Faber Polynomial Coefficient Estimates on a Subclass of Bi-Univalent Functions

Xiaoyuan WANG ${ }^{1, *}$, Zhiren WANG ${ }^{1}$, Li YIN ${ }^{2}$
1. College of Science, Yanshan University, Hebei 066004, P. R. China;
2. Department of Mathematics, Binzhou University, Shandong 256603, P. R. China

Abstract

The main objective of this paper is to derive the upper bounds for the coefficients of functions in a subclass of analytic and bi-univalent functions associated with Faber polynomials. The consequences presented here point out and correct the errors of some earlier results.

Keywords analytic functions; univalent functions; bi-univalent functions; Faber polynomials
MR(2010) Subject Classification 30C45; 30C80

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

We also denote \mathcal{S} by the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}.
For $f(z)$ and $F(z)$ analytic in \mathbb{U}, we say that $f(z)$ is subordinate to $F(z)$, written $f \prec F$, if there exists a Schwarz function

$$
\mu(z)=\sum_{n=1}^{\infty} c_{n} z^{n}
$$

with the conditions $\mu(0)=0$ and $|\mu(z)|<1$ in \mathbb{U}, such that $f(z)=F(\mu(z))$. Further, let \mathcal{P} be the class of functions

$$
\varphi(z)=1+\sum_{n=1}^{\infty} \xi_{n} z^{n}
$$

which are analytic in \mathbb{U} and satisfy the condition $\mathfrak{R}(\varphi(z))>0$ in \mathbb{U}. By the Carathéodory Lemma [1], we know that $\left|\xi_{n}\right| \leq 2$.

[^0]The Koebe one-quarter theorem [1] states that the image of \mathbb{U} under every function f from \mathcal{S} contains a disk of radius $1 / 4$. Thus, every univalent function has an inverse f^{-1} which satisfies

$$
\begin{gathered}
f^{-1}(f(z))=z, \quad z \in \mathbb{U} \\
f^{-1}(f(\omega))=\omega\left(|\omega|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
\end{gathered}
$$

where

$$
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Denote by Σ the class of bi-univalent functions defined in the unit disc \mathbb{U}.

Suppose throughout the paper that $0<q<p \leq 1$. Chakrabarti and Jagannathan [2] introduced the following operator.

Definition 1.1 The (p, q)-derivative of the function f give by (1.1) is defined as

$$
D_{p, q} f(z)=\frac{f(p z)-f(q z)}{(p-q) z}, \quad z \neq 0
$$

and $D_{p, q} f(0)=f^{\prime}(0)$, provided that $f^{\prime}(0)$ exists.
From Definition 1.1, we have

$$
D_{p, q} f(z)=1+\sum_{n=2}^{\infty}[n]_{p, q} a_{n} z^{n-1}
$$

where $[n]_{p, q}$ denotes the (p, q)-number or twin-basic number

$$
[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}
$$

If $p=1$, the (p, q)-derivative reduces to the Jackson q-derivative given by [3]

$$
\left(D_{q} f\right)(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad z \neq 0
$$

Making use of the Faber polynomial expansion of function $f \in \mathcal{A}$ with the form (1.1), the coefficients of its inverse map $g=f^{-1}$ may be expressed as follows [4] (see also [5])

$$
\begin{equation*}
g(\omega)=f^{-1}(\omega)=\omega+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right) \omega^{n} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3}+\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4}+ \\
& \frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right]+ \\
& \frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]+\sum_{j \geq 7} a_{2}^{n-j} V_{j}
\end{aligned}
$$

such that $V_{j}(7 \leq j \leq n)$ is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots, a_{n}$ (see [6]).

In particular, the first four terms of K_{n-1}^{-n} are given by

$$
\begin{aligned}
& K_{1}^{-2}=-2 a_{2}, \quad K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right), \quad K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \\
& K_{4}^{-5}=5\left(14 a_{2}^{2}-21 a_{2}^{2} a_{3}+6 a_{2} a_{4}+3 a_{3}^{2}-a_{5}\right)
\end{aligned}
$$

In general, for any $\beta \in \mathbb{Z}:=\{0, \pm 1, \pm 2, \ldots\}$, an expansion of K_{n-1}^{β} is given by [4]

$$
\begin{equation*}
K_{n-1}^{\beta}=\beta a_{n}+\frac{\beta(\beta-1)}{2} E_{n-1}^{2}+\frac{\beta!}{(\beta-3)!3!} E_{n-1}^{3}+\cdots+\frac{\beta!}{(\beta-n+1)!(n-1)!} E_{n-1}^{n-1} \tag{1.3}
\end{equation*}
$$

where $E_{n-1}^{\beta}=E_{n-1}^{\beta}\left(a_{2}, a_{3}, \ldots\right)$. In view of $[7]$, we see that

$$
E_{n-1}^{m}\left(a_{2}, a_{3}, \ldots, a_{n}\right)=\sum_{n=2}^{\infty} \frac{m!}{j_{1}!\cdots j_{n-1}!} a_{2}^{j_{1}} \cdots a_{n}^{j_{n-1}}
$$

and the sum is taken over all non-negative integers j_{1}, \ldots, j_{n-1} satisfying

$$
\left\{\begin{array}{l}
j_{1}+j_{2}+\cdots+j_{n-1}=m \tag{1.4}\\
j_{1}+2 j_{2}+\cdots+(n-1) j_{n-1}=n-1
\end{array}\right.
$$

It is clear that $E_{n-1}^{n-1}\left(a_{2}, \ldots, a_{n}\right)=a_{2}^{n-1}$; while $a_{1}=1$, and the sum is taken over all non-negative integers j_{1}, \ldots, j_{n} satisfying

$$
\left\{\begin{array}{l}
j_{1}+j_{2}+\cdots+j_{n}=m \tag{1.5}\\
j_{1}+2 j_{2}+\cdots+n j_{n}=n
\end{array}\right.
$$

Evidently, the first and the last polynomials are

$$
E_{n}^{1}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{n} \text { and } E_{n}^{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{n}
$$

In a recent paper, Altınkaya and Yalçın [8] introduced a new subclass of analytic and biunivalent functions defined by using the (p, q)-derivative operator.

Definition 1.2 A function $f(z)$ given by (1.1) is said to be in the class $D_{\Sigma}(p, q ; \lambda, \varphi)(\lambda \geq 1)$ if the following subordination conditions hold

$$
\begin{align*}
& f \in \Sigma \text { and }(1-\lambda) \frac{f(z)}{z}+\lambda\left(D_{p, q} f\right)(z) \prec \varphi(z), \quad z \in \mathbb{U} ; \lambda \geq 1 \tag{1.6}\\
& g \in \Sigma \text { and }(1-\lambda) \frac{g(\omega)}{\omega}+\lambda\left(D_{p, q} g\right)(\omega) \prec \varphi(\omega), \quad \omega \in \mathbb{U} ; \lambda \geq 1 \tag{1.7}
\end{align*}
$$

where $g(\omega)=f^{-1}(\omega)$.
The following result was obtained in [8]:
Theorem 1.3 Let $f \in D_{\Sigma}(p, q ; \lambda, \varphi)$. If $a_{m}=0(2 \leq m \leq n-1)$, then

$$
\left|a_{n}\right| \leq \frac{2}{\left|1+\left([n]_{p, q}-1\right) \lambda\right|}, \quad n \geq 4
$$

We here provide a simple counterexample to clarify that the above assertion is not correct. For the Schwarz functions $\mu(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ and $\nu(z)=\sum_{n=1}^{\infty} d_{n} \omega^{n}$. From (2.9) and (2.10) in [8], we see that

$$
\begin{equation*}
\left[1+\left([n]_{p, q}-1\right) \lambda\right] a_{n}=\sum_{k=1}^{n-1} \xi_{k} E_{n-1}^{k}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right), \quad n \geq 2 \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\left[1+\left([n]_{p, q}-1\right) \lambda\right] b_{n}=\sum_{k=1}^{n-1} \xi_{k} E_{n-1}^{k}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right), \quad n \geq 2 \tag{1.9}
\end{equation*}
$$

For $n=4$ in (1.8) and (1.9), we find that

$$
\begin{align*}
& {\left[1+\left([4]_{p, q}-1\right) \lambda\right] a_{4}=\xi_{1} c_{3}+2 \xi_{2} c_{1} c_{2}+\xi_{3} c_{1}^{3}} \tag{1.10}\\
& {\left[1+\left([4]_{p, q}-1\right) \lambda\right] b_{4}=\xi_{1} d_{3}+2 \xi_{2} d_{1} d_{2}+\xi_{3} d_{1}^{3}} \tag{1.11}
\end{align*}
$$

which contradicts the original assertion [8]

$$
\begin{gather*}
{\left[1+\left([4]_{p, q}-1\right) \lambda\right] a_{4}=\xi_{1} c_{3}} \tag{1.12}\\
-\left[1+\left([4]_{p, q}-1\right) \lambda\right] a_{4}=\xi_{1} d_{3} \tag{1.13}
\end{gather*}
$$

since one cannot ensure that $c_{1}=0, d_{1}=0$.
Note from Definition 1.2 that

$$
\lim _{p \rightarrow 1-} D_{\Sigma}(p, q ; \lambda, \varphi)=\left\{f: f \in \Sigma \text { and }\left\{\begin{array}{c}
\lim _{p \rightarrow 1-}\left[(1-\lambda) \frac{f(z)}{z}+\lambda\left(D_{p, q} f\right)(z)\right] \\
\lim _{p \rightarrow 1-}\left[(1-\lambda) \frac{g(\omega)}{\omega}+\lambda\left(D_{p, q} g\right)(\omega)\right]
\end{array}\right\}\right\}=D_{\Sigma}(q ; \lambda, \varphi)
$$

Motivated by Wang and Bulut [9], we shall derive the upper bounds for the coefficients of functions belong to the class $D_{\Sigma}(p, q ; \lambda, \varphi)(\lambda \geq 1)$ of analytic and bi-univalent functions. The useful consequences presented here point out and correct the errors of the main results in Altınkaya and Yalçın [8].

2. Main result

We now give the following result.
Theorem 2.1 Let $f \in D_{\Sigma}(p, q ; \lambda, \varphi)$. If $a_{m}=0(2 \leq m \leq n-1)$, then

$$
\left|a_{n}\right| \leq \min \left\{\frac{2 \sum_{k=1}^{n-1}\left|E_{n-1}^{k}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right)\right|}{\left|1+\left([n]_{p, q}-1\right) \lambda\right|}, \frac{2 \sum_{k=1}^{n-1}\left|E_{n-1}^{k}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)\right|}{\left|1+\left([n]_{p, q}-1\right) \lambda\right|}\right\}, \quad n \geq 4
$$

where $\mu(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ and $\nu(\omega)=\sum_{n=1}^{\infty} d_{n} \omega^{n}$ are two Schwarz functions.
Proof For f given by (1.1), we have

$$
\begin{align*}
(1-\lambda) \frac{f(z)}{z}+\lambda & \left(D_{p, q} f\right)(z)=1+\sum_{n=2}^{\infty}\left[1+\left([n]_{p, q}-1\right) \lambda\right] a_{n} z^{n-1} \tag{2.1}\\
(1-\lambda) \frac{g(\omega)}{\omega}+\lambda\left(D_{p, q} g\right)(\omega) & =1+\sum_{n=2}^{\infty}\left[1+\left([n]_{p, q}-1\right) \lambda\right] \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right) \omega^{n-1} \\
& =1+\sum_{n=2}^{\infty}\left[1+\left([n]_{p, q}-1\right) \lambda\right] b_{n} \omega^{n-1} \tag{2.2}
\end{align*}
$$

On the other hand, the inequalities (1.6) and (1.7) imply that there exist two Schwarz functions $\mu(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ and $\nu(\omega)=\sum_{n=1}^{\infty} d_{n} \omega^{n}$, such that

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda\left(D_{p, q} f\right)(z)=\varphi(\mu(z)) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
(1-\lambda) \frac{g(\omega)}{\omega}+\lambda\left(D_{p, q} g\right)(\omega)=\varphi(\nu(\omega)) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& \varphi(\mu(z))=1+\sum_{n=1}^{\infty} \sum_{k=1}^{n} \xi_{k} E_{n}^{k}\left(c_{1}, c_{2}, \ldots, c_{n}\right) z^{n} \tag{2.5}\\
& \varphi(\nu(\omega))=1+\sum_{n=1}^{\infty} \sum_{k=1}^{n} \xi_{k} E_{n}^{k}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \omega^{n} \tag{2.6}
\end{align*}
$$

Thus, from (2.1), (2.3) and (2.5), we deduce that

$$
\begin{equation*}
\left[1+\left([n]_{p, q}-1\right) \lambda\right] a_{n}=\sum_{k=1}^{n-1} \xi_{k} E_{n-1}^{k}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right), \quad n \geq 2 \tag{2.7}
\end{equation*}
$$

Similarly, combining (2.2), (2.4) and (2.6), we obtain

$$
\begin{equation*}
\left[1+\left([n]_{p, q}-1\right) \lambda\right] b_{n}=\sum_{k=1}^{n-1} \xi_{k} E_{n-1}^{k}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right), \quad n \geq 2 \tag{2.8}
\end{equation*}
$$

Since $a_{m}=0(2 \leq m \leq n-1)$, we derive $b_{n}=-a_{n}$ and hence

$$
\left\{\begin{align*}
{\left[1+\left([n]_{p, q}-1\right) \lambda\right] a_{n} } & =\sum_{k=1}^{n-1} \xi_{k} E_{n-1}^{k}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right) \tag{2.9}\\
-\left[1+\left([n]_{p, q}-1\right) \lambda\right] a_{n} & =\sum_{k=1}^{n-1} \xi_{k} E_{n-1}^{k}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)
\end{align*}\right.
$$

By noting that $\left|\xi_{k}\right| \leq 2$, from (2.9), we get the desired assertion of Theorem 2.1.
By letting $p \rightarrow 1$ in Theorem 2.1, we get the following corollary.
Corollary 2.2 Let $f \in D_{\Sigma}(q ; \lambda, \varphi)$. If $a_{m}=0(2 \leq m \leq n-1)$, then

$$
\begin{align*}
\left|a_{n}\right| \leq & \min \left\{\frac{2(1-q) \sum_{k=1}^{n-1}\left|E_{n-1}^{k}\left(c_{1}, c_{2}, \ldots, c_{n-1}\right)\right|}{\left|1-q+\left(q-q^{n}\right) \lambda\right|}\right. \\
& \left.\frac{2(1-q) \sum_{k=1}^{n-1}\left|E_{n-1}^{k}\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)\right|}{\left|1-q+\left(q-q^{n}\right) \lambda\right|}\right\}, n \geq 4 \tag{2.10}
\end{align*}
$$

In order to correct the error of [8, Theorem 2.2], we add the additional conditions $c_{k}=d_{k}=$ $0(1 \leq k \leq n-2)$ in Theorem 2.1.

Corollary 2.3 Let $f \in D_{\Sigma}(p, q ; \lambda, \varphi)$. If $a_{m}=0(2 \leq m \leq n-1)$ and $c_{k}=d_{k}=0(1 \leq k \leq n-2)$, then

$$
\left|a_{n}\right| \leq \frac{2}{\left|1+\left([n]_{p, q}-1\right) \lambda\right|}, \quad n \geq 4
$$

where $\mu(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ and $\nu(\omega)=\sum_{n=1}^{\infty} d_{n} \omega^{n}$ are two Schwarz functions.
Remark 2.4 Estimating for the initial coefficients a_{2} and a_{3}, we can see Part 3 of Altınkaya and Yalçın [8].

Remark 2.5 Recently, a series of papers involve the Faber polynomial coefficient estimates for
bi-univalent functions. Similar errors also exist in the following papers as pointed out above: $[10$, Theorem 1], [11, Theorem 7], [12, Theorem 2.1], [13, Theorem 1], [14, Theorems 2.2, 2.4, 2.6 and 2.8].

Acknowledgments The authors would like to thank the referees and Prof. Zhigang WANG for their valuable suggestions, which essentially improved the quality of the paper.

References

[1] P. L. DUREN. Univalent Functions. Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] R. CHAKRABARTI, R. JAGANNATHAN. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A., 1991, 24(13): 711-718.
[3] F. H. JACKSON. On q-functions and a certain difference operator. Trans. Roy. Soc. Edinburgh, 1908, 46: 253-281.
[4] H. AIRAULT, A. BOUALI. Differential calculus on the Faber polynomials. Bull. Sci. Math., 2006, 130(3): 179-222.
[5] H. AIRAULT. Remarks on Faber polynomials. Int. Math. Forum, 2008, 3(9-12): 449-456.
[6] H. AIRAULT, Jiagang REN. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math., 2002, 126(5): 343-367.
[7] P. G. TODOROV. On the Faber polynomials of the univalent functions of class Σ. J. Math. Anal. Appl., 1991, 162(1): 268-276.
[8] Ş. ALTINKAYA, S. YALÇIN. Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p, q)-derivative operator. J. Nonlinear Sci. Appl., 2017, 10(6): 3067-3074.
[9] Zhigang WANG, S. BULUT. A note on the coefficient estimates of bi-close-to-convex functions. C. R. Math. Acad. Sci. Paris, Ser. I, 2017, 355(8): 876-880.
[10] Sु. ALTINKAYA, S. YALÇIN. On the Faber polynomial coefficient bounds of bi-Bazilevic̆ functions. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 2017, 66(2): 289-296.
[11] Ş. ALTINKAYA, S. YALÇIN. Faber polynomial coefficient estimates for a class of bi-univalent functions based on the symmetric Q-derivative operator. J. Fract. Calc. Appl., 2017, 8(2): 79-87.
[12] Ş. ALTINKAYA, S. YALÇIN. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math., 2016, 61(1): 37-44.
[13] Sु. ALTINKAYA, S. YALÇIN. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Math. Acad. Sci. Paris, 2015, 353(12): 1075-1080.
[14] S. G. HAMIDI, J. M. JAHANGIRI. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iranian Math. Soc., 2015, 41(5): 1103-1119.

[^0]: Received November 12, 2017; Accepted March 25, 2018
 Supported by the National Natural Science Foundation of China (Grant No. 11401041).
 *Corresponding author
 E-mail address: mewangxiaoyuan@163.com (Xiaoyuan WANG); wangzhiren528@sina.com (Zhiren WANG); yinli_79@163.com (Li YIN)

