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Abstract Let φ be an analytic self-map of D. The composition operator Cφ is the operator de-

fined on H(D) by Cφ(f) = f ◦φ. In this paper, we investigate the boundedness and compactness

of the composition operator Cφ from Hardy-Orlicz spaces to Bloch-Orlicz type spaces.
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1. Introduction

Let D be the unit disk in the complex plane C andH(D) the space of all holomorphic functions

on D. A function f ∈ H(D) is called a µ-Bloch function, if

∥f∥µ := sup
z∈D

µ(z)|f ′(z)| <∞,

denoted as f ∈ Bµ, where µ is a bounded continuous positive function on D. And Bµ is a Banach

space with the norm ∥f∥Bµ := |f(0)|+ ∥f∥µ.
Recently, the Bloch-Orlicz type space was introduced by Ramos Fernández in [1] using Y-

oung’s functions. More precisely, let ψ : [0,+∞) → [0,+∞) be a strictly increasing convex

function such that ψ(0) = 0 and limt→+∞ ψ(t) = +∞. The Bloch-Orlicz type space associated

with the function ψ, denoted by Bψ, is the class of all functions f ∈ H(D) such that

sup
z∈D

(1− |z|2)ψ(λ|f ′(z)|) <∞,

for some λ > 0 depending on f . The Minknowki’s functional

∥f∥ψ = inf{k > 0 : Sψ(
f ′

k
) ≤ 1}

defines a seminorm for Bψ, which, in this case, is known as Luxemburg’s seminorm, where

Sψ(f) := sup
z∈D

(1− |z|2)ψ(|f(z)|).
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Moreover, Bψ is a Banach space with the norm

∥f∥Bψ = |f(0)|+ ∥f∥ψ.

Also, Ramos Fernández in [1] got that the Bloch-Orlicz type space was isometrically equal to

µ-Bloch space, where

µ(z) =
1

ψ−1( 1
1−|z|2 )

, z ∈ D. (1.1)

Then, for f ∈ Bψ

∥f∥Bψ = |f(0)|+ sup
z∈D

µ(z)|f ′(z)|.

It is obvious to see that if ψ(t) = tp with p ≥ 1, then the space Bψ coincides with the α-Bloch

space Bα (see [2]), where α = 1/p. Also, if ψ(t) = t log(1 + t), then Bψ coincides with the

log-Bloch space [3, 4].

The Hardy-Orlicz space Hψ(D) = Hψ is the space of all f ∈ H(D) such that

∥f∥Hψ := sup
0<r<1

∫
∂D
ψ(|f(rξ)|)dσ(ξ) <∞,

where ∂D is the boundary of the unit disk D and σ is the normalized Lebesgue measure on ∂D.
On Hψ is defined the next quasi-norm

∥f∥Hψ = sup
0<r<1

∥fr∥Lψ ,

where fr(ξ) = f(rξ), 0 ≤ r < 1, ξ ∈ ∂D and ∥g∥Lψ is the Luxembourg quasi-norm defined by

∥g∥Lψ := inf{λ > 0 :

∫
∂D
ψ(

|g(ξ)|
λ

)dσ(ξ) ≤ 1}.

If ψ(t) = tp with p > 0, then Hψ is the classical Hardy space Hp (see [5]), consisting of all

f ∈ H(D) such that

∥f∥pHp = sup
0<r<1

∫
∂D

|f(rξ)|pdσ(ξ) <∞.

Let φ be an analytic self-map of D, and the composition operator Cφ be the operator defined

on H(D) by
Cφ(f)(z) := (f ◦ φ)(z) = f(φ(z)).

The function φ is called the symbol of Cφ. Composition operators between various spaces of

holomorphic functions on different domains have been studied by numerous authors [1,4,6–12] and

the references therein. This paper is devoted to characterizing the boundedness and compactness

of composition operators from Hardy-Orlicz spaces to Bloch-Orlicz type spaces.

Throughout this paper, we will use the letter C to denote a generic positive constant that can

change its value at each occurrence. The notation a ≼ b means that there is a positive constant

C such that a ≤ Cb. If both a ≼ b and b ≼ a hold, then one says that a ≃ b.

2. Auxiliary results
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Here we quote some auxiliary results which will be used in the proofs of the main results in

this paper.

Proposition 2.1 For every f ∈ Hψ and z ∈ D, we have

|f(z)| ≤ ψ−1(
2

1− |z|
)∥f∥Hψ . (2.1)

Proof Since f is analytic, employing [13, Corollary 4.5] to the functions fr(z), we get for z ∈ D

|f(rz)| ≤
∫
∂D
P (z, ζ)|fr(ζ)|dσ(ζ), (2.2)

where

P (z, ζ) =
1− |z|2

|1− zζ̄|2

is the invariant Poison Kernel [13].

Using the inequality

P (z, ζ) ≤ 2

1− |z|
and applying Jensen’s inequality to (2.2) with fr replaced by fr/∥fr∥Hψ , we obtain

ψ(
|f(rz)|
∥fr∥Hψ

) ≤
∫
∂D
P (z, ζ)ψ(

|fr(ζ)|
∥fr∥Hψ

)dσ(ζ)

≤ 2

1− |z|

∫
∂D
ψ(

|fr(ζ)|
∥fr∥Hψ

)dσ(ζ)

≤ 2

1− |z|
. (2.3)

From (2.3) we obtain

|f(rz)| ≤ ψ−1(
2

1− |z|
)∥fr∥Hψ ,

letting r → 1−, then inequality (2.1) follows. The proof is completed. �

Proposition 2.2 For every f ∈ Hψ and z ∈ D, we have

|f ′(z)| ≤ 1

1− |z|2
ψ−1(

2

1− |z|
)∥f∥Hψ .

Proof By [13, Proposition 4.2], we have

f(z) =

∫
∂D
P (z, ζ)f(ζ)dσ(ζ). (2.4)

Differentiating (2.4) yields

f ′(z) =

∫
∂D

ζ̄f(ζ)

(1− zζ̄)2
dσ(ζ).

Then

|f ′(z)| ≤
∫
∂D

|f(ζ)|
|1− zζ̄|2

dσ(ζ),

and hence

(1− |z|2)|f ′(z)| ≤ (1− |z|2)
∫
∂D

|f(ζ)|
|1− zζ̄|2

dσ(ζ) =

∫
∂D

1− |z|2

|1− zζ̄|2
|f(ζ)|dσ(ζ).
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Applying Jensen’s inequality, we obtain

ψ(
(1− |z|2)|f ′(z)|

∥f∥Hψ
) ≤

∫
∂D

1− |z|2

|1− zζ̄|2
ψ(

|f(ζ)|
∥f∥Hψ

)dσ(ζ)

≤ 2

1− |z|
.

That is,

|f ′(z)| ≤ 1

1− |z|2
ψ−1(

2

1− |z|
)∥f∥Hψ .

The proof is completed. �

Lemma 2.3 For each a ∈ D, the function

fa(z) =
1

4
ψ−1(

2

1− |a|
)(
1− |a|2

1− zā
)2

belongs to Hψ. Moreover

sup
a∈D

∥fa∥Hψ ≤ 1.

Proof Using Jensen’s inequality for the fact 1
4
(1−|a|2)2
|1−zā|2 ≤ 1, we have∫

D
ψ(|fa(rζ)|)dσ(ζ) =

∫
D
ψ(

1

4
ψ−1(

2

1− |a|
)|1− |a|2

1− rζā
|2)dσ(ζ)

≤ 1

4

∫
D
|1− |a|2

1− rζā
|2 2

1− |a|
dσ(ζ)

≤
∫
D

1− |a|2

|1− rζā|2
dσ(ζ) ≤ 1.

From this the lemma follows. The proof is completed. �
The following compactness criteria can be proved similar to [11, Proposition 3.11].

Lemma 2.4 The bounded operator T : Hψ → Bψ is compact if and only if for every bounded

sequence {fj}j∈N inHψ which converges to zero uniformly on any compact subset of D as j → ∞,

it follows that

lim
j→∞

∥Tfj∥Bψ = 0.

3. Boundedness and compactness

In this section, we characterize the boundedness and compactness of the operators Cφ :

Hψ → Bψ.

Theorem 3.1 Let φ be an analytic self-map of D. Then Cφ : Hψ → Bψ is bounded if and only

if

M := sup
z∈D

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) <∞. (3.1)

Moreover

∥Cφ∥Hψ→Bψ ≃M. (3.2)
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Proof Suppose that the condition (3.1) holds. For an arbitrary f ∈ Hψ, by Proposition 2.2, we

have
µ(z)|(Cφf)′(z)| = µ(z)|f ′(φ(z))| · |φ′(z)|

≤ µ(z)ψ−1(
2

1− |φ(z)|
)

1

1− |φ(z)|2
|φ′(z)| · ∥f∥Hψ

≤M · ∥f∥Hψ .

Then Cφ : Hψ → Bψ is bounded. Moreover, the above proof gets that

∥Cφ∥Hψ→Bψ = sup
f∈Hψ\{0}

∥Cφf∥Bψ
∥f∥Hψ

≼M. (3.3)

Conversely, suppose that Cφ : Hψ → Bψ is bounded. Then there is a positive constant C

such that for any f ∈ Hψ,

∥Cφf∥Bψ ≤ C∥f∥Hψ .

By Lemma 2.3, we have the following functions are uniformly bounded in Hψ

fa(z) =
1

4
ψ−1(

2

1− |a|
)(
1− |a|2

1− zā
)2. (3.4)

Differentiating (3.4) we have

f ′a(z) =
1

2
ψ−1(

2

1− |a|
)
ā(1− |a|2)2

(1− zā)3
.

We easily obtain that

I(z) := µ(z)ψ−1(
2

1− |φ(z)|
)
|φ(z)| · |φ′(z)|
1− |φ(z)|2

≤ ∥Cφfa∥Bψ ≼ ∥Cφ∥Hψ→Bψ .

It follows that

sup
|φ(z)|>1/2

µ(z) · |φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) ≤ sup

z∈D
I(z) ≼ ∥Cφ∥Hψ→Bψ <∞. (3.5)

Let f(z) = z ∈ Hψ. Applying the boundedness of Cφ : Hψ → Bψ, we have

sup
z∈D

µ(z)|φ′(z)| = ∥Cφf∥Bψ ≼ ∥Cφ∥Hψ→Bψ <∞.

Then

sup
0<|φ(z)|≤1/2

µ(z) · |φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) ≤ 4

3
ψ−1(1) sup

z∈D
µ(z)|φ′(z)| <∞. (3.6)

From (3.5) and (3.6) we get that (3.1) holds. Moreover

M ≼ ∥Cφ∥Hψ→Bψ . (3.7)

Therefore, from (3.3) and (3.7) the asymptotic expression (3.2) is obtained. The proof is com-

pleted. �

Theorem 3.2 Let φ be an analytic self-map of D. Then Cφ : Hψ → Bψ is compact if and only

if φ ∈ Bψ and

lim
|φ(z)|→1−

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) = 0. (3.8)
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Proof Suppose that Cφ : Hψ → Bψ is compact. Then Cφ : Hψ → Bψ is bounded, from the

proof of Theorem 3.1 we have obtained that φ ∈ Bψ.
Consider a sequence {φ(zj)}j∈N in D such that limj→∞ |φ(zj)| = 1−. If such sequence does

not exist, then (3.8) obviously holds. Using this sequence, we define the functions

fj(z) =
1

4
ψ−1(

2

1− |φ(zj)|
)(
1− |φ(zj)|2

1− zφ(zj)
)2, j ∈ N.

By Lemma 2.3 we know that the sequence {fj}j∈N is uniformly bounded in Hψ. From the

proof of [11, Theorem 3.6], it follows that the sequence {fj}j∈N uniformly converges to zero on

any compact subset of D as j → ∞. Hence, by Lemma 2.4

lim
j→∞

∥Cφfj∥Bψ = 0.

From this, we have

µ(zj)|φ′(zj)|
1− |φ(zj)|2

ψ−1(
2

1− |φ(zj)|
) ≤ sup

z∈D

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
)

≤ ∥Cφfj∥Bψ .

This implies that

lim
|φ(z)|→1−

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) = 0.

Now suppose that φ ∈ Bψ and (3.8) holds. We first check that Cφ : Hψ → Bψ is bounded.

We observe that (3.8) implies that for every ϵ > 0, there is a 0 < δ < 1 such that for any z ∈ D
with |φ(z)| > δ

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) < ϵ. (3.9)

Since for z ∈ D with 0 < |φ(z)| ≤ δ

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) ≤ ∥φ∥Bψ

1

1− δ2
ψ−1(

2

1− δ
),

we have

sup
z∈D

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
)

≤ sup
0<|φ(z)|≤δ

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
) + sup

|φ(z)|>δ

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
)

≤ ∥φ∥Bψ
1

1− δ2
ψ−1(

2

1− δ
) + ϵ.

This proves that Cφ : Hψ → Bψ is bounded.

By Lemma 2.4, in order to prove that Cφ : Hψ → Bψ is compact, we just need to prove that

if the sequence {fj}j∈N is uniformly bounded in Hψ and uniformly converges to zero on any

compact subset of D as j → ∞, then

lim
j→∞

∥Cφfj∥Bψ = 0.
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For any ϵ > 0 and the associated δ in (3.9), by using again that φ ∈ Bψ and Lemma 2.3, we

have

∥Cφfj∥Bψ = sup
z∈D

µ(z)|f ′j(φ(z))| · |φ′(z)|

≤ sup
0<|φ(z)|≤δ

µ(z)|f ′j(φ(z))| · |φ′(z)|+ sup
|φ(z)|>δ

µ(z)|φ′(z)|
1− |φ(z)|2

ψ−1(
2

1− |φ(z)|
)∥fj∥Hψ

≤ ∥φ∥Bψ sup
0<|φ(z)|≤δ

|f ′j(φ(z))|+ ϵ sup
j∈N

∥fj∥Hψ

→ 0, as j → ∞,

where we have used the fact that from fj → 0 as j → ∞ uniformly on compact subsets of D, it
follows that f ′j → 0 as j → ∞ uniformly on compact subsets of D. Hence

lim
j→∞

∥Cφfj∥Bψ = 0,

which follows that Cφ : Hψ → Bψ is compact. The proof is completed. �
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