Several Identities for Inverse-Conjugate Compositions

Yuhong GUO
School of Mathematics and Statistics, Hexi University, Gansu 734000, P. R. China

Abstract

In this paper, we first present several identities related to the inverse-conjugate compositions having parts of size ≤ 3, the compositions into parts equal to 1 or 2 , the compositions into odd parts and the compositions into parts greater than 1. In addition, we provide a bijective proof of a relation for inverse-conjugate compositions having parts of size $\leq k$.

Keywords inverse-conjugate compositions; identity; Fibonacci number; Tribonacci number; bijective proof
MR(2010) Subject Classification 05A17; 05A19

1. Introduction

A composition of a positive integer n is a representation of n as a sequence of positive integers called parts which sum to n. For example, the compositions of 4 are: $(4),(3,1),(1,3),(2,2)$, $(2,1,1),(1,2,1),(1,1,2),(1,1,1,1)$. It is known that there are 2^{n-1} unrestricted compositions of n. MacMahon [1] devised a graphical representation of a composition, called a zig-zag graph, which resembles the partition Ferrers graph except that the first dot of each part is aligned with the last part of its predecessor. For example, the zig-zag graph of the composition $(6,3,1,2,2)$ is shown in Figure 1.

Figure 1 zig-zag graph
The conjugate of a composition is obtained by reading its graph by columns from left to right. Figure 1 gives the conjugate of the composition $(6,3,1,2,2)$ as $(1,1,1,1,1,2,1,3,2,1)$.

Let C denote a composition of n. A k-composition is a composition with k parts, i.e., $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$. The conjugate of C is denoted by C^{\prime} and the inverse of C is the reversal composition $\bar{C}=\left(c_{k}, c_{k-1}, \ldots, c_{1}\right) . \quad C$ is called inverse-conjugate if $C^{\prime}=\bar{C}$. For example, $(2,1,3,1)$ is an inverse-conjugate composition of 7 .

In 1975, Hoggatt-Bicknell [2] studied ordinary compositions with parts $\leq k$, and obtained the following result [3, p.72]

Received October 27, 2017, Accepted May 17, 2018
Supported by the National Natural Science Foundation of China (Grant No. 11461020).
E-mail address: gyh7001@163.com

Theorem 1.1 ([2]) Let $C_{k}(N)$ be the number of compositions of a positive integer N using only the parts $1,2, \ldots, k$. Then

$$
\begin{equation*}
C_{k}(N)=F_{N+1}^{(k)} \tag{1.1}
\end{equation*}
$$

where $F_{r}^{(n)}$ is the n-step Fibonacci number.
The n-step Fibonacci numbers $F_{r}^{(n)}$ (see [3]) extend the ordinary Fibonacci numbers.
Definition 1.2 ([3]) The n-step Fibonacci numbers are defined for any positive integer n by

$$
\begin{equation*}
F_{r}^{(n)}=\sum_{i=1}^{n} F_{r-i}^{(n)}, \quad r>2, \tag{1.2}
\end{equation*}
$$

with $F_{r}^{(n)}=0$ for $r \leq 0, F_{1}^{(n)}=F_{2}^{(n)}=1$.
Note that the case $n=1$ gives the sequence of ones, $F_{r}^{(1)}: 1,1,1, \ldots$ while the case $n=2$ gives the Fibonacci numbers, that is $\left(F_{r}^{(2)}=F_{r}\right): F_{1}=F_{2}=1, F_{r}=F_{r-1}+F_{r-2}, r>2$.

Inverse-conjugate compositions have been studied by some researchers [1, 4-6]. It is known that these compositions are defined for only odd weights, and that there are 2^{n-1} inverseconjugate compositions of $2 n-1$.

Recently Guo-Munagi [7] considered inverse-conjugate compositions with parts of size not exceeding a fixed integer $k>0$, and obtained their enumeration properties as well as connections with other types of compositions, as summarised in the following three theorems:

Theorem $1.3([7])$ Let $I C_{k}(N)$ denote the number of inverse-conjugate compositions of N into parts of size $\leq k$. Then

$$
\begin{equation*}
I C_{k}(2 n-1)=\sum_{j=1}^{k-1} I C_{k}(2(n-j)-1), \quad n>k \tag{1.3}
\end{equation*}
$$

with $I C_{k}(2 t-1)=2^{t-1}, t=1,2, \ldots, k$.
Theorem $1.4([7])$ Let $I C_{k}(N)$ denote the number of inverse-conjugate compositions of N into parts of size $\leq k$. Then

$$
\begin{equation*}
I C_{k}(2 n-1)=2 F_{n}^{(k-1)}, \quad n \geq k-1 \tag{1.4}
\end{equation*}
$$

where $F_{r}^{(n)}$ is the n-generalized Fibonacci number.
Theorem $1.5([7])$ Let $C_{k}(n)$ be the number of compositions of a positive integer n using only the parts $1,2, \ldots, k$. Then

$$
\begin{equation*}
I C_{k+1}(2 n-1)=2 C_{k}(n-1), \quad n>1 . \tag{1.5}
\end{equation*}
$$

In Section 2, we first present several identities related to the inverse-conjugate compositions having parts of size ≤ 3, the compositions into parts equal to 1 or 2 , the compositions into odd parts and the compositions into parts greater than 1. And bijective proofs are shown. In addition, we provide a bijective proof of Theorem 1.5.

2. Main results

We first cite the following terminologies and lemmas from [4] that will be used in the proofs later.

Let $A=\left(a_{1}, a_{2}, \ldots, a_{i}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{j}\right)$ be compositions. The concatenation of the parts of A and B is defined as $A \mid B=\left(a_{1}, a_{2}, \ldots, a_{i}, b_{1}, b_{2}, \ldots, b_{j}\right)$. In particular for a nonnegative integer c, we have $A \mid(c)=(A, c)$ and $(c) \mid A=(c, A)$. The join of A and B with notation $A \uplus B:=\left(a_{1}, a_{2}, \ldots, a_{i}+b_{1}, b_{2}, \ldots, b_{j}\right)$.

Lemma 2.1 ([4]) An inverse-conjugate composition C (or its inverse) has the form:

$$
C=\left(1^{b_{r}-1}, b_{1}, 1^{b_{r-1}-2}, b_{2}, 1^{b_{r-2}-2}, b_{3}, \ldots, b_{r-1}, 1^{b_{1}-2}, b_{r}\right), b_{i} \geq 2
$$

Lemma 2.2 ([4]) If $C=\left(c_{1}, \ldots, c_{k}\right)$ is an inverse-conjugate composition of $n=2 k-1>1$, or its inverse, then there is an index j such that $c_{1}+\cdots+c_{j}=k-1$ and $c_{j+1}+\cdots+c_{k}=k$ with $c_{j+1}>1$.

Moreover,

$$
\begin{equation*}
\overline{\left(c_{1}, \ldots, c_{j}\right)}=\left(c_{j+1}-1, c_{j+2}, \ldots, c_{k}\right)^{\prime} \tag{2.1}
\end{equation*}
$$

Thus C can be written in the form

$$
\begin{equation*}
C=A \mid(1) \uplus B \text { such that } B^{\prime}=\bar{A}, \tag{2.2}
\end{equation*}
$$

where A and B are generally different compositions of $k-1$.
To begin with we present the following results for the inverse-conjugate compositions of odd numbers into parts not exceeding 3 according to Theorems 1.3-1.5.

Theorem 2.3 Let $I C_{3}(N)$ denote the number of inverse-conjugate compositions of N into parts of size ≤ 3. Then

$$
\begin{equation*}
I C_{3}(2 n+1)=I C_{3}(2 n-1)+I C_{3}(2 n-3), \quad n>2 \tag{2.3}
\end{equation*}
$$

with $I C_{3}(1)=1, I C_{3}(3)=2, I C_{3}(5)=4$.
Theorem 2.4 Let $I C_{3}(N)$ denote the number of inverse-conjugate compositions of N into parts of size ≤ 3. Then

$$
\begin{equation*}
I C_{3}(2 n-1)=2 F_{n}, \quad n \geq 2 \tag{2.4}
\end{equation*}
$$

where F_{n} is the Fibonacci numbers.
Theorem 2.5 Let $C_{2}(n)$ be the number of compositions of a positive integer n using only the parts 1,2. Then

$$
\begin{equation*}
I C_{3}(2 n+1)=2 C_{2}(n), \quad n \geq 1 \tag{2.5}
\end{equation*}
$$

From Theorems 2.4 and 2.5, we also observed that the number of compositions of n into parts of size 1 or 2 is F_{n+1}. And Theorem 2.5 presents an identity between the number of inverseconjugate compositions having parts of size ≤ 3 and the number of compositions into parts equal to 1 or 2 . In this paper, we provide a bijective proof of Theorem 2.5.

Because an inverse-conjugate composition is always paired with its inverse, we give bijective proofs for only inverse-conjugate compositions having parts ≤ 3 in which the first part is 1 . The
proofs for compositions with the first part >1 are similar.
Proof For an inverse-conjugate composition $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ of $2 n+1$ having parts of size ≤ 3, and the first part is 1 . From Lemma 2.2 we know that there is an index j such that $c_{1}+c_{2}+\cdots+c_{j}=n$ and $c_{j+1}+\cdots+c_{n}=n+1$ with $c_{j+1}>1$, or $c_{1}+c_{2}+\cdots+c_{j}=n+1$ and $c_{j+1}+\cdots+c_{n}=n$ with $c_{j}>1$. And from Lemma 2.1, we know that the number of 1's to the right of the part 3 is at most 1 in an inverse-conjugate composition. So we consider the following two cases.

Case 1 When $c_{1}+c_{2}+\cdots+c_{j}=n$, using C we first obtain a composition $B=\left(c_{1}, c_{2}, \ldots, c_{j}\right)$. Next, for each part of size 3 in composition B, we do the following operation: if 3 is followed by a 1 , we replace 3 by " 2,1 "; otherwise replace 3 by " $1,1,1$ ". In this way, we obtain a composition of n with parts of size ≤ 2 and the first part is 1 . But this case does not include compositions with three parts being " $1,1,1$ " on the left end.

Case 2 When $c_{1}+c_{2}+\cdots+c_{j}=n+1$ with $c_{j}>1$, we first get a composition $A=$ $\left(1, c_{j+1}, \ldots, c_{n}\right)^{\prime}$, where the last part of A is 1 because of $c_{n}>1$, and the first part of A is >1. Using A we obtain a composition D of n by deleting the last part 1 of A. Similarly, for composition D, we replace 3 by " 2,1 " if the part on the right side of it is 1 , otherwise replace 3 by " $1,1,1$ ". In this way, we get a composition of n having parts of size ≤ 2 and the first part is >1. And this case includes compositions having three parts are " $1,1,1$ " on the left end.

Conversely, for a composition K into parts of size ≤ 2 of n, we consider the following three cases.

Case a When there are at most two 1's on the left end of K, we first do the following operation: replace " 2,1 " with 3 if there are parts " $2,1,1$ ", or replace " $1,1,1$ " with 3 if there are parts " $\underbrace{1,1, \ldots, 1}_{t \geq 3}$ " from right to left in composition K. So we get a composition M. Next, we get a composition $R=M \mid((1) \mid \bar{M})^{\prime}$. Thereupon the composition R is an inverse-conjugate composition of $2 n+1$ with parts ≤ 3, and the first part is 1 . Here the composition R satisfies $c_{1}+c_{2}+\cdots+c_{j}=n$ and $c_{j+1}+\cdots+c_{n}=n+1$ with $c_{j+1}>1$.

For example, the composition ($1,1,2,2,1,1,1,2$) of 11 into 1 's and 2 's produces the inverseconjugate composition ($1,1,2,2,3,2,2,2,1,2,2,3$) of 23 as follows:

$$
(1,1,2,2,1,1,1,2) \longrightarrow(1,1,2,2,3,2) \longrightarrow(1,1,2,2,3,2,2,2,1,2,2,3) .
$$

Case b When there are three parts " $1,1,1$ " on the left end of K, we first replace " $1,1,1$ " by 3 , and then replace " 2,1 " with 3 if there are parts " $2,1,1$ ", or replace " $1,1,1$ " with 3 if there are parts " $\underbrace{1,1, \ldots, 1}_{t \geq 3}$ " from right to left in K. In this way, we have a composition N. Next, we obtain a composition $H=N \mid(1)$. Using H we get a composition F by replacing the first part λ of H with $\lambda-1$. Finally, we obtain a composition $G=\bar{F} \uplus H^{\prime}$. Hence the composition G is an inverse-conjugate composition of $2 n+1$ with parts ≤ 3, and the first part is 1 . Here the
composition G satisfies $c_{1}+c_{2}+\cdots+c_{j}=n+1$ and $c_{j+1}+\cdots+c_{n}=n$ with $c_{j}>1$.
Case c When the first part of K is 2 , we obtain a composition P using the same steps in Case b except that the first part 2 remains the same. Hence the composition P is an inverse-conjugate composition of $2 n+1$ with parts ≤ 3, and the first part is 1 . Here the composition P satisfies $c_{1}+c_{2}+\cdots+c_{j}=n+1$ and $c_{j+1}+\cdots+c_{n}=n$ with $c_{j}>1$.

Thus we complete the proof.
We cite an example to illustrate Theorem 2.5.
Example 2.6 Let $n=5$. The corresponding relations between the inverse-conjugate compositions of 11 into parts of size ≤ 3 and the compositions of 5 into 1 's and 2 's are as follows.

$$
\begin{aligned}
& (1,1,3,2,1,3) \longleftrightarrow(1,1,1,1,1) \longleftrightarrow(3,1,2,3,1,1), \\
& (1,2,1,2,3,2) \longleftrightarrow(2,1,2) \longleftrightarrow(2,3,2,1,2,1), \\
& (1,3,2,2,1,2) \longleftrightarrow(2,1,1,1) \longleftrightarrow(2,1,2,2,3,1), \\
& (1,2,2,2,2,2) \longleftrightarrow(1,2,2) \longleftrightarrow(2,2,2,2,2,1), \\
& (1,1,2,1,3,3) \longleftrightarrow(1,1,2,1) \longleftrightarrow(3,3,1,2,1,1), \\
& (1,3,1,3,1,2) \longleftrightarrow(1,2,1,1) \longleftrightarrow(2,1,3,1,3,1), \\
& (1,2,3,1,2,2) \longleftrightarrow(1,1,1,2) \longleftrightarrow(2,2,1,3,2,1), \\
& (1,1,2,2,2,3) \longleftrightarrow(2,2,1) \longleftrightarrow(3,2,2,2,1,1)
\end{aligned}
$$

It is known that the number of compositions of n into odd parts is F_{n}, and the number of compositions of n into parts greater than 1 is F_{n-1}. And then combined with Theorem 2.4, the following identities are also obtained.

Theorem 2.7 Let $C_{\text {odd }}(n)$ be the number of compositions of a positive integer n into odd parts. Then

$$
\begin{equation*}
I C_{3}(2 n-1)=2 C_{\text {odd }}(n), \quad n>1 \tag{2.6}
\end{equation*}
$$

Proof For an inverse-conjugate composition C of $2 n-1$ with parts ≤ 3, and the first part is 1, using proof of Theorem 2.5 we obtain a composition B of $n-1$ with parts of size 1,2 . Next append 1 to the left end of B to obtain a composition H, then adjoin 1 and all adjacent 2's on the right of it to produce new parts from left to right in H. Hence we obtain a composition of n into odd parts.

Clearly this correspondence is one-to-one, and vice versa. We complete the proof.
Theorem 2.8 Let $C_{>1}(n)$ be the number of compositions of n into parts greater than 1. Then

$$
\begin{equation*}
I C_{3}(2 n-1)=2 C_{>1}(n+1), \quad n>1 \tag{2.7}
\end{equation*}
$$

Proof For an inverse-conjugate composition C of $2 n-1$ with parts ≤ 3, and the first part is 1, firstly, we obtain a composition B of $n-1$ with parts of size 1,2 using proof of Theorem 2.5. Next a composition D is obtained by appending 1 in both the first end and the last end of B. Finally, we derive the conjugate D^{\prime} of D. Since the parts of D are 1's or 2's and both ends are 1 's, so the D^{\prime} is a composition of $n+1$ with the parts greater than 1 .

For example, the inverse-conjugate composition ($1,2,1,2,3,2$) and its inverse composition $(2,3,2,1,2,1)$ of 11 into parts ≤ 3 produce the composition $(2,3,2)$ of 7 with parts greater than 1 as follows:

$$
\begin{aligned}
& (1,2,1,2,3,2) \longrightarrow(1,3,2) \longrightarrow(2,1,2,1) \longrightarrow(2,1,2) \longrightarrow(1,2,1,2,1) \longrightarrow(2,3,2) \\
& (2,3,2,1,2,1) \longrightarrow(1,2,1,2,3,2) \longrightarrow(1,3,2) \longrightarrow(2,1,2,1) \longrightarrow(2,1,2) \\
& \longrightarrow(1,2,1,2,1) \longrightarrow(2,3,2)
\end{aligned}
$$

Obviously, this correspondence is one-to-one, and vice versa. We complete the proof.
We cite an example to illustrate Theorem 2.8.
Example 2.9 Let $n=6$. The corresponding relations between the inverse-conjugate compositions of 11 into parts of size ≤ 3 and the compositions of 7 into parts greater than 1 are as follows.

$$
\begin{aligned}
& (1,1,3,2,1,3) \longleftrightarrow(7) \longleftrightarrow(3,1,2,3,1,1) \\
& (1,2,1,2,3,2) \longleftrightarrow(2,3,2) \longleftrightarrow(2,3,2,1,2,1) \\
& (1,3,2,2,1,2) \longleftrightarrow(2,5) \longleftrightarrow(2,1,2,2,3,1) \\
& (1,2,2,2,2,2) \longleftrightarrow(3,2,2) \longleftrightarrow(2,2,2,2,2,1) \\
& (1,1,2,1,3,3) \longleftrightarrow(4,3) \longleftrightarrow(3,3,1,2,1,1) \\
& (1,3,1,3,1,2) \longleftrightarrow(3,4) \longleftrightarrow(2,1,3,1,3,1) \\
& (1,2,3,1,2,2) \longleftrightarrow(5,2) \longleftrightarrow(2,2,1,3,2,1) \\
& (1,1,2,2,2,3) \longleftrightarrow(2,2,3) \longleftrightarrow(3,2,2,2,1,1)
\end{aligned}
$$

3. A bijective proof of Theorem 1.5

Theorem 1.5 is the generalization of Theorem 2.5, so it has an important theoretical meaning to provide a bijective proof of Theorem 1.5. Although the proof is similar to that of Theorem 2.5, we still give a bijective proof of Theorem 1.5 in this section.

Proof For an inverse-conjugate composition $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ of $2 n-1$ with parts of size $\leq k$, and the first part is 1 . From Lemma 2.2 we know that there is an index j such that $c_{1}+c_{2}+\cdots+c_{j}=n-1$ and $c_{j+1}+\cdots+c_{n}=n$ with $c_{j+1}>1$, or $c_{1}+c_{2}+\cdots+c_{j}=n$ and $c_{j+1}+\cdots+c_{n}=n-1$ with $c_{j}>1$. Using Lemma 2.1 we know that the number of 1 's on the right of k is at most $k-2$ in an inverse-conjugate composition. Thus we consider the following two cases.

Case 1 When $c_{1}+c_{2}+\cdots+c_{j}=n-1$, we first obtain a composition $B=\left(c_{1}, c_{2}, \ldots, c_{j}\right)$. Next, for B we do the following transform: If there are no 1 's on the right of the part k, we replace k by " $\underbrace{1,1, \ldots, 1}_{k}$ ". If k is followed by $d 1$'s, we replace k with " $d+1, \underbrace{1,1, \ldots, 1}_{k-d-1}$ ", where $1 \leq d \leq k-2$. In this way, we obtain a composition of $n-1$ into parts of size $\leq k-1$ and the first part is 1 . But this case does not include the compositions with k parts being " $1,1, \ldots, 1$ " on the left end.

Case 2 When $c_{1}+c_{2}+\cdots+c_{j}=n$ with $c_{j}>1$, we first obtain a composition $A=$ $\left(1, c_{j+1}, \ldots, c_{n}\right)^{\prime}$, where the last part of A is 1 because of $c_{n}>1$, and the first part of A is >1. Next, a composition D of $n-1$ is got by deleting the last part 1 of A. Similarly, we replace k by " $d+1, \underbrace{1,1, \ldots, 1}_{k-d-1}$ " when there are $d 1$'s on the right of the part k, where $0 \leq d \leq k-2$. In this way, we obtain a composition of $n-1$ with parts of size $\leq k-1$ and the first part is >1. And this case includes compositions with k parts being " $\underbrace{1,1, \ldots, 1}_{k}$ " on the left end.

Conversely, for a composition S with parts of size $\leq k-1$ of $n-1$, we consider the following three cases.

Case a When the first part of S is 1 and there are not k parts " $\underbrace{1, \ldots, 1}_{k}$ " on the left end, we do the following operation: replace " $l, \underbrace{1,1, \ldots, 1}_{k-l}$ " with k if there are parts " $l, \underbrace{1,1, \ldots, 1}_{k-1}$ ", where $2 \leq l \leq k-1$, or replace " $\underbrace{1,1, \ldots, 1}_{k}$ " with k if there are t parts $\underbrace{1,1, \ldots, 1}_{t \geq k}$ from right to left in composition S. So we obtain a composition T. Next, we have a composition $R=T \mid((1) \mid \bar{T})^{\prime}$. Thereupon the composition R is an inverse-conjugate composition of $2 n-1$ with parts $\leq k$, and the first part is 1 . Here the composition R satisfies $c_{1}+c_{2}+\cdots+c_{j}=n-1$ and $c_{j+1}+\cdots+c_{n}=n$ with $c_{j+1}>1$.

Case b When there are k parts " $\underbrace{1, \ldots, 1}_{k}$ " on the left end of S, we first replace " $\underbrace{1, \ldots, 1}_{k}$ " by k, and then replace " $l, \underbrace{1,1, \ldots, 1}_{k-l}$ " with k if there are parts " $l, \underbrace{1,1, \ldots, 1}_{k-1}$ ", where $2 \leq l \leq k-1$, or replacing " $\underbrace{1,1, \ldots, 1}_{k}$ " with k if there are t parts " $\underbrace{1,1, \ldots, 1}_{t \geq k}$ " from right to left in S. In this way, we have a composition U. Next, we have a composition $H=U \mid(1)$, and then we obtain a composition F by replacing the first part λ of H with $\lambda-1$. Finally, we obtain a composition $G=\bar{F} \uplus H^{\prime}$. Hence the composition G is an inverse-conjugate composition of $2 n-1$ with parts $\leq k$, and the first part is 1 . Here the composition G satisfies satisfies $c_{1}+c_{2}+\cdots+c_{j}=n$ and $c_{j+1}+\cdots+c_{n}=n-1$ with $c_{j}>1$.

Case c When the first part of S is h, where, $1<h<k$, we obtain a composition P using the same steps in Case 2 except that the first part h remains the same. Hence the composition P is an inverse-conjugate composition of $2 n-1$ with parts $\leq k$, and the first part is 1 . Here the composition P satisfies $c_{1}+c_{2}+\cdots+c_{j}=n$ and $c_{j+1}+\cdots+c_{n}=n-1$ with $c_{j}>1$.

We complete the proof.
In particular, we give the following interesting relations for the inverse-conjugate compositions into parts of size ≤ 4.

Corollary 3.1 Let $I C_{4}(N)$ denote the number of inverse-conjugate compositions of N into
parts of size ≤ 4. Then

$$
\begin{equation*}
I C_{4}(2 n+1)=I C_{4}(2 n-1)+I C_{4}(2 n-3)+I C_{4}(2 n-5), \quad n>3 \tag{3.1}
\end{equation*}
$$

with $I C_{4}(1)=1, I C_{4}(3)=2 I C_{4}(5)=4, I C_{4}(7)=8$.
Corollary 3.2 Let $I C_{4}(N)$ denote the number of inverse-conjugate compositions of N into parts of size ≤ 4. Then

$$
\begin{equation*}
I C_{4}(2 n+1)=2 C_{3}(n), \quad n \geq 1 \tag{3.2}
\end{equation*}
$$

Acknowledgement The author would like to thank the referees for their valuable comments and corrections which have improved the quality of this paper.

References

[1] P. A. MACMAHON. Combinatory Analysis (I). Cambridge University Press, Cambridge, 1995.
[2] V. E. HOGGATT, M. BICKNELL. Palindromic composition. Fibonacci Quart., 1975, 13: 350-356.
[3] S. HEUBACH, T. MANSOUR. Combinatorics of Compositions and Words (Discrete Mathematics and Its Applications). CRC Press, Boca Raton, FL, 2010.
[4] A. O. MUNAGI. Primary classes of compositions of numbers. Ann. Math. Inform., 2013, 41: 193-204.
[5] A. O. MUNAGI. Zig-zag graphs and partition identities of A. K. Agarwal. Ann. Comb., 2015, 19(3): 557-566.
[6] Yuhong GUO. The inverse-conjugate compositions without 2's. Ars Comb., 2017, 135: 93-102.
[7] Yuhong GUO, A. O. MUNAGI. Inverse-conjugate compositions into parts of size at most k. Online J. Anal. Comb., 2017, 12: 1-12.

