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Abstract This work is a contribution to the classification of linear spaces admitting a point-

transitive automorphism group. Let S be a regular linear space with 51 points, with lines of

size 6, and G be an automorphism group of S. We prove that G cannot be point-transitive.
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1. Introduction

A linear space S is an incidence structure (P,L) consisting of a set P of points and a

collection L of distinguished subsets of P, called lines with sizes ≥ 2, such that any two points

are incident with exactly one line. We assume that S is finite in the sense that P is finite.

Traditionally, we define v = |P| and b = |L|. Let α be a point of P, and k be a positive integer.

Then rkα denotes the number of lines having size k through α, bk the number of lines of size k,

and rα the number of all lines through α, called the degree of α. If all lines have a constant size

k, then we say that S is regular, so it is a 2-(v, k, 1) design. Moreover, a regular linear space is

said to be non-trivial if it has at least two lines and every line contains at least three points.

An automorphism of S is a permutation acting on P which leaves L invariant. The full

automorphism group of S is denoted by Aut(S) and any subgroup of Aut(S) is called an au-

tomorphism group of S. If G ≤ Aut(S) is transitive on P (resp., L), then we say that G is

point-transitive (resp., line-transitive). Similarly, G is said to be point-primitive (resp., point-

imprimitive) if it acts primitively (resp., imprimitively) on points.

Several papers have already been devoted to the existence of the 2-(v, k, 1) designs. In

particular, existence results for k < 6 are known, and the existence for certain 2-(v, 6, 1) designs

are proven. A summary of these results was given in [1]. According to [2, 3], there are only a

finite number of 2-(v, 6, 1) designs which need to be considered before all existence of 2-(v, 6, 1)

designs can be proven. In fact, the existence of the 2-(v, 6, 1) designs is unknown if and only if v ∈
{51, 61, 81, 166, 226, 231, 256, 261, 286, 316, 321, 346, 351, 376, 406, 411, 436, 441, 471, 501, 561, 591,
616, 646, 651, 676, 771, 796, 801}. Provided that S is a 2-(51, 6, 1) design admitting a line-tansitive

automorphism group G. Since the alternating group A51 is the only primitive group of degree

Received January 27, 2018; Accepted July 17, 2018

Supported by the National Natural Science Foundation of China (Grant Nos. 11801311; 11626141).

E-mail address: ghyan928@ctgu.edu.cn



552 Haiyan GUAN

51 (see [4, Table B.4]), G cannot be point-primitive by [5, Main Theorem]. Moreover, we also

know that G cannot be point-imprimitive according to [6]. So no line-transitive 2-(51, 6, 1)

design exists. In this paper, we consider the 2-(51, 6, 1) designs admitting a point-transitive

automorphism group, and the following is the main result.

Theorem 1.1 Let S be a 2-(51, 6, 1) design. If G is an automorphism group of S, then G

cannot be point-transitive. That is to say: there is no point-transitive 2-(51, 6, 1) design.

The paper divides naturally into four parts. Section 2 presents some preliminary results and

notation. Section 3 does a detailed analysis of bound of the size of |Aut(S)|. Finally, Section 4

gives the proof of Theorem 1.1.

2. Preliminary results and notation

Let S be a finite linear space with v points, K be a set of positive integers such that v ≥ k

for every k ∈ K and the set of line-sizes of S is contained in K. Let α be a point of P. Then

∑
k∈K

(k − 1)rkα = v − 1 (2.1)

and for each k ∈ K, we have

∑
α∈P

rkα = k · bk. (2.2)

In particular, if S is a non-trivial finite regular linear space, then the following result is

well-known.

Lemma 2.1 ([5, Lemma 2.1]) Let S be a non-trivial finite regular linear space. Then

r =
v − 1

k − 1
, b =

v(v − 1)

k(k − 1)
,

and

k(k − 1) + 1 ≤ v,

where k is the line-size of S, and r is the number of lines through a point.

Let S = (P,L) be a linear space and G ≤ Aut(S), ∆ be a subset of P with |∆| ≥ 2, and

set L∆ = {λ ∩∆ : |λ ∩∆| ≥ 2 for λ ∈ L}. Then (∆,L∆) forms an incidence structure, and the

induced structure is a linear space. We are interested in the case when ∆ is Fix(g) (or Fix(H)),

the set of fixed points of g ∈ G (or H ≤ G ) on P. The following result gives a bound of |Fix(H)|
for a subgroup H ≤ G.

Lemma 2.2 ([7, Lemma 1]) Let S be a finite regular linear space, G be an automorphism group

of S, and H ̸= 1 be a subgroup of G. Then |Fix(H)| ≤ r unless every point lies on a fixed line

and then |Fix(H)| ≤ r + k − 3.

The next Lemma comes from [8], and will be of great help for our proof of Theorem 1.1.
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Lemma 2.3 If S is a linear space having lines of size 3 and 6 (with at least one line of size 3

and one line of size 6). Then v = 16 or 18, provided that v < 21.

Throughout this paper, we assume that S = (P,L) is a 2-(51, 6, 1) design, and G is a point-

transitive subgroup of Aut(S). Let |G|p be the p-part of |G|, that is, the highest power of the

prime p dividing |G|.

3. The order of |Aut(S)|

In this section we bound the size of |Aut(S)| and show that |Aut(S)| divides 27 · 34 · 53 · 17.

Lemma 3.1 |Aut(S)| divides 2m · 3n · 53 · 17 for two positive integers m and n.

Proof Let p ≥ 5 be a prime divisor of |Aut(S)|, and g be an element of Aut(S) of order p.

Then |Fix(g) ∩ λ| = 0, 1 or 6 for λ ∈ L.
Suppose that Fix(g) ̸⊆ λ for each λ ∈ L, then Fix(g) induces a regular linear space, that

is a 2-(|Fix(g)|, 6, 1) design. Thus |Fix(g)| ≥ 6(6 − 1) + 1 = 31 by Lemma 2.1. But |Fix(g)| ≤
6 + 10 − 3 = 13 according to Lemma 2.2, a contradiction. Hence there exists a line λ ∈ L such

that Fix(g) ⊆ λ and |Fix(g)| = 0, 1 or 6. Therefore, the possible values of p are 5 and 17, since

51− |Fix(g)| ≡ 0 (mod p). Let P be a Sylow p-subgroup of Aut(S).
If p = 5 and P ̸= 1, then |Fix(P )| = 1 or 6. First we suppose that |Fix(P )| = 6, then

P acts on P\Fix(P ) semiregularly, hence |P | | (51 − 6), thus |P | divides 5. Now suppose that

|Fix(P )| = 1. If P acts semiregularly on P\Fix(P ), then |P | | 52. If P is not semiregular on

P\Fix(P ), then there exists a point α ∈ P\Fix(P ) such that Pα ̸= 1, thus |Fix(Pα)| = 6 and Pα

is semiregular on P\Fix(Pα), so |Pα| divides 5 and |P | = |P : Pα||Pα| divides 53.
If P ̸= 1 is a Sylow 17-subgroup of Aut(S), then |Fix(P )| = 0 and P acts semiregularly on

P, thus |P | divides 17. 2

Lemma 3.2 |Aut(S)|3 divides 34.

Proof Let T be a Sylow 3-subgroup of Aut(S). If T ̸= 1, then T fixes a line λ ∈ L. Thus
T/T(λ) ≤ S6 and then |T : T(λ)| divides 32. Now we suppose that T(λ) ̸= 1.

If |Fix(T(λ))| ̸= 6, then T(λ) is a point-set of a linear space. If the induced linear space is

regular, then |Fix(T(λ))| ≥ 31 by Lemma 2.1, a contradiction to Lemma 2.2. Thus the induced

linear space is not regular and at least has one line of size 6 and one of size 3, but it is impossible

by Lemma 2.3.

Therefore, |Fix(T(λ))| = 6 and T(λ) acts semiregularly on P \ Fix(T(λ)). Otherwise, there is

another point β ̸∈ λ such that T(λ∪{β}) ̸= 1, then |Fix(T(λ∪{β}))| > 6 and Fix(T(λ∪{β})) induces

a linear space. If the induced linear space is regular, then |Fix(T(λ∪{β}))| ≥ 31 by Lemma 2.1, a

contradiction to Lemma 2.2. Thus the induced linear space is not regular and at least has one

line of size 6 and one of size 3, but it is impossible by Lemma 2.3. So |T(λ)| | (51 − 6) and |T |
divides 32 · 32. 2

In the rest of this section, the paper deals with the maximal size of the 2-part of |Aut(S)|.
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Some information about the linear spaces in [8] is given. Assume that 2 | |Aut(S)| and T is

2-subgroup of Aut(S). Let D = (Fix(T ),LFix(T )) be the linear space induced by Fix(T ) and

then K = {2, 4, 6} containing the set of its line-sizes. In view of (2.1), we get

r2α + 3r4α + 5r6α = |Fix(T )| − 1, (3.1)

for each α ∈ Fix(T ). Since a non-fixed point of T cannot be on two distinct fixed lines of it, all

the non-fixed points of T which lie on its fixed lines are distinct. Thus

4b2 + 2b4 ≤ 51− |Fix(T )|. (3.2)

Combining (2.2) with (3.2), we obtain

2
∑

α∈Fix(T )

r2α +
1

2

∑
α∈Fix(T )

r4α ≤ 51− |Fix(T )|. (3.3)

Now for each point α ∈ Fix(T ), define the weight ([8]) ω(α) of α

ω(α) = 2r2α +
1

2
r4α.

So that (3.3) can be written as ∑
α∈Fix(T )

ω(α) ≤ 51− |Fix(T )|. (3.4)

If r2α = x, r4α = y and r6α = z, then we say that α is of type (x, y, z).

Lemma 3.3 |Aut(S)|2 divides 27.

Proof Let T ∈ Syl2(Aut(S)). If T ̸= 1, then T fixes a line λ ∈ L. If T(λ) ̸= 1, then |Fix(T(λ))| ≥ 7

since |Fix(T(λ))| ≡ 1 (mod 2). Let S = T(λ) and β ̸∈ λ be a fixed point of S. Then S fixes λ1,

where λ1 is a line through β such that λ ∩ λ1 ̸= ∅. Let λ ∩ λ1 = {α}. If S(λ1) ̸= 1, then

|Fix(S(λ1))| = 11 or 13 by Lemma 2.2 and Fix(S(λ1)) induces a linear space with line-sizes form

K = {2, 4, 6}.
Suppose first that |Fix(S(λ1))| = 11, then Fix(S(λ1)) = λ∪λ1. The type of α is (0, 0, 2), and

the types of other points of Fix(S(λ1)) are (5, 0, 1). Thus∑
δ∈Fix(S(λ1))

ω(δ) = 0 + 10× 10 = 100,

a contradiction to inequation (3.4).

Now Suppose that |Fix(S(λ1))| = 13, and β1, β2 are the two fixed points which lie on neither

λ nor λ1. Then r4βi
≤ 1 and r6βi

= 0 for i = 1, 2. Thus ω(βi) = 24 or 18 + 1
2 . Moreover we have

ω(α) = 4. Hence ∑
δ∈Fix(S(λ1))

ω(δ) ≥ ω(α) + ω(β1) + ω(β2) ≥ 41,

which is impossible by inequation (3.4).

Therefore, S(λ1) = 1 and T(λ) acts faithfully on λ1\{α, β}. So T(λ) ≤ S4 and then |T | divides
27 since T/T(λ) ≤ S6. 2
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4. Proof of Theorem 1.1

According to Lemmas 3.1–3.3, we get |Aut(S)| divides 27 ·34 ·53 ·17. In this section, we will

prove that there is no point-transitive 2-(51, 6, 1) design.

Lemma 4.1 G cannot be isomorphic to Z51.

Proof Suppose otherwise that G = ⟨g⟩ ∼= Z51. Then G is regular on P. Thus we can identify

the point set P with G and the elements of G act by multiplication. Since S has 85 lines

and |λG| = 17 or 51 for λ ∈ L, then there at least exists one orbit λG such that |λG| = 17.

Then λg17

= λ and then λ is a union of two orbits of ⟨g17⟩ on P. Let {gi, gi+17, gi+34} and

{gj , gj+17, gj+34} be two orbits such that

λ = {gi, gi+17, gi+34} ∪ {gj , gj+17, gj+34},

where 1 ≤ i < j ≤ 51. Then

λgj−i

= {g2j−i, g2j−i+17, g2j−i+34} ∪ {gj , gj+17, gj+34},

hence gj−i ∈ Gλ, thus 17 | (j − i). It implies that

{gi, gi+17, gi+34} = {gj , gj+17, gj+34},

which is impossible. Therefore, G cannot be isomorphic to Z51. 2

Lemma 4.2 Assume that N is a minimal normal subgroup of G. Then N ∼= PSL(2, 16).

Proof N �G and G is point-transitive, N is 1
2 -transitive on P, and the common length of orbits

is 3, 17 or 51. Let N ∼= T ℓ be a direct product of ℓ ≥ 1 copies of simple groups T .

If N is elementary, then N ∼= Zℓ
3 (1 ≤ ℓ ≤ 4) or N ∼= Z17. For the former case, we have

G/CG(N) ≤ GL(ℓ, 3). But for ℓ = 1, 2, 3 and 4, 17 - |GL(ℓ, 3)|, thus |CG(N)| must be divisible

by 17 and CG(N) is transitive on P. Choose g ∈ CG(N) and t ∈ N such that the order of g is 17

and the order of t is 3, then ⟨g, t⟩ ∼= Z51 is transitive on P, which is impossible by Lemma 4.1.

For the later case, we have G/CG(N) ≤ Z16 and similar discussion implies that there also exists

a point-transitive subgroup of G which is isomorphic to Z51, a contradiction.

Now suppose that T is a non-abelian simple group. If the length of orbits is 3, then N does

not have an element g of order 5 or 17, otherwise Fix(g) = P. Thus |N | divides 27 · 34, this
implies that N is solvable, which is impossible. Hence, the common length of orbits of N on P is

17 or 51, and then |T | is divisible by 17. Therefore, N = T . Using the list of non-abelian simple

groups, it is easy to check that N ∼= PSL(2, 16) or PSL(2, 17), for 17 divides |N | and |N | divides
27 · 37 · 53 · 17. According to [9, Theorem 8.27, Chapter II], PSL(2, 17) has no subgroup of index

17 and 51. Therefore, N ∼= PSL(2, 16). 2

Proof of Theorem 1.1 According to Lemma 4.2, if N is a minimal normal subgroup of G,

then N ∼= PSL(2, 16) and the common length of orbits of N on P is 17 or 51. Now suppose that

the common length is 17, then N acting on each orbit is permutation isomorphic to PSL(2, 16)
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acting on projective lines, and N is 3-transitive on ∆i for i = 1, 2 and 3, where ∆i is an orbit of

N on points. Let g ∈ N be of order 2, αi be the only one fixed point of g on ∆i (i = 1, 2), and λ

be the unique line through α1 and α2. Then g fixes the line λ, hence λ is a union of orbits of g.

Let Σ = {β1, β2} ⊂ λ be an orbit of g. If Σ ⊂ ∆1, then for any other point γ ∈ ∆1, there exists

an element τ ∈ N such that {α1, β1, β2}τ = {γ, β1, β2}, a contradiction. Similar discussion for

Σ ⊂ ∆2. So λ \ {α1, α2} ⊂ ∆3, which is also impossible for N is 3-transitive on ∆3. Therefore,

N ∼= PSL(2, 16) is point-transitive.

According to [9, Theorem 8.27, Chapter II], PSL(2, 16) has only one conjugacy class of

groups of order 80. By MAGMA [10], the permutation representation of PSL(2, 16) on P can be

obtained, and we also get the subdegrees of PSL(2, 16) on P, that is 1, 1, 1, 16, 16 and 16.

Let N = PSL(2, 16), α ∈ P, and β ̸= α be one point fixed by Nα. Let λ be the unique

line through α and β. Then λNα = λ. Thus λ is a union of orbits of Nα, which is impossible.

Therefore, G cannot be point-transitive. 2
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