probability density function

(pdf) and cumulative distribution function (cdf) of exponentiated Pareto distribution are pre-

sented and the explicit expression of R is derived. In Section 3, we discuss point estimations of

R, including MLE and Bayesian estimation. In Section 4, different interval estimators of R are

presented, including exact, approximate, bootstrap-p and bootstrap-t confidence intervals and

Bayesian credible interval. Some numerical experiments and some discussions are presented in

Section 5.

2. Exponentiated Pareto distribution and reliability

A random variable X is said to have exponentiated Pareto distribution, if its pdf is given by

f(x;α, λ) = αλ(1− (1 + x)−λ)α−1(1 + x)−(λ+1), (2.1)

where λ > 0, α > 0 and x > 0. Here α and λ are shape parameters. The cdf is given by

F (x;α, λ) = (1− (1 + x)−λ)α. (2.2)

An exponentiated Pareto distribution will be denoted by EP (α, λ).

Let X be a common shock of a random magnitude of a system and a combination of k usually

independent components with the strengths Y1, Y2, . . . , Yk acting on the system. Assume that

X ∼ EP (β, λ), Yi ∼ EP (α, λ), i = 1, 2, . . . , k, and be independent. Therefore, the reliability of
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the parallel stress-strength models will be

R = P (X < max(Y1, Y2, . . . , Yk)) = 1−
∫ ∞

0

(FY (x))
kdFX(x)

=

∫ ∞

0

(1− (1 + x)−λ)kαβλ(1− (1 + x)−λ)β−1(1 + x)−(λ+1)dx

= 1− β

kα+ β
=

kα

kα+ β
. (2.3)

If α and β are known, the R is simply calculated using (2.3). It can be seen that R does not

depend on λ. However, α and β are unknown and λ is known, the estimators of α and β depend

on λ, and hence so does the estimator of R.

3. Point estimations of R

In this section, suppose X1, X2, . . . , Xm to be a random sample from EP (β, λ) and Yi1, Yi2,

. . . , Yini , i = 1, 2, . . . , k to be a sample from EP (α, λ). We will discuss several point estimations

for R given the samples.

3.1. Maximum likelihood estimation of R

To compute the MLE of R, we need to compute the MLE of α and β. As a matter of fact, in

order to compute the MLE of α and β, we need to compute the MLE of λ also. The likelihood

function for the observed sample is

L(α, β, λ) =
m∏
i=1

f(xi;β, λ)
k∏

i=1

ni∏
j=1

f(yij ;αλ).

The log likelihood function for the observed sample is

lnL(α, β, λ) =m lnβ + n lnα+ (m+ n) lnλ+

(β − 1)
m∑
i=1

ln(1− (1 +Xi)
−λ) + (α− 1)

k∑
i=1

ni∑
j=1

ln(1− (1 + Yij)
−λ)−

(λ+ 1)(

m∑
i=1

ln(1 +Xi) +

k∑
i=1

ni∑
j=1

ln(1 + Yij)), (3.1)

where n =
∑k

i=1 ni.

To obtain the MLEs of α, β, and λ, we can maximize lnL(α, β, λ) directly with respect to

α, β, and λ. Differentiating (3.1) with respect to α, β, and λ, respectively and equating to zero,

we obtain the following equations

∂ lnL(α, β, λ)

∂β
=

m

β
+

m∑
i=1

ln(1− (1 +Xi)
−λ) = 0, (3.2)

∂ lnL(α, β, λ)

∂α
=

n

α
+

k∑
i=1

ni∑
j=1

ln(1− (1 + Yij)
−λ) = 0, (3.3)
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∂ lnL(α, β, λ)

∂λ
=(β − 1)

m∑
i=1

ln(1 + Yi)(1 +Xi)
−λ

1− (1 +Xi)−λ
+ (α− 1)

k∑
i=1

ni∑
j=1

ln(1 + Yij)(1 + Yij)
−λ

1− (1 + Yij)−λ
+

m+ n

λ
−
( m∑

i=1

ln(1 +Xi) +
k∑

i=1

ni∑
j=1

ln(1 + Yij)
)
= 0. (3.4)

From (3.2) and (3.3), we obtain the MLE of α and β as function of λ, say α̂(λ) and β̂(λ), as

β̂(λ) = − m∑m
i=1 ln(1− (1 +Xi)−λ)

, (3.5)

α̂(λ) = − n∑k
i=1

∑ni

j=1 ln(1− (1 + Yij)−λ)
. (3.6)

If the scale parameter λ is known, the MLEs of α and β can be obtained from (3.5) and (3.6).

If all the parameters are unknown, we can first estimate the scale parameter by maximizing the

profile likelihood function L(α̂(λ), β̂(λ), λ), with respect to λ or by solving the following nonlinear

equation

∂L(α, β, λ)

∂λ
=(β̂(λ)− 1)

m∑
i=1

ln(1 +Xi)(1 +Xi)
−λ

1− (1 +Xi)−λ
+ (α̂(λ)− 1)

k∑
i=1

ni∑
j=1

ln(1 + Yij)(1 + Yij)
−λ

1− (1 + Yij)−λ
+

m+ n

λ
−

( m∑
i=1

ln(1 +Xi) +

k∑
i=1

ni∑
j=1

ln(1 + Yij)
)
= 0. (3.7)

Consequently, λ̂ can be obtained by solving the nonlinear equation

h(λ) = λ, (3.8)

where

h(λ) =(m+ n)
[
− (β̂(λ)− 1)

m∑
i=1

ln(1 +Xi)(1 +Xi)
−λ

1− (1 +Xi)−λ
−

(α̂(λ)− 1)

k∑
i=1

ni∑
j=1

ln(1 + Yij)(1 + Yij)
−λ

1− (1 + Yij)−λ
+

( m∑
i=1

ln(1 +Xi) +
k∑

i=1

ni∑
j=1

ln(1 + Yij)
)]−1

.

Since λ̂ is a fixed point solution of the nonlinear equation (3.7), it therefore can be obtained by

using a simple iterative scheme as follows

h(λ(k)) = λ(k+1), (3.9)

where λ(k) is the the kth iterate of λ. Once we obtain λ̂, α̂ and β̂ can be obtained from (3.5)

and (3.6), respectively. Therefore, the MLE of R becomes

R̂MLE =
kα̂

kα̂+ β̂
. (3.10)

3.2. Bayesian estimation of R
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In this section, we obtain the Bayesian estimation of R under the assumption that the

parameters α and β are random variables. It is assumed that α and β have independent gamma

priors with the pdfs

π(β) =
ba1
1

Γ(a1)
βa1−1e−b1β , π(α) =

ba2
2

Γ(a2)
αa2−1e−b2α.

Then parameters β ∼ Γ(a1, b1) and α ∼ Γ(a2, b2). Assuming that λ is known, then α and β have

independent gamma posterior distributions as follows

β|data ∼ Γ(a1 +m, b1 + V ), (3.11)

α|data ∼ Γ(a2 + n, b2 +W ), (3.12)

where V =
∑m

i=1 ln(1− (1 +Xi)
−λ) and W =

∑k
i=1

∑ni

j=1 ln(1− (1 + Yij)
−λ).

Since a prior of α and β are independent, using (3.11) and (3.12), the pdf of (α,R) is

f(α, r) = kA1
BA1

1

Γ(A1)

BA2
2

Γ(A2)
(1− r)(A1−1)(r)−(1+A1)αA1+A2−1e−(B2+k 1−r

r B1)α,

where A1 = a1 +m, A2 = a2 + n, B1 = b1 + V , B2 = b2 +W .

Then, the posterior pdf of R is

fR(r) =

∫ ∞

0

f(α, r)dα = C(B2r + kB1(1− r))−(A1+A2)(1− r)A1−1rA2−1, for 0 < r < 1,

and 0 otherwise, where

C = kA1
Γ(m+ n+ a1 + a2)

Γ(a1 +m)Γ(a2 + n)
(b1 + V )a1+m(b2 +W )a2+n.

Now, consider the following loss function

L(a, b) = (a− b)2.

It is well known that Bayes estimates with respect to the above loss function is the expectation

of the posterior distribution [16]. The Bayes estimate of R under squared error loss cannot be

computed analytically.

R̂BAYES = E[R|W,V ] =

∫ 1

0

rfR(r)dr. (3.13)

Notice that the Bayesian estimator in (3.13) depends on the parameters of the prior distri-

butions of β and α. These parameters could be estimated by means of an empirical bayesian

procedure [17]. Therefore, it is proposed to choose (m + 1, V ) and (n + 1,W ) as the values of

(a1, b1) and (a2, b2), respectively.

4. Interval estimation of R

In this section, we first obtain the exact distribution of R̂MLE when the common scale pa-

rameter is known and obtain the exact confidence interval of R. We also obtain the asymptotic

distribution of R̂. Based on the asymptotic distribution of R̂, the asymptotic confidence interval

of R is derived. It is clear that the confidence intervals based on the asymptotic results do not
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perform very well for small sample sizes. For comparison, another two confidence intervals based

on bootstrap methods are proposed in this section. Finally, based on the Bayes estimation of R,

we obtain the Bayesian credible interval of R.

4.1. Exact confidence interval

In this section, we also assume that λ is known. Based on Section 3, it is clear that the MLE

of R is

R̂MLE =
nk

∑m
i=1 ln(1− (1 +Xi)

−λ)

m
∑k

i=1

∑ni

j=1 ln(1− (1 + Yij)−λ) + nk
∑m

i=1 ln(1− (1 +Xi)−λ)
.

It is easy to see that ln(1− (1+Xj)
−λ) follows an exponential distribution with parameter β for

each j = 1, 2, . . . ,m and ln(1− (1 + Yij)
−λ) follows an exponential distribution with parameter

α for each i = 1, 2, . . . , k; j = 1, 2, . . . , ni. Therefore, 2β
∑m

i=1 ln(1− (1 +Xi)
−λ) ∼ χ2(2m) and

2α
∑k

i=1

∑ni

j=1 ln(1− (1 + Yij)
−λ) ∼ χ2(2n). So,

R̂MLE =
1

1 + 1
k
β
αF

,

that is,
R

1−R
× 1− R̂MLE

R̂MLE

∼ F,

where the random variable F follows F distribution with 2n and 2m degrees of freedom. So, the

pdf of R̂ is as follows

fR̂(r) = C(
α

β
)n × (1− r)n−1r−(1+n)(1 + k

nα

mβ

1− r

r
)−(n+m),

where 0 < x < 1, C = Γ(m+n)
Γ(m)Γ(n) (k

n
m )n.

The 100(1− γ)% confidence interval of R, say, [L1, U1], can be obtained as[ 1

1 + Fγ/2;2m,2n × (1/R̂MLE − 1)
,

1

1 + F(1−γ/2);2m,2n) × (1/R̂MLE − 1)

]
, (4.1)

where F(γ/2;2m,2n) and F(1−γ/2;2n,2m) are the lower and upper γ/2th percentile points of the F

distribution.

4.2. Approximate confidence interval

We denote the expected Fisher information matrix of θ = (α, β, λ) as J(θ) = E(I(θ)), where

I(θ) = [Iij ]i,j=1,2,3 is the observed information matrix, i.e.,

I(θ) = −


∂2L

∂α2

∂2L

∂α∂β

∂2L

∂α∂λ
∂2L

∂β∂α

∂2L

∂β2

∂2L

∂β∂λ
∂2L

∂λ∂α

∂2L

∂λ∂β

∂2L

∂λ2

 .

It is easy to see that

I11 =
n

α2
, I12 = I21 = 0,
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I13 = I31 = −
k∑

i=1

ni∑
j=1

(1 + yij)
−λ ln(1 + yij)

1− (1 + yij)−λ
, I22 =

m

β2
,

I23 = I32 = −
m∑
j=1

(1 + xj)
−λ ln(1 + xj)

1− (1 + xj)−λ
,

I33 =
m+ n

λ2
+ (α− 1)

k∑
i=1

ni∑
j=1

(ln(1 + yij))
2(1 + yij)

−λ

(1− (1 + yij)−λ)2
+

(β − 1)
n∑

j=1

(ln(1 + xj))
2(1 + xj)

−λ

(1− (1 + xj)−λ)2
.

Through simple computation, we can obtain

J11 =
n

α2
, J12 = J21 = 0, J13 = J31 = −nαλA(α, λ),

J22 =
m

β2
, J23 = J32 = −mβλA(β, λ),

J33 =
m+ n

λ2
+ nλα(α− 1)B(α, λ) +mλβ(β − 1)B(β, λ),

where,

A(α, λ) =

∫ ∞

0

(1 + y)−2λ−1 ln(1 + y)(1− (1 + y)−λ)α−2dy,

B(α, λ) =

∫ ∞

0

(1 + y)−2λ−1(ln(1 + y))2(1− (1 + y)−λ)α−3dy.

Theorem 4.1 As ni → ∞, i = 1, 2, . . . , k; m → ∞ and n
m → p, then

[
√
n(α̂− α),

√
m(β̂ − β),

√
m(λ̂− λ)] → N(0, U−1(α, β, λ)),

where

U(α, β, λ) =

 u11 0 u13

0 u22 u23

u31 u32 u33


and

u11 =
1

n
J11 =

1

α2
, u13 = u31 =

1

n
J13 = −αλA(α, λ),

u22 =
1

m
J22 =

1

β2
, u23 = u32 =

√
p

n
J23 = − βλ

√
p
A(β, λ),

u33 =
1

n
J33 =

p+ 1

pλ2
+ λα(α− 1)B(α, λ) +

λβ(β − 1)

p
B(β, λ).

Proof The proof follows from the asymptotic normality of MLE. �

Theorem 4.2 As ni → ∞, i = 1, 2, . . . , k; m → ∞ and n
m → p, then

√
m(R̂MLE −R) → N(0, B2),

where

B2 =
1

K(α+ β)4
[β2(u22u33 − u2

23)− 2αβ
√
pu23u31 + pα2(u11u33 − u2

13)],
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K = |U | = u11u22u33 − u11u23u32 − u13u22u31.

Proof Using the results of [18], we can complete the proof. �
Using Theorem 4.2, we can obtain asymptotic confidence interval of R, say [L2, U2], is

[R̂MLE − Z(1−γ/2)
B̂√
m
, R̂MLE + Z(1−γ/2)

B̂√
m
], (4.2)

where Z(1−γ/2) is the (1− γ/2)th quantile of the standard normal distribution.

Note that if we want to compute the approximate confidence interval of R, the variance B

needs to be estimated. To estimate it, the empirical Fisher information matrix and the MLE of

α, β, and λ are used, as follows

u11 =
1

α̂2
, u13 = u31 = −αλA(α̂, λ̂),

u22 =
1

β̂2
, u23 = u32 = − βλ

√
p
A(β̂, λ̂),

u33 =
p+ 1

pλ̂2
+ λ̂α̂(α̂− 1)B(α̂, λ̂) +

λ̂β̂(β̂ − 1)

p
B(β̂, λ̂).

4.3. Bayesian credible interval

In Section 3.2, we see that the poster distributions of α and β are gamma distribution with

parameters (2m + 1, 2W ) and (2n + 1, 2V ), respectively. Thus 4αW and 4βV are independent

chi-squared random variables with 2(2n + 1) and 2(2m + 1) degrees of freedom, respectively.

Therefore,
4αW/2(2n+ 1)

4βV/2(2m+ 1)
∼ F (4n+ 2, 4m+ 2),

that is,
(2m+ 1)W

(2n+ 1)V
× α

β
∼ F (4n+ 2, 4m+ 2).

From (2.3), we see that α
β = 1

k
R

1−R . Thus

F =
(2m+ 1)W

(2n+ 1)V

1

k

R

1−R
, (4.3)

is an F distributed random variable with (4n+ 2, 4m+ 2) degrees of freedom.

Using F in (4.3) as a pivotal quantity, we can obtain (1− γ)% Bayesian credible interval for

R as [L5, U5], where

L5 =
[
Fγ/2(4m+ 2, 4n+ 2)× 1

k

(2m+ 1)W

(2n+ 1)V
+ 1

]−1
,

and

U5 =
[
F1−γ/2(4m+ 2, 4n+ 2)× 1

k

(2m+ 1)W

(2n+ 1)V
+ 1

]−1
.

It is observed that the confidence intervals based on the asymptotic result do not perform

well for small sample sizes. We propose two confidence intervals mainly for small sample size.
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4.4. Bootstrap-p confidence interval

Percentile bootstrap method based on the idea of Efron [19] is proposed in this subsection.

We call it as Boot-p method.

Step 1. From sample {yi1, yi2, . . . , yini}, i = 1, 2, . . . , k and {x1, x2, . . . , xm}, compute α̂, β̂

and λ̂.

Step 2. Use α̂ and λ̂ to generate a bootstrap sample {y∗i1, y∗i2, . . . , y∗ini
} and similarly use β̂

and λ̂ to generate a bootstrap sample {x∗
1, x

∗
2, . . . , x

∗
m}. Compute the bootstrap estimate of R

using (3.10), say R̂∗.

Step 3. Repeat Step 2 N times.

Step 4. Let G(x) = P (R̂∗ < x) be the cumulative distribution of R̂∗. Define R̂Boot-p =

G−1(x) for a given x. The approximate 100(1 − γ)% confidence interval of R, [L3, U3], is given

by [
R̂Boot-p(

γ

2
), R̂Boot-p(1−

γ

2
)
]
.

4.5. Bootstrap-t confidence interval

Bootstrap t method based on the idea of Hall [20] is proposed in this subsection. We call it

as Boot-t method.

Step 1. From sample {yi1, yi2, . . . , yini}, i = 1, 2, . . . , k and {x1, x2, . . . , xm} compute α̂, β̂

and λ̂.

Step 2. Use α̂ and λ̂ to generate a bootstrap sample {y∗i1, y∗i2, . . . , y∗ini
} and similarly use β̂

and λ̂ to generate a bootstrap sample {x∗
1, x

∗
2, . . . , x

∗
m}. Compute the bootstrap estimate of R

using (3.10), say R̂∗ and following statistic

T ∗ =

√
m(R̂∗ − R̂)√
Var(R̂∗)

,

where

√
Var(R̂∗) is obtained using the observed or expected Fisher information matrix.

Step 3. Repeat Step 2 N times.

Step 4. For the T ∗ values obtained in Step 2, determine the upper and lower bounds of

the 100(1 − γ)% confidence interval of R as follows: let H(x) = P (T ∗ ≤ x) be the cumulative

distribution function of T ∗. For a given x, define

R̂Boot-t(x) = R̂+m−1/2

√
Var(R̂)H−1(x).

Here also, Var(R̂) can be computed as same as the computation of Var(R̂∗). The approximate

100(1− γ)% confidence interval of R, [L4, U4], is given by[
R̂Boot-t(

γ

2
), R̂Boot-t(1−

γ

2
)
]
.

5. Simulations and discussions

In this section, we present some results based on Monte Carlo simulations to demonstrate the
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performance of the different point estimators and interval estimations for different sample sizes

and different parameter values. We consider three numerical experiments separately to draw

inference on R.

(i) The point estimations for R, that is, the MLE and Bayesian estimation for R.

(ii) The interval estimations for R, that is, the exact, the approximate and the Bayesian

credible interval for R.

(iii) The Bootstrap-p and Bootstrap-t confidence intervals for R.

In all cases, we consider the following small sample size, k = 2,m = 20, 30, (n1, n2) = (15, 10),

(20, 20), (25, 15), and we take α = 2, 2.5, 3 and β = 2.5, 3, 3.5, 4, 5, 6, respectively. All the results

are listed based on 10000 replications.

Case (i) Since the parameter λ must be known in the Bayesian estimation for R, without loss

of generality, we take λ = 1 in Case (i). From the sample, we estimate α and β using (3.5)

and (3.6), respectively. Finally we obtain the MLE of R using (3.10). In addition, we obtain

the Bayesian estimation using (3.13) and we report the average biases and mean squared errors

(MSEs) in Table 1 over 10000 replications.

R̂MLE R̂BAYESm (n1, n2) (α, β) R
bias MSE bias MSE

20 (25, 15) (2.0, 2.5) 0.6154 0.0525 0.0079 0.0525 0.0077

(2.5 ,3.0) 0.6250 0.0733 0.0131 0.0729 0.0128

(3.0, 6.0) 0.5000 -0.1753 0.0645 -0.1705 0.0605

(20, 20) (2.0, 2.5) 0.6154 0.0536 0.0074 0.0539 0.0073

(2.5, 3.0) 0.6250 0.0737 0.0125 0.0734 0.0123

(3.0, 6.0) 0.5000 -0.1772 0.0654 -0.1714 0.0607

(15, 10) (2.0, 2.5) 0.6154 0.0543 0.0094 0.0553 0.0092

(2.5, 3.0) 0.6250 0.0746 0.0145 0.0751 0.0143

(3.0, 6.0) 0.5000 -0.1760 0.0661 -0.1681 0.0597

(10, 15) (2.0, 2.5) 0.6154 0.0552 0.0082 0.0562 0.0082

(2.5, 3.0) 0.6250 0.0757 0.0135 0.0766 0.0135

(3.0, 6.0) 0.5000 -0.1762 0.0649 -0.1681 0.0584

30 (25, 15) (2.0, 2.5) 0.6154 0.0551 0.0082 0.0556 0.0082

(2.5, 3.0) 0.6250 0.0759 0.0136 0.0762 0.0135

(3.0, 6.0) 0.5000 -0.1724 0.0620 -0.1680 0.0585

(20, 20) (2.0, 2.5) 0.6154 0.0553 0.0078 0.0560 0.0078

(2.5, 3.0) 0.6250 0.0753 0.0129 0.0755 0.0128

(3.0, 6.0) 0.5000 -0.1729 0.0620 -0.1680 0.0582

(15,10) (2.0, 2.5) 0.6154 0.0570 0.0095 0.0582 0.0095

(2.5, 3.0) 0.6250 0.0763 0.0144 0.0772 0.0144

(3.0, 6.0) 0.5000 -0.1703 0.0615 -0.1647 0.0571

(10, 15) (2.0, 2.5) 0.6154 0.0579 0.0089 0.0591 0.0090

(2.5, 3.0) 0.6250 0.0781 0.0142 0.0788 0.0142

(3.0, 6.0) 0.5000 -0.1739 0.0632 -0.1677 0.0583

Table 1 Biases and MSEs of parameter point estimations

Some of the points are quite clear from Table 1.
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• Even for small sample sizes, the performance of the MLEs and Bayesian estimations are

quite satisfactory in terms of biases and MSEs. For example, when (α, β)=(2.0, 2.5), m = 20

and (n1, n2) = (20, 20), the biases and MSEs for above estimation of R are 0.0536, 0.0074 and

0.0539, 0.0073, respectively.

• It is observed that when n1 or n2 increase, the MSEs decrease. This verifies the consistency

property of the MLE and Bayesian estimation of R. For example, when m = 30, (n1, n2) =

(10, 15) and (α, β) = (2.0, 2.5), the MSEs of (R̂MLE, R̂BAYES) are 0.0089, 0.0090. When (n1, n2)

increase to (20, 20), the corresponding above values decrease to 0.0078, and 0.0078, respectively.

• For fixed n, as m increases, the MSEs decrease. For fixed m, as n increases, the MSEs

decrease as expected.

• The MSE for each point estimation is relevant to the value of R. In fact, it decreases as

R increases. For example, when m = 30, (n1, n2) = (10, 15), R = 0.5000, 0.6154, 0.6250, the

corresponding MSEs of R̂BAYES are 0.0583, 0.0090, 0.0142. The same performances of MSEs of

R̂MLE are also seen.

Case (ii) Now let us consider the exact, approximate interval estimation and Bayesian credible

interval for R. In this experiment, we also set λ = 1. We report the 95% confidence intervals of

R and coverage probabilities for all sample sizes and parameter values.

Exact Approximate Bayes
(n1, n2) (α, β)

C.I.(LEN.) C.P. C.I.(LEN.) C.P. C.I.(LEN.) C.P.

(25, 15) (2.0, 2.5) (0.504, 0.715)0.210 0.974 (0.242, 0.847)0.605 0.957 (0.533, 0.682)0.148 0.897

(2.5, 3.0) (0.511, 0.724)0.208 0.975 (0.351, 0.752)0.401 0.999 (0.544, 0.691)0.146 0.894

(3.0, 6.0) (0.390, 0.612)0.221 0.974 (0.393, 0.598)0.205 0.967 (0.418, 0.574)0.155 0.897

(20, 20) (2.0, 2.5) (0.504, 0.715)0.210 0.987 (0.239, 0.854)0.615 0.995 (0.533, 0.682)0.148 0.948

(2.5, 3.0) (0.514, 0.723)0.209 0.989 (0.346, 0.756)0.409 0.999 (0.543, 0.690)0.147 0.950

(3.0, 6.0) (0.390, 0.612)0.222 0.989 (0.394, 0.598)0.204 0.987 (0.417, 0.574)0.156 0.951

(15, 10) (2.0, 2.5) (0.496, 0.725)0.229 0.968 (0.475, 0.755)0.279 0.990 (0.531, 0.692)0.160 0.874

(2.5, 3.0) (0.504, 0.731)0.227 0.966 (0.472, 0.768)0.296 0.994 (0.539, 0.699)0.159 0.878

(3.0, 6.0) (0.380, 0.621)0.241 0.968 (0.309, 0.621)0.312 0.986 (0.414, 0.583)0.169 0.877

(25, 15) (2.0, 2.5) (0.518 ,0.703)0.185 0.962 (0.494, 0.732)0.237 0.991 (0.545, 0.676)0.130 0.866

(2.5, 3.0) (0.527, 0.711)0.184 0.969 (0.488, 0.750)0.262 0.997 (0.555, 0.684)0.129 0.871

(3.0, 6.0) (0.402, 0.598)0.195 0.966 (0.355, 0.576)0.220 0.957 (0.429, 0.567)0.137 0.870

(20, 20) (2.0, 2.5) (0.517, 0.704)0.186 0.983 (0.494, 0.732)0.238 0.997 (0.545, 0.676)0.132 0.913

(2.5, 3.0) (0.527, 0.712)0.184 0.984 (0.486, 0.750)0.264 0.999 (0.555, 0.685)0.130 0.916

(3.0, 6.0) (0.402, 0.598)0.196 0.982 (0.356, 0.578)0.222 0.976 (0.429, 0.567)0.138 0.913

(15, 10) (2.0, 2.5) (0.504, 0.712)0.207 0.949 (0.515, 0.714)0.198 0.940 (0.539, 0.685)0.145 0.839

(2.5, 3.0) (0.513, 0.719)0.206 0.953 (0.523, 0.722)0.199 0.951 (0.548, 0.692)0.144 0.845

(3.0, 6.0) (0.390, 0.609)0.218 0.954 (0.410, 0.591)0.181 0.906 (0.424, 0.57)0.153 0.847

Talbe 2 Confidence intervals for exact, approximate methods and Bayesian credible interval

From Table 2, we can see that

• It is observed that the average length of exact confidence interval is shorter than that of

approximate confidence interval but it is longer than that of Bayesian credible interval. For
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example, when m = 20, (n1, n2) = (25, 15) and (α, β) = (2.0, 2.5), the lengths of three confi-

dence intervals are 0.2104, 0.6058 and 0.1483, respectively. But the performance of the coverage

probability is opposite of the three methods.

• The average lengths of all intervals decrease as m or n increases. For example, for exact

method, when (α, β) = (2.0, 2.5), the lengths of the confidence intervals corresponding to follow-

ing combinations of (m,n1, n2) = (20, 25, 15), (20, 20, 20), (20, 15, 10), (30, 25, 15), (30, 20, 20),

(30, 15, 10), are 0.2104, 0.2109, 0.2229 and 0.0858, 0.1862 and 0.2027, respectively.

• It is observed that the exact interval (L1, U1) has the largest coverage probability which

is the anticipated 95%. Bayesian credible interval (L5, U5) has the smallest average coverage

probability and it is far from 95%.

• Among the different confidence intervals, Bayesian credible interval has the shortest confi-

dence length.

Case (iii) Since the confidence intervals based on the exact and approximate methods for small

sample sizes do not perform well, we present an analysis based on bootstrap method. Here, we

assume that λ is unknown. From a sample, we compute the estimate of λ using the iterative

algorithm (3.9). We have used the initial estimate to be 1 and the iterative process stops when

the difference between the two consecutive iterates is less than 10−5. Once we estimate λ, we

estimate α and β using (3.5) and (3.6), respectively. Then we can obtain the Bootstrap-p and

Bootstrap-t confidence intervals for R using the methods presented in Sections 4.4 and 4.5. We

report the confidence intervals and average coverage probabilities of Bootstrap-p and Bootstrap-t

methods in Table 3. The performance of the Bootstrap confidence intervals are quite well.

• The coverage probability of Bootstrap methods is not robust, but it is close to the nominal

level in most case. In other side, the performance of the Bootstrap-t method is better than the

Bootstrap-p method’s.

• The performance of the bootstrap confidence intervals with respect to length is comparable

with the length of exact and approximate confidence intervals and similarly, the lengths decrease

as the sample sizes increase.

From the above simulation results and discussion, we can see that the performance of the

maximum likelihood method is better than the Bayesian method of the point estimation of R

in terms of both bias and MSE. It is observed that the exact method of constructing confidence

intervals always maintains its coverage percentage at the nominal level but there is a difference

about their performances with respect to the average length of the confidence intervals of different

combination sets of parameters. Generally, the performance of Bayesian method is the best

of all the methods in terms of interval length. The Boot-t confidence intervals and Boot-p

confidence intervals both work well in terms of length of confidence intervals in most cases

but the performance is not well about the coverage percentage. The Boot-t method seems to

work better than the Boot-p method in terms of coverage percentage. It is also clear that the

exact method of constructing the confidence intervals is more robust than the other methods

mentioned. We recommend to use the exact method for constructing the confidence intervals.
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Finally, it should be mentioned that the exact method confidence intervals and Bayesian credible

interval are computationally expensive especially for the integral equations. Hence, the bootstrap

method can be used as an alterative for this case.

Bootstrap-p Bootstrap-t
(n1, n2) (α, β) R

C.I. Length C.P. C.I. Length C.P.

(25, 15) (2.0, 2.5) 0.615 (0.155, 0.654) 0.498 0.882 (0.478, 0.686) 0.208 0.956

(2.5, 3.0) 0.625 (0.441, 0.716) 0.275 0.984 (0.499, 0.700) 0.200 0.952

(3.0, 6.0) 0.500 (0.301, 0.552) 0.251 0.942 (0.357, 0.567) 0.210 0.950

(20, 20) (2.0, 2.5) 0.615 (0.494, 0.732) 0.238 0.979 (0.502, 0.662) 0.159 0.950

(2.5, 3.0) 0.625 (0.498, 0.664) 0.166 0.902 (0.513, 0.679) 0.166 0.950

(3.0, 6.0) 0.500 (0.346, 0.550) 0.204 0.942 (0.368, 0.556) 0.187 0.950

(15, 10) (2.0, 2.5) 0.615 (0.475, 0.730) 0.255 0.966 (0.476, 0.704) 0.227 0.950

(2.5, 3.0) 0.625 (0.484, 0.737) 0.253 0.962 (0.494, 0.709) 0.215 0.950

(3.0, 6.0) 0.500 (0.407, 0.571) 0.163 0.769 (0.393, 0.630) 0.237 0.960

(25, 15) (2.0, 2.5) 0.615 (0.512, 0.696) 0.184 0.941 (0.591, 0.692) 0.173 0.952

(2.5, 3.0) 0.625 (0.531, 0.713) 0.181 0.958 (0.493, 0.661) 0.168 0.950

(3.0, 6.0) 0.500 (0.305, 0.585) 0.280 0.977 (0.386, 0.573) 0.187 0.950

(20, 20) (2.0, 2.5) 0.615 (0.5260, 0.687) 0.161 0.955 (0.521, 0.682) 0.159 0.950

(2.5, 3.0) 0.625 (0.576, 0.722) 0.145 0.813 (0.530, 0.687) 0.157 0.953

(3.0, 6.0) 0.500 (0.362, 0.550) 0.187 0.920 (0.388, 0.567) 0.179 0.950

(15, 10) (2.0, 2.5) 0.615 (0.483, 0.717) 0.233 0.958 (0.503, 0.703) 0.199 0.951

(2.5, 3.0) 0.625 (0.512, 0.722) 0.209 0.967 (0.515, 0.738) 0.223 0.950

(3.0, 6.0) 0.500 (0.367, 0.600) 0.232 0.942 (0.368, 0.600) 0.231 0.950

Table 3 Bootstrap-p and Bootstrap-t confidence intervals
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