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Abstract In this paper, we consider the convergence of the generalized alternating direc-

tion method of multipliers (GADMM) for solving linearly constrained nonconvex minimization

model whose objective contains coupled functions. Under the assumption that the augmented

Lagrangian function satisfies the Kurdyka- Lojasiewicz inequality, we prove that the sequence

generated by the GADMM converges to a critical point of the augmented Lagrangian function

when the penalty parameter in the augmented Lagrangian function is sufficiently large. More-

over, we also present some sufficient conditions guaranteeing the sublinear and linear rate of

convergence of the algorithm.
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1. Introduction

In this paper, we consider the nonconvex optimization problem with the following form

min f(x) + g(y) + H(x, y)

s.t. Ax + y = b,
(1.1)

where f : Rn → R ∪ {+∞} is a proper lower semicontinuous function and g : Rm → R is

continuously differentiable function whose gradient ∇g is Lipschitz continuous with constant

L1 > 0, H : Rn ×Rm → R is a smooth function, A ∈ Rm×n is a given matrix, and b ∈ Rm is a

vector. A special case of problem (1.1) is when the coupled function H is absent, that is,

min f(x) + g(y)

s.t. Ax + y = b.
(1.2)

As we know, the alternating direction method of multipliers (ADMM) in [1] plays a fundamental

theoretical and algorithmic role in solving problem (1.2). The iterative scheme of ADMM for
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(1.2) reads as: 
xk+1 ∈ arg minx{f(x) − ⟨λk, Ax⟩ + β

2 ∥Ax + yk − b∥2},
yk+1 ∈ arg miny{g(y) − ⟨λk, y⟩ + β

2 ∥Ax
k+1 + y − b∥2},

λk+1 = λk − β(Axk+1 + yk+1 − b),

(1.3)

where λ is the Lagrangian multiplier associated with the linear constraints and β > 0 is the

penalty parameter. For the case both f and g are proper lower semicontinuous convex functions,

the convergence of ADMM (1.3) is well-understood and there are recently some convergence rate

analysis [2–5]. Without convexity assumption, the convergence analysis for ADMM (1.3) is much

more challenging. Recently, there have been a few developments on it, e.g., [6–10].

Applying the classic ADMM to problem (1.1), we can get the following iterative process:
xk+1 ∈ arg minx{f(x) + H(x, yk) − ⟨λk, Ax⟩ + β

2 ∥Ax + yk − b∥2},
yk+1 ∈ arg miny{g(y) + H(xk+1, y) − ⟨λk, y⟩ + β

2 ∥Axk+1 + y − b∥2},
λk+1 = λk − β(Axk+1 + yk+1 − b).

(1.4)

However, due to the existence of coupled function H, the convergence of ADMM (1.4) is still in

its infancy, even the objective functions are assumed to be convex. Recently, Gao and Zhang [11]

considered the case where H is a smooth convex function and f, g are convex functions. Under

the assumptions that ∇H is Lipschitz continuous and g is strongly convex, they proved the

sequence generated by the proximal version of ADMM (1.4) converges to an optimal solution of

the problem (1.1). Chen et al. [12] analyzed the convergence of the ADMM (1.4) for the problem

(1.1) when the coupled function H is a quadratic function. Guo et al. [13] studied the convergence

of the classic ADMM (1.4) for the nonconvex problem (1.1), i.e., without assuming the convexity

of f, g and the coupled term H. By using the important Kurdyka- Lojasiewicz (KL) inequality

(see Definition 2.6), they proved that the sequence generated by the ADMM (1.4) converges to

a critical point of the augmented Lagrangian function if the augmented Lagrangian function for

problem (1.1) is a KL function. The importance of the KL inequality is due to the fact that

many functions satisfy this inequality, especially when the functions belong to some functional

classes, e.g., semi-algebraic (such as ∥ · ∥pp, p ∈ [0, 1] is a rational number), real sub-analytic and

so on (see also [14–17] and references therein).

As pointed in [18], the ADMM (1.3) is actually an application of the well-known Douglas-

Rachford splitting method (DRSM) in [19] to the dual of (1.2); and in [20], the DRSM was

further explained as an application of the proximal point algorithm (PPA) in [21]. Therefore,

it was suggested in [20] to apply the acceleration scheme in [22] for the PPA to accelerate the

original ADMM (1.3). Back to our problem (1.1), a generalized ADMM (GADMM) is thus

proposed:
xk+1 ∈ arg minx{f(x) + H(x, yk) − ⟨λk, Ax⟩ + β

2 ∥Ax + yk − b∥2},
yk+1 ∈ arg miny{g(y) + H(xk+1, y) − ⟨λk, y⟩ + β

2 ∥αAxk+1 + (1 − α)(b− yk) + y − b∥2},
λk+1 = λk − β(αAxk+1 + (1 − α)(b− yk) + yk+1 − b),

(1.5)

where the parameter α ∈ (0, 2) is a relaxation factor. Obviously, the GADMM (1.5) reduces to
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the classic ADMM (1.4) when α = 1 and reduces to the classic GADMM [20] when H ≡ 0. We

refer to [23–25] for empirical studies of the acceleration performance of the GADMM.

The purpose of this paper is to prove the convergence of the GADMM (1.5) for nonconvex

optimization problem (1.1). By means of the Kurdyka- Lojasiewicz inequality, we prove that if the

augmented Lagrangian function for problem (1.1) is a KL function, then the sequence generated

by the GADMM (1.5) converges to a critical point of the augmented Lagrangian function (see

Section 3). Under some further conditions on the problem’s data, we prove the convergence rate

of the GADMM (1.5). The paper is organized as follows. We first summarize some necessary

preliminaries for further analysis in Section 2. In Section 3, we analyze the convergence of

GADMM. Finally, some conclusions are made in Section 4.

2. Preliminaries

In this section, we give some preliminaries that will be frequently used in this paper. Let

F : Rn ⇒ Rm be a point-to-set mapping. Then its graph is defined by

Graph F := {(x, y) ∈ Rn ×Rm : y ∈ F (x)}.

We define the distance of a point x ∈ Rn to a subset S of Rn by

d(x, S) := inf
y∈S

∥y − x∥.

When S = ∅, we set d(x, S) := +∞, for all x.

Given a function f : Rn → R∪{+∞}, the effective domain and the epigraph of f are defined

by

dom f := {x ∈ Rn : f(x) < +∞} and epi f := {(x, α) ∈ Rn ×R : f(x) ≤ α},

respectively. We say that the function f is proper (respectively, lower semicontinuous) if the

dom f (respectively, epi f) set is nonempty (respectively, closed).

Definition 2.1 Let f : Rn → R∪ {+∞} be a proper lower semicontinuous function.

(i) The Fréchet subdifferential, or regular subdifferential, of f at x ∈ dom f , written ∂̂f(x),

is the set of vectors x∗ ∈ Rn that satisfy

lim inf
y ̸=x
y→x

f(y) − f(x) − ⟨x∗, y − x⟩
∥y − x∥

≥ 0.

When x /∈ dom f , we set ∂̂f(x) := ∅;

(ii) The limiting-subdifferential, or simply the subdifferential, of f at x ∈ dom f , written

∂f(x), is defined as follows:

∂f(x) := {x∗ ∈ Rn : ∃xn → x, f(xn) → f(x), x∗
n ∈ ∂̂f(xn),with x∗

n → x∗}.

Remark 2.2 From Definition 2.1 we can find that

(i) The above definition implies ∂̂f(x) ⊆ ∂f(x) for each x ∈ Rn, where the first set is closed

convex while the second one is only closed;
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(ii) Let (xk, x
∗
k) ∈ Graph ∂f be a sequence that converges to (x, x∗). By the definition of

∂f(x), if f(xk) converges to f(x) as k → +∞, then (x, x∗) ∈ Graph ∂f ;

(iii) A necessary condition for x ∈ Rn to be a minimizer of f is

0 ∈ ∂f(x); (2.1)

(iv) If f : Rn → R∪{+∞} is a proper lower semicontinuous and g : Rn → R is continuously

differentiable, then ∂(f + g)(x) = ∂f(x) + ∇g(x) for any x ∈ dom f .

A point that satisfies (2.1) is called a critical point or a stationary point. The set of critical

points of f is denoted by crit f .

Let us recall the important properties of subdifferential calculus.

Lemma 2.3 ([14]) Suppose that S(x, y) := s1(x) + s2(y), where s1 : Rn → R ∪ {+∞} and

s2 : Rm → R∪{+∞} are proper lower semicontinuous functions. Then for all (x, y) ∈ dom S =

dom s1 × dom s2, we have ∂S(x, y) = ∂xS(x, y) × ∂yS(x, y).

Definition 2.4 ([26]) A proper lower semicontinuous function g : Rn → R ∪ {+∞} is called

weakly convex (or semiconvex) if for some ω > 0, the function x 7→ g(x) + ω
2 ∥x∥

2 is convex.

Remark 2.5 It is well known that the set of semiconvex functions contains several importan-

t classes of (nonsmooth) functions as special cases, for example, φ-convex functions [27] and

primal-lower-nice functions [28]. Moreover, any twice continuously differentiable function with a

bounded second-order derivative is semiconvex; see, e.g., [22]. In [29], the semiconvexity is also

called hypoconvexity [29, Definition 3.10], and the proximal operator of a hypoconvex function

is well studied therein.

Let η ∈ (0,+∞]. We denote by Φη the class of all concave and continuous functions φ :

[0, η) → R+ which satisfies the following assumptions:

(i) φ(0) = 0;

(ii) φ is continuously differentiable on (0, η) and continuous at 0;

(iii) φ′(s) > 0, ∀s ∈ (0, η).

Definition 2.6 ([14] Kurdyka- Lojasiewicz inequality) Let f : Rn → R ∪ {+∞} be a proper

lower semicontinuous function. For −∞ < η1 < η2 ≤ +∞, set

[η1 < f < η2] := {x ∈ Rn : η1 < f(x) < η2}.

We say that function f has the KL property at x∗ ∈ dom ∂f if there exists η ∈ (0,+∞], a

neighborhood U of x∗ and a function φ ∈ Φη, such that for all x ∈ U ∩ [f(x∗) < f < f(x∗) + η],

the Kurdyka- Lojasiewicz inequality holds:

φ′(f(x) − f(x∗))d(0, ∂f(x)) ≥ 1.

Definition 2.7 ([14] Kurdyka- Lojasiewicz function) If f satisfies the KL property at each point

of dom ∂f , then f is called a KL function.

Remark 2.8 One can easily check that the Kurdyka- Lojasiewicz property is automatically
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satisfied at any non-critical point x∗ ∈ dom f (see [14, Lemma 2.1, Remark 3.2 (b)]).

Lemma 2.9 ([30] Uniformized KL property) Let Ω be a compact set and let f : Rn → R∪{+∞}
be a proper and lower semicontinuous function. Assume that f is constant on Ω and satisfies

the KL property at each point of Ω. Then, there exist ϵ > 0, η > 0, and φ ∈ Φη such that for all

x̄ ∈ Ω and for all x in the following intersection

{x ∈ Rn : d(x,Ω) < ϵ} ∩ [f(x̄) < f < f(x̄) + η],

one has, φ′(f(x) − f(x̄))d(0, ∂f(x)) ≥ 1.

The following lemma for smooth functions is very useful for the convergence analysis.

Lemma 2.10 ([31]) Let h : Rn → R be a continuously differentiable function with gradient ∇h

being Lipschitz continuous with constant L > 0. Then for any x, y ∈ Rn, we have

|h(y) − h(x) − ⟨∇h(x), y − x⟩| ≤ L

2
∥y − x∥2.

Definition 2.11 We say that (x∗, y∗, λ∗) is a critical point of the augmented Lagrangian function

Lβ(·) (3.4) of problem (1.1) if it satisfies
ATλ∗ −∇xH(x∗, y∗) ∈ ∂f(x∗),

λ∗ −∇yH(x∗, y∗) = ∇g(y∗),

Ax∗ + y∗ − b = 0.

The set of critical points of Lβ(·) is denoted by crit Lβ . It is easy to see that a critical point

of the augmented Lagrangian function of problem (1.1) is exactly a KKT point associated with

it.

3. Convergence analysis

Before the proof, let us present the variational characterization of scheme (1.5). By the

optimality condition for (1.5), we have
0 ∈ ∂f(xk+1) + ∇xH(xk+1, yk) −ATλk + βAT (Axk+1 + yk − b),

0 = ∇g(yk+1) + ∇yH(xk+1, yk+1) − λk + β(αAxk+1 + (1 − α)(b− yk) + yk+1 − b),

λk+1 = λk − β(αAxk+1 + (1 − α)(b− yk) + yk+1 − b).

(3.1)

Using the last equality of (3.1) and rearranging terms, we obtain
ATλk − βAT (Axk+1 + yk − b) −∇xH(xk+1, yk) ∈ ∂f(xk+1),

∇g(yk+1) = λk+1 −∇yH(xk+1, yk+1),

λk+1 = λk − β(αAxk+1 + (1 − α)(b− yk) + yk+1 − b).

(3.2)

Throughout this paper, we make the following assumptions.

Assumptions 3.1 Let f : Rn → R ∪ {+∞} be a weakly convex function with constant

ω > 0, g : Rm → R be a continuously differentiable function whose gradient ∇g is Lipschitz

continuous with constant L1 > 0, and let H : Rn ×Rm → R be a smooth function. Assume the

following conditions are satisfied:
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(i) inf(x,y)∈Rn×Rm H(x, y) > −∞, infx∈Rn f(x) > −∞, infy∈Rm g(y) > −∞;

(ii) For any fixed x, the partial gradient ∇yH(x, y) is global Lipschitz continuous with

constant L2(x) > 0, that is

∥∇yH(x, y) −∇yH(x, ỹ)∥ ≤ L2(x)∥y − ỹ∥, ∀y, ỹ ∈ Rm;

For any fixed y, the partial gradient ∇xH(x, y) is global Lipschitz continuous with constant

L3(y) > 0, that is

∥∇xH(x, y) −∇xH(x̃, y)∥ ≤ L3(y)∥x− x̃∥, ∀x, x̃ ∈ Rn;

(iii) ∇H is Lipschitz continuous on bounded subsets of Rn ×Rm. In other words, for each

bounded subsets B1 × B2 ⊆ Rn ×Rm, there exists M > 0 such that for all (xi, yi) ∈ B1 × B2,

i = 1, 2,

∥∇xH(x1, y1) −∇xH(x2, y2),∇yH(x1, y1) −∇yH(x2, y2)∥ ≤ M∥(x1 − y1, x2 − y2)∥;

(iv) ATA ≽ µI for some µ > 0;

(v) There exist L2, L3 > 0 such that

sup{L2(xk) : k ∈ N} ≤ L2, sup{L3(yk) : k ∈ N} ≤ L3;

(vi) β > β̃, where

β̃ := max
{α(L3 + ω) +

√
α2(L3 + ω)2 + 16αµM2

2αµ
,

α(L1 + L2) +
√
α2(L1 + L2)2 + 16(2 − α)(L2

1 + M2)

2(2 − α)

}
(3.3)

and the parameter α ∈ (0, 2) is a relaxation factor.

Note that, if we set

δ := min
{βµ− L3 − ω

2
− 2M2

αβ
,
β − L1 − L2

2
− 2L2

1 + 2M2

αβ
+

(1 − α)β

α

}
,

we know δ > 0 in view of (vi) of Assumption 3.1. In the sequel for convergence, we often use the

notations ωk := (xk, yk, λk) and vk := (xk, yk). The augmented Lagrangian function of problem

(1.1) is defined by

Lβ(x, y, λ) := f(x) + g(y) + H(x, y) − ⟨λ,Ax + y − b⟩ +
β

2
∥Ax + y − b∥2, (3.4)

where λ is the Lagrangian multiplier associated with the linear constraints and β > 0 is the

penalty parameter. Moreover, we set

L̂β(x, y, λ;α, ϑ) := f(x) + g(y) + H(x, y) − ⟨λ,Ax + y − b⟩ +
β

2
∥αAx− (1 − α)(ϑ− b) + y − b∥2.

We begin our analysis with the following lemma.

Lemma 3.2 Let {ωk}k∈N be the sequence generated by the GADMM (1.5) which is assumed

to be bounded. Then we have

Lβ(ωk+1) ≤ Lβ(ωk) − δ∥vk+1 − vk∥2. (3.5)
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Proof First, by definition we have

L̂β(xk, yk, λk; 1, ·) − L̂β(xk+1, yk, λk; 1, ·)

= f(xk) + g(yk) + H(xk, yk) − ⟨λk, Axk + yk − b⟩ +
β

2
∥Axk + yk − b∥2−{

f(xk+1) + g(yk) + H(xk+1, yk) − ⟨λk, Axk+1 + yk − b⟩ +
β

2
∥Axk+1 + yk − b∥2

}
= f(xk) − f(xk+1) + ⟨λk, Axk+1 −Axk⟩ + β⟨Axk+1 + yk − b, Axk −Axk+1⟩+

β

2
∥Axk+1 −Axk∥2 + H(xk, yk) −H(xk+1, yk). (3.6)

Since f is weakly convex with constant ω > 0, it follows from the first relation of (3.2) that

f(xk) ≥ f(xk+1)+ ⟨ATλk−βAT (Axk+1 +yk− b)−∇xH(xk+1, yk), xk−xk+1⟩− ω

2
∥xk+1−xk∥2.

Again since ∇xH(·, yk) is Lipschitz with constant L3(yk), we know from Lemma 2.10 that

H(xk, yk) −H(xk+1, yk) ≥ ⟨∇xH(xk+1, yk), xk − xk+1⟩ − L3(yk)

2
∥xk+1 − xk∥2.

By (iv) of Assumption 3.1, we have

∥Axk+1 −Axk∥2 ≥ µ∥xk+1 − xk∥2.

Thus, substituting the above three inequalities into (3.6), we obtain

L̂β(xk, yk, λk; 1, ·) − L̂β(xk+1, yk, λk; 1, ·) ≥ βµ− L3(yk) − ω

2
∥xk+1 − xk∥2. (3.7)

Similarly,

L̂β(xk+1, yk, λk;α, yk) − L̂β(xk+1, yk+1, λk;α, yk)

= f(xk+1) + g(yk) + H(xk+1, yk) − ⟨λk, Axk+1 + yk − b⟩ +
β

2
∥α(Axk+1 + yk − b)∥2−{

f(xk+1) + g(yk+1) + H(xk+1, yk+1) − ⟨λk, Axk+1 + yk+1 − b⟩+
β

2
∥α(Axk+1 + yk − b) + (yk+1 − yk)∥2

}
= g(yk) − g(yk+1) + H(xk+1, yk) −H(xk+1, yk+1) + ⟨λk, yk+1 − yk⟩−

αβ⟨Axk+1 + yk − b, yk+1 − yk⟩ − β

2
∥yk+1 − yk∥2

= g(yk) − g(yk+1) + H(xk+1, yk) −H(xk+1, yk+1)+

⟨λk+1, yk+1 − yk⟩ +
β

2
∥yk+1 − yk∥2, (3.8)

where the last equality follows from −αβ(Axk+1 + yk − b) = λk+1 − λk + β(yk+1 − yk) which is

based on the third equality of (3.2). By the Lipschitz continuity of ∇g, it follows from Lemma

2.10 and second equality of (3.2) that

g(yk) − g(yk+1) ≥ ⟨λk+1 −∇yH(xk+1, yk+1), yk − yk+1⟩ − L1

2
∥yk+1 − yk∥2.

Since ∇yH(xk+1, ·) is Lipschitz with constant L2(xk+1), we know from Lemma 2.10 that

H(xk+1, yk) −H(xk+1, yk+1) ≥ ⟨∇yH(xk+1, yk+1), yk − yk+1⟩ − L2(xk+1)

2
∥yk+1 − yk∥2.
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Thus, combining the above two inequalities with (3.8), we obtain

L̂β(xk+1, yk, λk;α, yk) − L̂β(xk+1, yk+1, λk;α, yk) ≥ β − L1 − L2(xk+1)

2
∥yk+1 − yk∥2. (3.9)

Next, we estimate the remaining terms

(L̂β(xk+1, yk, λk; 1, ·) − L̂β(xk+1, yk, λk;α, yk))+

(L̂β(xk+1, yk+1, λk;α, yk) − L̂β(xk+1, yk+1, λk+1; 1, ·)).

Indeed,

L̂β(xk+1, yk, λk; 1, ·) − L̂β(xk+1, yk, λk;α, yk)

= f(xk+1) + g(yk) + H(xk+1, yk) − ⟨λk, Axk+1 + yk − b⟩ +
β

2
∥Axk+1 + yk − b∥2−{

f(xk+1) + g(yk) + H(xk+1, yk) − ⟨λk, Axk+1 + yk − b⟩ +
β

2
∥α(Axk+1 + yk − b)∥2

}
=

β

2
∥Axk+1 + yk − b∥2 − β

2
∥α(Axk+1 + yk − b)∥2 (3.10)

and

L̂β(xk+1, yk+1, λk;α, yk) − L̂β(xk+1, yk+1, λk+1; 1, ·)

= f(xk+1) + g(yk+1) + H(xk+1, yk+1) − ⟨λk, Axk+1 + yk+1 − b⟩+
β

2
∥α(Axk+1 + yk − b) + (yk+1 − yk)∥2 −

{
f(xk+1) + g(yk+1) + H(xk+1, yk+1)−

⟨λk+1, Axk+1 + yk+1 − b⟩ +
β

2
∥Axk+1 + yk+1 − b∥2

}
= ⟨λk+1 − λk, Axk+1 + yk+1 − b⟩ +

β

2
∥α(Axk+1 + yk − b) + (yk+1 − yk)∥2−

β

2
∥Axk+1 + yk+1 − b∥2

= ⟨λk+1 − λk, Axk+1 + yk+1 − b⟩ +
β

2
∥α(Axk+1 + yk − b)∥2+

αβ⟨Axk+1 + yk − b, yk+1 − yk⟩ − β

2
∥Axk+1 + yk − b∥2 − β⟨Axk+1 + yk − b, yk+1 − yk⟩.

(3.11)

Adding (3.10) and (3.11), we have

(L̂β(xk+1, yk, λk; 1, ·) − L̂β(xk+1, yk, λk;α, yk)) + (L̂β(xk+1, yk+1, λk;α, yk)−

L̂β(xk+1, yk+1, λk+1; 1, ·))

= ⟨λk+1 − λk,− 1

αβ
(λk+1 − λk) − 1 − α

α
(yk+1 − yk)⟩−

(1 − α)β⟨− 1

αβ
(λk+1 − λk) − 1

α
(yk+1 − yk), yk+1 − yk⟩

= − 1

αβ
∥λk+1 − λk∥2 +

(1 − α)β

α
∥yk+1 − yk∥2. (3.12)

Because ∇H is Lipschitz continuous on bounded subsets and {(xk, yk)}k∈N is bounded, we know

∥λk+1 − λk∥2
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= ∥∇g(yk+1) + ∇yH(xk+1, yk+1) −∇g(yk) −∇yH(xk, yk)∥2

≤ 2∥∇g(yk+1) −∇g(yk)∥2 + 2∥∇yH(xk+1, yk+1) −∇yH(xk, yk)∥2

≤ 2L2
1∥yk+1 − yk∥2 + 2M2∥xk+1 − xk∥2 + 2M2∥yk+1 − yk∥2

= (2L2
1 + 2M2)∥yk+1 − yk∥2 + 2M2∥xk+1 − xk∥2, (3.13)

where the second inequality follows from the Lipschitz continuity of ∇g and (iii) of Assumption

3.1. Substituting (3.13) into (3.12), we can get

(L̂β(xk+1, yk, λk; 1, ·) − L̂β(xk+1, yk, λk;α, yk)) + (L̂β(xk+1, yk+1, λk;α, yk)−

L̂β(xk+1, yk+1, λk+1; 1, ·))

≥ −2M2

αβ
∥xk+1 − xk∥2 + (

(1 − α)β

α
− 2L2

1 + 2M2

αβ
)∥yk+1 − yk∥2. (3.14)

Observe that

Lβ(ωk) − Lβ(ωk+1) = Lβ(xk, yk, λk) − Lβ(xk+1, yk+1, λk+1)

= L̂β(xk, yk, λk; 1, ·) − L̂β(xk+1, yk+1, λk+1; 1, ·)

= (L̂β(xk, yk, λk; 1, ·) − L̂β(xk+1, yk, λk; 1, ·)) + (L̂β(xk+1, yk, λk; 1, ·)−

L̂β(xk+1, yk, λk;α, yk)) + (L̂β(xk+1, yk, λk;α, yk) − L̂β(xk+1, yk+1, λk;α, yk))+

(L̂β(xk+1, yk+1, λk;α, yk) − L̂β(xk+1, yk+1, λk+1; 1, ·)). (3.15)

Thus, substituting (3.7), (3.9) and (3.14) into (3.15), we obtain

Lβ(ωk) − Lβ(ωk+1) ≥
(βµ− L3(yk) − ω

2
− 2M2

αβ

)
∥xk+1 − xk∥2+

(β − L1 − L2(xk+1)

2
− 2L2

1 + 2M2

αβ
+

(1 − α)β

α

)
∥yk+1 − yk∥2

≥
(βµ− L3 − ω

2
− 2M2

αβ

)
∥xk+1 − xk∥2 +

(β − L1 − L2

2
− 2L2

1 + 2M2

αβ
+

(1 − α)β

α

)
∥yk+1 − yk∥2

≥ δ∥vk+1 − vk∥2,

where the second inequality follows from (v) of Assumption 3.1 and the last inequality follows

from (vi) of Assumption 3.1. The proof is completed. �

Lemma 3.3 Let {ωk}k∈N be the sequence generated by the GADMM (1.5) which is assumed

to be bounded. Then the following holds:

+∞∑
k=0

∥ωk+1 − ωk∥2 < +∞. (3.16)

Proof Since {ωk}k∈N is bounded, there exists a subsequence {ωkj}j∈N such that ωkj → ω∗.

Firstly, we know Lβ(·) is lower semicontinuous due to the continuity of g and H and the closedness

of f , that means

Lβ(ω∗) ≤ lim inf
j→∞

Lβ(ωkj ).

Consequently, {Lβ(ωkj )}j∈N is bounded from below. Note that, (3.5) implies that {Lβ(ωk)}k∈N
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is nonincreasing and thus {Lβ(ωkj )}j∈N is convergent. Moreover, we have {Lβ(ωk)}k∈N is

convergent and Lβ(ωk) ≥ Lβ(ω∗). Rearranging terms of (3.5) leads to

δ∥vk+1 − vk∥2 ≤ Lβ(ωk) − Lβ(ωk+1).

Adding the above inequality from k = 0 to k = m
m∑

k=0

δ∥vk+1 − vk∥2 ≤ Lβ(ω0) − Lβ(ωm+1) ≤ Lβ(ω0) − Lβ(ω∗).

Thus, letting m → +∞, we get

+∞∑
k=0

δ∥vk+1 − vk∥2 ≤ Lβ(ω0) − Lβ(ω∗) < +∞.

In view of δ > 0, the above inequality yields

+∞∑
k=0

∥vk+1 − vk∥2 ≤ +∞.

Hence, we obtain

+∞∑
k=0

∥xk+1 − xk∥2 < +∞,
+∞∑
k=0

∥yk+1 − yk∥2 < +∞. (3.17)

Moreover, it follows from (3.13) and (3.17) that

+∞∑
k=0

∥λk+1 − λk∥2 < +∞.

Therefore,
+∞∑
k=0

∥ωk+1 − ωk∥2 < +∞.

The proof is completed. �

Lemma 3.4 Let {ωk}k∈N be the sequence generated by the GADMM (1.5) which is assumed

to be bounded. Then there exists η > 0 such that

d(0, ∂Lβ(ωk+1)) ≤ η∥vk+1 − vk∥. (3.18)

Proof By the definition of the augmented Lagrangian function Lβ(·) and (iv) of Remark 2.2,

we have
∂xLβ(ωk+1) = ∂f(xk+1) + ∇xH(xk+1, yk+1) −ATλk+1 + βAT (Axk+1 + yk+1 − b),

∂yLβ(ωk+1) = ∇g(yk+1) + ∇yH(xk+1, yk+1) − λk+1 + β(Axk+1 + yk+1 − b),

∂λLβ(ωk+1) = −(Axk+1 + yk+1 − b).

(3.19)

Substituting (3.2) into (3.19) leads to
AT (λk − λk+1) + βAT (yk+1 − yk) + ∇xH(xk+1, yk+1) −∇xH(xk+1, yk) ∈ ∂xLβ(ωk+1),
1
α (λk − λk+1) + (1−α)β

α (yk − yk+1) ∈ ∂yLβ(ωk+1),
1
αβ (λk+1 − λk) + 1−α

α (yk+1 − yk) ∈ ∂λLβ(ωk+1).

(3.20)
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Thus, if we set

(ξk+1
1 , ξk+1

2 , ξk+1
3 ) :=(AT (λk − λk+1) + βAT (yk+1 − yk)+

∇xH(xk+1, yk+1) −∇xH(xk+1, yk),

1

α
(λk − λk+1) +

(1 − α)β

α
(yk − yk+1),

1

αβ
(λk+1 − λk) +

1 − α

α
(yk+1 − yk)),

then it follows from Lemma 2.3 that (ξk+1
1 , ξk+1

2 , ξk+1
3 ) ∈ ∂Lβ(ωk+1). Moreover, there exist

η1, η2, η3 > 0 such that

∥(ξk+1
1 , ξk+1

2 , ξk+1
3 )∥

≤ η1∥yk+1 − yk∥ + η2∥λk+1 − λk∥ + η3∥∇xH(xk+1, yk+1) −∇xH(xk+1, yk)∥. (3.21)

Since ∇H is Lipschitz continuous on bounded subsets and {(xk, yk)}k∈N is bounded, by (iii) of

Assumption 3.1 there exists M > 0 such that

∥∇xH(xk+1, yk+1) −∇xH(xk+1, yk)∥ ≤ M∥yk+1 − yk∥. (3.22)

Notice that, we can deduce from (3.13) that

∥λk+1 − λk∥ ≤
√

2L2
1 + 2M2 · ∥yk+1 − yk∥ +

√
2M · ∥xk+1 − xk∥. (3.23)

By setting η :=
√

(η1 +
√

2L2
1 + 2M2η2 + Mη3)2 + (

√
2Mη2)2, it follows from (3.21), (3.22) and

(3.23) that

d(0, ∂Lβ(ωk+1)) ≤ ∥(ξk+1
1 , ξk+1

2 , ξk+1
3 )∥

≤ (η1 +
√

2L2
1 + 2M2η2 + Mη3) · ∥yk+1 − yk∥ +

√
2Mη2 · ∥xk+1 − xk∥

≤ η∥vk+1 − vk∥

where the third inequality follows from the Cauchy inequality. The proof is completed. �
Let {ωk}k∈N be the sequence generated by the GADMM (1.5) from a starting point ω0. The

set of all limit points is denoted by S(ω0), i.e., S(ω0) := {ω∗ : ∃ a subsequence {ωkj}j∈N of

{ωk}k∈N converges to ω∗}. In the following, we summarize several properties of the limit point

set.

Lemma 3.5 Let {ωk}k∈N be the sequence generated by the GADMM (1.5) which is assumed

to be bounded. Let S(ω0) denote the set of its limit points. Then

(i) S(ω0) is a nonempty compact set, and d(ωk, S(ω0)) → 0, as k → +∞;

(ii) S(ω0) ⊂ crit Lβ ;

(iii) Lβ(·) is finite and constant on S(ω0), equal to

inf
k∈N

Lβ(ωk) = lim
k→+∞

Lβ(ωk).

Proof We prove the results item by item.

(i) This item follows as an elementary consequence of the definition of limit points.

(ii) For any fixed (x∗, y∗, λ∗) ∈ S(ω0), there exists a subsequence {(xkj , ykj , λkj )}j∈N con-

verging to (x∗, y∗, λ∗). By the definition of the augmented Lagrangian function Lβ(·) (3.4), the
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x-subproblem of (1.5) is equivalent to

xk+1 ∈ arg min
x

{Lβ(x, yk, λk)},

that means xk+1 is the global minimizer of Lβ(x, yk, λk) for the variable x, then it holds that

Lβ(xk+1, yk, λk) ≤ Lβ(x∗, yk, λk).

Using the above inequality and the continuity of Lβ(·) with respect to y and λ ensure

lim sup
j→+∞

Lβ(xkj+1, ykj , λkj ) = lim sup
j→+∞

Lβ(xkj+1, ykj+1, λkj+1) ≤ Lβ(x∗, y∗, λ∗). (3.24)

On the other hand, (3.16) implies ∥ωk+1 − ωk∥ → 0, which means that the subsequence

{(xkj+1, ykj+1, λkj+1)}j∈N

also converges to (x∗, y∗, λ∗). From the lower semicontinuity of Lβ(·), we have

lim inf
j→+∞

Lβ(xkj+1, ykj+1, λkj+1) ≥ Lβ(x∗, y∗, λ∗). (3.25)

Then by combining (3.24) and (3.25) together we can get

lim
j→+∞

Lβ(xkj+1, ykj+1, λkj+1) = Lβ(x∗, y∗, λ∗),

which implies

lim
j→+∞

f(xkj+1) = f(x∗). (3.26)

Passing to the limit in (3.2) along the subsequence {(xkj+1, ykj+1, λkj+1)}j∈N and invoking (3.26)

and the continuity of ∇g,∇xH(·, ·),∇yH(·, ·), it follows that
ATλ∗ −∇xH(x∗, y∗) ∈ ∂f(x∗),

λ∗ −∇yH(x∗, y∗) = ∇g(y∗),

Ax∗ + y∗ − b = 0.

Thus, (x∗, y∗, λ∗) ∈ crit Lβ .

(iii) For any point (x∗, y∗, λ∗) ∈ S(ω0), there exists a subsequence {(xkj , ykj , λkj )}j∈N

converging to (x∗, y∗, λ∗). Since Lβ(ωk) is nonincreasing, combining (3.24) and (3.25) together

we can get

lim
k→+∞

Lβ(xk, yk, λk) = Lβ(x∗, y∗, λ∗).

Therefore, Lβ(·) is constant on S(ω0). Moreover,

inf
k∈N

Lβ(ωk) = lim
k→+∞

Lβ(ωk).

The proof is completed. �

Theorem 3.6 Let {ωk}k∈N be the sequence generated by the GADMM (1.5) which is assumed

to be bounded. Suppose that Lβ(·) is a KL function. Then {ωk}k∈N has finite length, that is

+∞∑
k=0

∥ωk+1 − ωk∥ < +∞,
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and as a consequence, {ωk}k∈N converges to a critical point of Lβ(·).

Proof Since from the proof of Lemma 3.5, it follows that Lβ(ωk) → Lβ(ω∗) for all ω∗ ∈ S(ω0).

We consider two cases.

Case 1 If there exists an integer k0 for which Lβ(ωk0) = Lβ(ω∗). Rearranging the terms of

(3.5), we have that for any k > k0,

δ∥vk+1 − vk∥2 ≤ Lβ(ωk) − Lβ(ωk+1) ≤ Lβ(ωk0) − Lβ(ω∗) = 0,

which implies that vk+1 = vk for any k > k0. Associated with (3.13), for any k > k0 + 1, it

follows that ωk+1 = ωk and the assertion holds.

Case 2 Now assume Lβ(ωk) > Lβ(ω∗) for all k. We claim there exists k̃ > 0 such that for all

k > k̃

δ∥vk+1 − vk∥2 ≤ η · ∥vk − vk−1∥ · ∆k,k+1, (3.27)

where ∆p,q := φ(Lβ(ωp)−Lβ(ω∗))−φ(Lβ(ωq)−Lβ(ω∗)). To see this, note that d(ωk, S(ω0)) → 0

and Lβ(ωk) → Lβ(ω∗), then for all ϵ, κ > 0 there exists k̃ > 0 such that for all k > k̃, we have

d(ωk, S(ω0)) < ϵ, Lβ(ω∗) < Lβ(ωk) < Lβ(ω∗) + κ.

Since S(ω0) is nonempty compact set and Lβ(·) is constant on S(ω0), applying Lemma 2.9 with

Ω := S(ω0), we deduce that for all k > k̃

φ′(Lβ(ωk) − Lβ(ω∗))d(0, ∂Lβ(ωk)) ≥ 1.

Since Lβ(ωk) − Lβ(ωk+1) = (Lβ(ωk) − Lβ(ω∗)) − (Lβ(ωk+1) − Lβ(ω∗)), making use of the

concavity of φ, we get that

φ(Lβ(ωk) − Lβ(ω∗)) − φ(Lβ(ωk+1) − Lβ(ω∗)) ≥ φ′(Lβ(ωk) − Lβ(ω∗))(Lβ(ωk) − Lβ(ωk+1)).

Thus, using the inequalities d(0, ∂Lβ(ωk)) ≤ η∥vk+1 − vk∥ and φ′(Lβ(ωk) − Lβ(ω∗)) > 0, we

obtain
Lβ(ωk) − Lβ(ωk+1)

≤ φ(Lβ(ωk) − Lβ(ω∗)) − φ(Lβ(ωk+1) − Lβ(ω∗))

φ′(Lβ(ωk) − Lβ(ω∗))

≤ η∥vk − vk−1∥[φ(Lβ(ωk) − Lβ(ω∗)) − φ(Lβ(ωk+1) − Lβ(ω∗))].

Combining Lemma 3.2 with the above relation gives (3.27) as desired. Moreover, (3.27) implies

∥vk+1 − vk∥ ≤
√

η

δ
∆k,k+1 · ∥vk − vk−1∥ 1

2 .

Notice that 2
√
αβ ≤ α + β for all α, β > 0. Then we obtain

2∥vk+1 − vk∥ ≤ ∥vk − vk−1∥ +
η

δ
∆k,k+1.

Summing the above inequality over k = k̃ + 1, . . . ,m yields

2
m∑

k=k̃+1

∥vk+1 − vk∥ ≤
m∑

k=k̃+1

∥vk − vk−1∥ +
η

δ
∆k̃+1,m+1.
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Since φ(Lβ(ωm+1) − Lβ(ω∗)) > 0, rearranging terms and letting m → +∞ lead to

+∞∑
k=k̃+1

∥vk+1 − vk∥ ≤ ∥vk̃+1 − vk̃∥ +
η

δ
φ(Lβ(ωk̃+1) − Lβ(ω∗)), (3.28)

which implies
∑+∞

k=0 ∥vk+1 − vk∥ < +∞. Thus, it follows that

+∞∑
k=0

∥xk+1 − xk∥ < +∞,
+∞∑
k=0

∥yk+1 − yk∥ < +∞.

From these together with (3.23), we obtain

+∞∑
k=0

∥λk+1 − λk∥ < +∞.

Moreover, note that

∥ωk+1 − ωk∥ = (∥xk+1 − xk∥2 + ∥yk+1 − yk∥2 + ∥λk+1 − λk∥2)
1
2

≤ ∥xk+1 − xk∥ + ∥yk+1 − yk∥ + ∥λk+1 − λk∥.

Therefore,
+∞∑
k=0

∥ωk+1 − ωk∥ < +∞,

and {ωk}k∈N is a Cauchy sequence which converges. The proof is completed. �
Next, we give some sufficient conditions to guarantee the sequence {ωk}k∈N generated by

the GADMM (1.5) is bounded.

Lemma 3.7 Let {ωk}k∈N be the sequence generated by the GADMM (1.5). Suppose that ∇H

is global Lipschitz continuous and

Hg := inf
x∈Rn,y∈Rm

{
g(y) + H(x, y) − 1

2β̃
∥∇g(y) + ∇yH(x, y)∥2

}
> −∞,

where β̃ is defined in (3.3). If lim inf∥x∥→+∞ f(x) = +∞, then {ωk}k∈N is bounded.

Proof Since ∇H is global Lipschitz continuous, following the same proof line of Lemma 3.2, we

can show that

Lβ(xk+1, yk+1, λk+1) ≤ Lβ(xk, yk, λk).

Then, combining with λk = ∇g(yk) + ∇yH(xk, yk), we get

Lβ(x1, y1, λ1)

≥ f(xk) + g(yk) + H(xk, yk) − ⟨λk, Axk + yk − b⟩ +
β

2
∥Axk + yk − b∥2

= f(xk) + g(yk) + H(xk, yk) − 1

2β
∥λk∥2 +

β

2
∥Axk + yk − b− 1

β
λk∥2

= f(xk) + (g(yk) + H(xk, yk) − 1

2β̃
∥λk∥2) + (

1

2β̃
− 1

2β
)∥λk∥2 +

β

2
∥Axk + yk − b− 1

β
λk∥2

≥ f(xk) + Hg + (
1

2β̃
− 1

2β
)∥λk∥2 +

β

2
∥Axk + yk − b− 1

β
λk∥2.
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Note that, lim inf
∥x∥→+∞

f(x) = +∞ implies that inf
x

f(x) > −∞. By means of this and β > β̃, we

deduce that the sequences {xk}k∈N , {λk}k∈N and {β
2 ∥Axk + yk − b− 1

βλ
k∥2}k∈N are bounded.

Therefore, {yk}k∈N is also bounded and hence {ωk} is bounded. The proof is completed. �

Theorem 3.8 Let {ωk}k∈N be the sequence generated by the GADMM (1.5) that converges

to {ω∗ := (x∗, y∗, λ∗)}. Assume that Lβ(·) has the KL property at (x∗, y∗, λ∗) with φ(s) :=

cs1−θ, θ ∈ [0, 1), c > 0. Then the following estimations hold:

(i) If θ = 0, then the sequence converges in a finite number of steps;

(ii) If θ ∈ (0, 1
2 ], then there exist c > 0 and τ ∈ [0, 1), such that

∥(xk, yk, λk) − (x∗, y∗, λ∗)∥ ≤ cτk;

(iii) If θ ∈ ( 1
2 , 1), then there exists c > 0, such that

∥(xk, yk, λk) − (x∗, y∗, λ∗)∥ ≤ ck
θ−1
2θ−1 .

Proof For the case that θ = 0, we have φ(s) = cs and φ′(s) = c. If {ωk}k∈N does not converge

in a finite number of steps, then the KL property at (x∗, y∗, λ∗) yields for any k sufficiently large,

c · d(0, ∂Lβ(ωk)) ≥ 1, a contradiction to (3.18).

Now, suppose that θ > 0 and set

∆k :=
+∞∑
i=k

∥vi+1 − vi∥, k ≥ 0.

The triangle inequality yields ∆k ≥ ∥vk−v∗∥, and it is therefore sufficient to estimate ∆k. With

these notations, it follows from (3.28) that

∆k̃+1 ≤ (∆k̃ − ∆k̃+1) +
η

δ
φ(Lβ(ωk̃+1) − Lβ(ω∗)).

Because Lβ has the KL property at (x∗, y∗, λ∗), we have

φ′(Lβ(ωk̃+1) − Lβ(ω∗))d(0, ∂Lβ(ωk̃+1)) ≥ 1.

Due to φ(s) = cs1−θ, the above inequality is equivalent to

(Lβ(ωk̃+1) − Lβ(ω∗))θ ≤ c · (1 − θ)d(0, ∂Lβ(ωk̃+1)). (3.29)

By means of (3.18), we can get

d(0, ∂Lβ(ωk̃+1)) ≤ η∥vk̃+1 − vk̃∥ = η(∆k̃ − ∆k̃+1). (3.30)

Combining (3.29) and (3.30), we obtain that there exists γ > 0 such that

φ(Lβ(ωk̃+1) − Lβ(ω∗)) = c · (Lβ(ωk̃+1) − Lβ(ω∗))1−θ ≤ γ(∆k̃ − ∆k̃+1)
1−θ
θ ,

and hence

∆k̃+1 ≤ (∆k̃ − ∆k̃+1) +
η

δ
γ(∆k̃ − ∆k̃+1)

1−θ
θ .

Sequences satisfying such inequalities have been studied in Attouch and Bolte [32]. It follows

that
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(i) If θ ∈ (0, 1
2 ], then there exist c1 > 0 and τ ∈ [0, 1), such that

∥vk − v∗∥ ≤ c1τ
k; (3.31)

(ii) If θ ∈ ( 1
2 , 1), then there exists c2 > 0, such that

∥vk − v∗∥ ≤ c2k
θ−1
2θ−1 , (3.32)

which implies that

(i) If θ ∈ (0, 1
2 ], then there exist c1 > 0 and τ ∈ [0, 1), such that

∥xk − x∗∥ ≤ c1τ
k, ∥yk − y∗∥ ≤ c1τ

k; (3.33)

(ii) If θ ∈ ( 1
2 , 1), then there exists c2 > 0, such that

∥xk − x∗∥ ≤ c2k
θ−1
2θ−1 , ∥yk − y∗∥ ≤ c2k

θ−1
2θ−1 . (3.34)

Note that

∥λk − λ∗∥ = ∥∇g(yk) + ∇yH(xk, yk) −∇g(y∗) −∇yH(x∗, y∗)∥

≤ ∥∇g(yk) −∇g(y∗)∥ + ∥∇yH(xk, yk) −∇yH(x∗, y∗)∥

≤ M∥xk − x∗∥ + (L1 + M)∥yk − y∗∥, (3.35)

where the inequality follows from the Lipschitz continuity of ∇g and (iii) of Assumption 3.1.

Substituting (3.33) and (3.34) into (3.35), we get that

(i) If θ ∈ (0, 1
2 ], then there exist c3 := c1(L1 + 2M) and τ ∈ [0, 1), such that

∥λk − λ∗∥ ≤ c3τ
k; (3.36)

(ii) If θ ∈ ( 1
2 , 1), then there exists c4 := c2(L1 + 2M), such that

∥λk − λ∗∥ ≤ c4k
θ−1
2θ−1 . (3.37)

Combining (3.36) and (3.37), we get the desired inequalities immediately from (3.31) and (3.32).

The proof is completed. �

4. Conclusions

In this paper, we analyzed the convergence of the generalized alternating direction method of

multipliers (GADMM) for solving linearly constrained nonconvex minimization problem whose

objective contains coupled functions. Under the assumption that the augmented Lagrangian

function satisfies the Kurdyka- Lojasiewicz inequality, we proved that the iterate sequence gen-

erated by the GADMM converges to a critical point of the augmented Lagrangian function,

provided that the penalty parameter in the augmented Lagrangian function is larger than a

threshold. Under some further conditions on the problem’s data, the convergence rate of the

algorithm was also established.
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