Existence of Ground States for Fractional Kirchhoff Equations

Qingjun LOU*, Zhiqing HAN
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

In this paper, we study a fractional Kirchhoff problem and establish the existence of nontrivial nonnegative ground states under some suitable conditions.

Keywords ground states; fractional Kirchhoff equation; variational methods
MR(2010) Subject Classification 35J60; 35R11; 35A15

1. Introduction

Consider the fractional Kirchhoff problem

$$
\begin{equation*}
\left(a+b \int_{\mathbb{R}^{N}}\left|(-\triangle)^{s / 2} u\right|^{2} \mathrm{~d} x\right)(-\triangle)^{s} u+\lambda V(x) u=f(x, u) \text { in } \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $s \in(0,1), N>2 s, \lambda>0$ is a real parameter, a, b are positive constants, and $(-\triangle)^{s}$ is a fractional Laplacian operator defined by

$$
(-\triangle)^{s} u(x)=c_{N, s} \text { P.V. } \int_{\mathbb{R}^{N}} \frac{u(x)-u(y)}{|x-y|^{N+2 s}} \mathrm{~d} y, \quad x \in \mathbb{R}^{N} .
$$

Here P.V. is the principal value and $c_{N, s}$ is a normalization constant.
Notice that the stationary Kirchhoff variational model in bounded regular domains of \mathbb{R}^{N}, which takes into account the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of the string, was first proposed by Fiscella and Valdinoci [1].

When $\lambda=0$ and $s=1$, problem (1.1) becomes the Kirchhoff type problem

$$
-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u=f(x, u) \text { in } \mathbb{R}^{N}
$$

This problem is analogous to the stationary case of equations that arise in the study of string or membrane vibrations, namely,

$$
u_{t t}-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u=f(x, u)
$$

where u denotes the displacement, $f(x, u)$ denotes the external force, b denotes the initial tension and a is a number related to the intrinsic properties of the string. The above problem was first proposed by Kirchhoff in 1883 to describe the transversal oscillations of stretched strings.

[^0]When $\lambda=0$ and $a=1, b=0$, problem (1.1) becomes the fractional Laplacian problem

$$
(-\triangle)^{s} u=f(x, u) \text { in } \mathbb{R}^{N}
$$

In recent years, a great attention has been focused on the study of the fractional Laplacian equation [2-5]. In the context of fractional quantum mechanics, nonlinear fractional Schrödinger equation has been proposed by Laskin $[6,7]$, as an extension of the Feynman path integral. Literatures on fractional and nonlocal operators and on their applications are quite large, we refer the readers to $[3,8]$ and the references therein. For the basic properties of fractional Sobolev spaces we refer to [9].

Nowadays, fractional Sobolev spaces and corresponding nonlocal equations were widely studied in various contexts, such as optimization, soft thin films, anomalous diffusion, ultrarelativistic limits of quantum mechanics, flame propagation, materials science and water waves, multiple scattering, molecular dynamics, turbulence models, minimal surfaces, anomalous diffusion, conservation laws, quasi-geostrophic flows, crystal dislocation, semipermeable membranes, finance, stratified materials and the thin obstacle problem [10-14].

In most papers on fractional Kirchhoff equations [15-20], to ensure the boundedness of PalaisSmale or Cerami sequences and the mountain pass geometry of the associated Euler-Lagrange functional, the Ambrosetti-Rabinowitz condition or other similar conditions are often assumed:

$$
\begin{equation*}
\text { There exists } \mu>4 \text { such that } 0<\mu F(x, k) \leq f(x, k) k,(x, k) \in \mathbb{R}^{N} \times \mathbb{R}^{+} \tag{A.R.}
\end{equation*}
$$

Recently, without considering the (A.R.) condition, Ref. [21] investigated the existence of radial solutions for a fractional Kirchhoff-type problem by variational methods combined with a cut-off function technique.

Inspired by [21], in this paper, by using Nehari manifold, we obtain the existence of ground states for the fractional Kirchhoff equation (1.1) without the (A.R.) condition. Throughout this work, we set $F(x, k)=\int_{0}^{k} f(x, t) \mathrm{d} t$ and assume that $V(x)$ and $f(x, k)$ satisfy the following conditions:
(V) $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right), V(x) \geq 0$ and there exists $v_{0}>0$ such that the Lebesgue measure of the set $\mathcal{V}_{0}=\left\{x \in \mathbb{R}^{N}: V(x)<v_{0}\right\}$ is finite.
$\left(\mathrm{f}_{1}\right) \quad f \in C^{1}\left(\mathbb{R}^{N} \times \mathbb{R}, \mathbb{R}\right), f(x, k) \equiv 0$ for all $k \leq 0$, and $f(x, k)=o(k)$ uniformly for x as $k \rightarrow 0$.
(f_{2}) $f(x, k) / k^{3}$ is strictly increasing for $k>0$.
$\left(\mathrm{f}_{3}\right)$ There exist $a_{1}>0, \tau>\max \{1, N / 2 s\}$ such that $|f(x, k)|^{\tau} \leq a_{1} \mathcal{F}(x, k) k^{\tau}$ for all $(x, k) \in \mathbb{R}^{N} \times \mathbb{R}^{+}$with k large enough, where $\mathcal{F}(x, k)=\frac{1}{4} f(x, k) k-F(x, k)$.
$\left(\mathrm{f}_{4}\right)$ There exist $\mu>4$ and a constant $C>0$ such that

$$
F(x, k) \geq C k^{\mu}, \forall(x, k) \in \mathbb{R}^{N} \times \mathbb{R}^{+}
$$

Remark 1.1 Under our assumptions the following conclusions hold:
(i) By $\left(f_{2}\right), \mathcal{F}(x, k)=\frac{1}{4} f(x, k) k-F(x, k)$ is strictly increasing for $k>0$. Thus,

$$
\mathcal{F}(x, k)>\mathcal{F}(x, 0)=0 \text { for } k>0
$$

(ii) If f satisfies $\left(f_{1}\right),\left(f_{3}\right)$ and $\left(f_{4}\right)$, then $|f(x, k)|^{\tau-1} \leq \frac{1}{4} a_{1} k^{\tau+1}$ for $k>0$ large enough. Hence there exists $a_{2}>0$, such that the following growth restriction condition holds:

$$
\begin{equation*}
|f(x, k)| \leq a_{2}\left(k+k^{p-1}\right) \tag{1.2}
\end{equation*}
$$

where $p=2 \tau /(\tau-1) \in\left(2,2_{s}^{*}\right)\left(2_{s}^{*}=2 N /(N-2 s)\right)$.
(iii) Under (1.2) and the (A.R.) condition, (f_{3}) holds for $\tau \in(N / 2 s, p /(p-2)), \tau>1$ (See [22, Lemma 2.2]).

We state our result as follows:
Theorem 1.2 Assume (V) and $\left(f_{1}\right)-\left(f_{4}\right)$ hold. There exists $\Lambda>0$ such that Eq. (1.1) has at least one nontrivial nonnegative ground state u_{λ} for $\lambda \geq \Lambda$.

The rest of this paper is organized as follows. In Section 2, some notations and preliminaries are presented. In Section 3, using Nehari manifold and Ekeland variational principle, we obtain the existence of ground states for problem (1.1).

2. Preliminaries

Consider the Sobolev space $H^{s}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right):[u]_{s}<\infty\right\}$, where $[u]_{s}$ denotes the so-called Gagliardo semi-norm

$$
[u]_{s}:=\left(\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{N+2 s}} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}
$$

In light of [9, Proposition 3.6], the following characterization holds

$$
[u]_{s}^{2}=2 C(N, s)^{-1} \int_{\mathbb{R}^{N}}\left|(-\triangle)^{s / 2} u(x)\right|^{2} \mathrm{~d} x
$$

where $2 C(N, s)^{-1}$ is a normalization constant. For the sake of simplicity, throughout the paper we omit the normalization constant.

Denote the best Sobolev embedding constant as

$$
\bar{S}:=\inf _{|u|_{L_{s}^{2 *}}=1}[u]_{s}^{2}
$$

Let us denote the inner product and norm of $H^{s}\left(\mathbb{R}^{N}\right)$ as follows:

$$
\begin{gathered}
(u, v)_{s}=\int_{\mathbb{R}^{N}}\left((-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} v+u v\right) \mathrm{d} x \\
\|u\|_{s}=(u, u)_{s}^{1 / 2}
\end{gathered}
$$

Set

$$
E=\left\{u \in H^{s}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} V(x) u^{2} \mathrm{~d} x<\infty\right\}
$$

with inner product

$$
(u, v)=\int_{\mathbb{R}^{N}}\left(a(-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} v+V(x) u v\right) \mathrm{d} x
$$

and the associated norm

$$
\|u\|=(u, u)^{1 / 2}
$$

For $\lambda>0$, we denote the associated inner product and norm as follows:

$$
\begin{gathered}
(u, v)_{\lambda}=\int_{\mathbb{R}^{N}}\left(a(-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} v+\lambda V(x) u v\right) \mathrm{d} x \\
\|u\|_{\lambda}=(u, u)_{\lambda}^{1 / 2}
\end{gathered}
$$

Set $E_{\lambda}=\left(E,\|\cdot\|_{\lambda}\right)$. By (V), the definition of \bar{S} and the Hölder inequality, we obtain that

$$
\begin{aligned}
\|u\|_{s}^{2}= & {[u]_{s}^{2}+\int_{\left\{x \in \mathbb{R}^{N}: V(x)<v_{0}\right\}} u^{2} \mathrm{~d} x+\int_{\left\{x \in \mathbb{R}^{N}: V(x) \geq v_{0}\right\}} u^{2} \mathrm{~d} x } \\
\leq & {[u]_{s}^{2}+\left(\int_{\left\{x \in \mathbb{R}^{N}: V(x)<v_{0}\right\}} u^{2_{s}^{*}} \mathrm{~d} x\right)^{2 / 2_{s}^{*}}\left|\left\{x \in \mathbb{R}^{N}: V(x)<v_{0}\right\}\right|^{\left(2_{s}^{*}-2\right) / 2_{s}^{*}}+} \\
& \frac{1}{\lambda v_{0}} \int_{\mathbb{R}^{N}} \lambda V(x) u^{2} \mathrm{~d} x \\
\leq & {[u]_{s}^{2}+\bar{S}^{-1}\left|\left\{x \in \mathbb{R}^{N}: V(x)<v_{0}\right\}\right|^{\left(2_{s}^{*}-2\right) / 2_{s}^{*}}[u]_{s}^{2}+\frac{1}{\lambda v_{0}} \int_{\mathbb{R}^{N}} \lambda V(x) u^{2} \mathrm{~d} x } \\
\leq & \max \left\{\frac{1}{a}\left(1+\bar{S}^{-1}\left|\left\{x \in \mathbb{R}^{N}: V(x)<v_{0}\right\}\right|^{\left(2_{s}^{*}-2\right) / 2_{s}^{*}}\right), \frac{1}{\lambda v_{0}}\right\} \times \\
& \int_{\mathbb{R}^{N}}\left(a\left|(-\Delta)^{s / 2} u(x)\right|^{2}+\lambda V(x) u^{2}\right) \mathrm{d} x
\end{aligned}
$$

which implies that the embedding $E_{\lambda} \hookrightarrow H^{s}\left(\mathbb{R}^{N}\right)$ is continuous. By [9, Theorem 6.7], $H^{s}\left(\mathbb{R}^{N}\right)$ continuously embeds into $L^{q}\left(\mathbb{R}^{N}\right)$ for $q \in\left[2,2_{s}^{*}\right]$ and compactly embeds into $L_{\text {loc }}^{q}\left(\mathbb{R}^{N}\right)$ for $q \in$ $\left[2,2_{s}^{*}\right)$. Thus, there exists $c_{q}>0$ (independent of $\lambda \geq 1$) such that

$$
\begin{equation*}
|u|_{q} \leq c_{q}\|u\|_{\lambda} \tag{2.1}
\end{equation*}
$$

where $|\cdot|_{q}$ with $q \in\left[2,2_{s}^{*}\right]$ denotes the usual norm in $L^{q}\left(\mathbb{R}^{N}\right)$.
The energy functional associated with Eq. (1.1) is defined by

$$
I_{\lambda}(u)=\frac{1}{2}\|u\|_{\lambda}^{2}+\frac{b}{4}[u]_{s}^{4}-\int_{\mathbb{R}^{N}} F(x, u) \mathrm{d} x
$$

It is easy to show that $I_{\lambda} \in C^{1}$.
Definition 2.1 (i) We say any sequence $\left\{u_{n}\right\} \subset E_{\lambda}$ is a $(P S)_{c}$ sequence for I_{λ} if $I_{\lambda}\left(u_{n}\right) \rightarrow c$ and $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in E_{λ}^{-1}.
(ii) We say that a C^{1} functional I_{λ} satisfies the $(P S)_{c}$ condition if any $(P S)_{c}$ sequence for I_{λ} has a convergent subsequence.

We assume that the conditions (V) and $\left(f_{1}\right)-\left(f_{4}\right)$ are satisfied from now on.
Lemma 2.2 Every $(P S)_{c}$ sequence of I_{λ} is bounded in E_{λ}.
Proof Let $\left\{u_{n}\right\} \subset E_{\lambda}$ be a $(P S)_{c}$ sequence of I_{λ}, that is,

$$
I_{\lambda}\left(u_{n}\right) \rightarrow c, \quad I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } E_{\lambda}^{-1}
$$

By Remark 1.1 (i), we obtain that

$$
\begin{aligned}
c+1+\left\|u_{n}\right\|_{\lambda} & \geq I_{\lambda}\left(u_{n}\right)-\frac{1}{4}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\frac{1}{4}\left\|u_{n}\right\|_{\lambda}^{2}+\int_{\mathbb{R}^{N}}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) \mathrm{d} x \\
& >\frac{1}{4}\left\|u_{n}\right\|_{\lambda}^{2}
\end{aligned}
$$

for n large enough. Thus, $\left\{u_{n}\right\}$ is bounded in E_{λ}.
Lemma 2.3 Let $\left\{u_{n}\right\} \subset E_{\lambda}$ be a $(P S)_{c}$ sequence of I_{λ}. There exists a $u \in E_{\lambda}$ such that $I_{\lambda}^{\prime}(u)=0$; if $u \neq 0$, then

$$
\begin{equation*}
\left[u_{n}\right]_{s}^{2} \rightarrow[u]_{s}^{2} \tag{2.2}
\end{equation*}
$$

Proof By Lemma 2.2, $\left\{u_{n}\right\}$ is bounded in E_{λ}. Thus, up to a subsequence $\left\{u_{n}\right\}$, we may assume that there exists a $u \in E_{\lambda}$ such that $u_{n} \rightharpoonup u$ and there is a constant $A \in \mathbb{R}^{+}$such that $\left[u_{n}\right]_{s}^{2} \rightarrow A^{2}$. If $u \equiv 0$, the conclusion holds. If $u \neq 0$, we claim that $[u]_{s}^{2}=A^{2}$. In fact, by the weakly lower semi-continuity of a norm, we get

$$
[u]_{s}^{2} \leq A^{2}
$$

Suppose $[u]_{s}^{2}<A^{2}$. Since $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, we have for any $\varphi \in E_{\lambda}$,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} & \left(a(-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} \varphi+\lambda V(x) u \varphi\right) \mathrm{d} x+b A^{2} \int_{\mathbb{R}^{N}}(-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} \varphi \mathrm{~d} x- \\
& \int_{\mathbb{R}^{N}} f(x, u) \varphi \mathrm{d} x=0
\end{aligned}
$$

If we choose $\varphi=u$, then we get $\left\langle I_{\lambda}^{\prime}(u), u\right\rangle<0$. By $\left(f_{1}\right)$ and $(1.2),\left\langle I_{\lambda}^{\prime}(t u), t u\right\rangle>0$ for small $t>0$. Therefore, there exists $t_{0} \in(0,1)$, such that $\left\langle I_{\lambda}^{\prime}\left(t_{0} u\right), t_{0} u\right\rangle=0$ and $I_{\lambda}\left(t_{0} u\right)=\max _{t \in[0,1]} I_{\lambda}(t u)$. Since $\mathcal{F}(x, u)$ is strictly increasing for $u>0$, we get that

$$
\begin{aligned}
c & \leq I_{\lambda}\left(t_{0} u\right)-\frac{1}{4}\left\langle I_{\lambda}^{\prime}\left(t_{0} u\right), t_{0} u\right\rangle=\frac{t_{0}^{2}}{4}\|u\|_{\lambda}^{2}+\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, t_{0} u\right) \mathrm{d} x \\
& <\frac{1}{4}\|u\|_{\lambda}^{2}+\int_{\mathbb{R}^{N}} \mathcal{F}(x, u) \mathrm{d} x \leq \liminf _{n \rightarrow \infty}\left(I_{\lambda}\left(u_{n}\right)-\frac{1}{4}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right) \\
& =c
\end{aligned}
$$

this is a contradiction. Then, $[u]_{s}^{2}=A^{2}$ and $I_{\lambda}^{\prime}(u)=0$.
Lemma 2.4 Let $\beta \in\left[2,2_{s}^{*}\right)$. There exists a subsequence $\left\{u_{n_{j}}\right\}$ such that for each $\varepsilon>0$, there exists $r_{\varepsilon}>0$ satisfying

$$
\limsup _{j \rightarrow \infty} \int_{B_{j} \backslash B_{r}}\left|u_{n_{j}}\right|^{\beta} \mathrm{d} x \leq \varepsilon
$$

for all $r \geq r_{\varepsilon}$, where $B_{j}=\left\{x \in \mathbb{R}^{N}:|x| \leq j\right\}$.
Proof Refer to [23, 24].
Let $\eta:[0, \infty) \rightarrow[0,1]$ be a smooth function satisfying $\eta(t)=1$ if $t \leq 1 ; \eta(t)=0$ if $t \geq 2$.
Define

$$
\hat{u}_{j}(x)=\eta(2|x| / j) u(x)
$$

It is clear that

$$
\begin{equation*}
\left\|u-\hat{u}_{j}\right\|_{\lambda} \rightarrow 0 \text { as } j \rightarrow \infty \tag{2.3}
\end{equation*}
$$

Lemma 2.5 Let $\left\{u_{n_{j}}\right\}$ and $\left\{\hat{u}_{j}\right\}$ be defined as above. Then

$$
\lim _{j \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(f\left(x, u_{n_{j}}\right)-f\left(x, u_{n_{j}}-\hat{u}_{j}\right)-f\left(x, \hat{u}_{j}\right)\right) \psi \mathrm{d} x=0
$$

uniformly for $\psi \in E$ with $\|\psi\| \leq 1$.
Proof $([23,24])$ Together with the results of Lemma 2.4 for both $\beta=2$ and $\beta=p$, Remark 1.1 (ii), (2.1) and local compactness of Sobolev embedding imply that for any $r>0$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{B_{r}}\left(f\left(x, u_{n_{j}}\right)-f\left(x, u_{n_{j}}-\hat{u}_{j}\right)-f\left(x, \hat{u}_{j}\right)\right) w \mathrm{~d} x=0 \tag{2.4}
\end{equation*}
$$

uniformly for $w \in E$ with $\|w\| \leq 1$. For any $\varepsilon>0$, there is $r_{\varepsilon}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N} \backslash B_{r}}|u|^{\beta} \mathrm{d} x<\varepsilon \tag{2.5}
\end{equation*}
$$

for any $r \geq r_{\varepsilon}$. Then by (2.5), we have

$$
\limsup _{j \rightarrow \infty} \int_{B_{j} \backslash B_{r}}\left|\hat{u}_{j}\right|^{\beta} \mathrm{d} x \leq \int_{\mathbb{R}^{N} \backslash B_{r}}|u|^{\beta} \mathrm{d} x<\varepsilon
$$

for any $r \geq r_{\varepsilon}$. Using Lemma 2.4, for $\beta=2$ and $\beta=p$, Remark 1.1 (ii) and (2.4), we get

$$
\begin{align*}
& \limsup _{j \rightarrow \infty}\left|\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n_{j}}\right)-f\left(x, u_{n_{j}}-\hat{u}_{j}\right)-f\left(x, \hat{u}_{j}\right)\right) w \mathrm{~d} x\right| \\
& =\underset{j \rightarrow \infty}{\limsup }\left|\int_{B_{j} \backslash B_{r}}\left(f\left(x, u_{n_{j}}\right)-f\left(x, u_{n_{j}}-\hat{u}_{j}\right)-f\left(x, \hat{u}_{j}\right)\right) w \mathrm{~d} x\right| \\
& \leq C_{1} \limsup _{j \rightarrow \infty} \int_{B_{j} \backslash B_{r}}\left(\left|u_{n_{j}}\right|+\left|\hat{u}_{j}\right|\right)|w| \mathrm{d} x+ \\
& \quad C_{2} \limsup _{j \rightarrow \infty} \int_{B_{j} \backslash B_{r}}\left(\left|u_{n_{j}}\right|^{p-1}+\left|\hat{u}_{j}\right|^{p-1}\right)|w| \mathrm{d} x \\
& \leq C_{1} \limsup _{j \rightarrow \infty}\left(\left|u_{n_{j}}\right|_{L^{2}\left(B_{j} \backslash B_{r}\right)}+\left|\hat{u}_{j}\right|_{L^{2}\left(B_{j} \backslash B_{r}\right)}\right)|w|_{L^{2}\left(\mathbb{R}^{N}\right)}+ \\
& \quad C_{2} \limsup _{j \rightarrow \infty}\left(\left|u_{n_{j}}\right|_{L^{p}\left(B_{j} \backslash B_{r}\right)}^{p-1}+\left|\hat{u}_{j}\right|_{L^{p}\left(B_{j} \backslash B_{r}\right)}^{p-1}\right)|w|_{L^{p}\left(\mathbb{R}^{N}\right)} \\
& \leq C_{3} \varepsilon^{1 / 2}+C_{4} \varepsilon^{(p-1) / p}, \tag{2.6}
\end{align*}
$$

thus we obtain the conclusion.
Lemma 2.6 Let $\left\{u_{n_{j}}\right\}$ and $\left\{\hat{u}_{j}\right\}$ be defined as above. Then we have the following conclusions:
(i) $I_{\lambda}\left(u_{n_{j}}-\hat{u}_{j}\right) \rightarrow c-I_{\lambda}(u)$;
(ii) $I_{\lambda}^{\prime}\left(u_{n_{j}}-\hat{u}_{j}\right) \rightarrow 0$.

Proof By (2.2) and (2.3), we get that

$$
\begin{equation*}
\left[u_{n_{j}}\right]_{s}^{2}-\left[\hat{u}_{j}\right]_{s}^{2} \rightarrow 0 \tag{2.7}
\end{equation*}
$$

Thus, by (2.7), we obtain that

$$
\begin{align*}
I_{\lambda}\left(u_{n_{j}}-\hat{u}_{j}\right)= & \frac{1}{2}\left\|u_{n_{j}}-\hat{u}_{j}\right\|_{\lambda}^{2}+\frac{b}{4}\left[u_{n_{j}}-\hat{u}_{j}\right]_{s}^{4}-\int_{\mathbb{R}^{N}} F\left(x, u_{n_{j}}-\hat{u}_{j}\right) \mathrm{d} x \\
= & \frac{1}{2}\left\|u_{n_{j}}-\hat{u}_{j}\right\|_{\lambda}^{2}+\frac{b}{4}\left(\left[u_{n_{j}}\right]_{s}^{2}-\left[\hat{u}_{j}\right]_{s}^{2}\right)^{2}-\int_{\mathbb{R}^{N}} F\left(x, u_{n_{j}}-\hat{u}_{j}\right) \mathrm{d} x+o(1) \\
= & I_{\lambda}\left(u_{n_{j}}\right)-I_{\lambda}\left(\hat{u}_{j}\right)+\frac{b}{2}\left[\hat{u}_{j}\right]_{s}^{2}\left(\left[\hat{u}_{j}\right]_{s}^{2}-\left[u_{n_{j}}\right]_{s}^{2}\right)+ \\
& \int_{\mathbb{R}^{N}}\left(F\left(x, u_{n_{j}}\right)-F\left(x, u_{n_{j}}-\hat{u}_{j}\right)-F\left(x, \hat{u}_{j}\right)\right) \mathrm{d} x+o(1) \\
= & I_{\lambda}\left(u_{n_{j}}\right)-I_{\lambda}\left(\hat{u}_{j}\right)+\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n_{j}}\right)-F\left(x, u_{n_{j}}-\hat{u}_{j}\right)-F\left(x, \hat{u}_{j}\right)\right) \mathrm{d} x+o(1) \tag{2.8}
\end{align*}
$$

By (2.3) and the Brézis-Lieb lemma [25], we have that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n_{j}}\right)-F\left(x, u_{n_{j}}-\hat{u}_{j}\right)-F\left(x, \hat{u}_{j}\right)\right) \mathrm{d} x \rightarrow 0 \tag{2.9}
\end{equation*}
$$

By $I_{\lambda}\left(u_{n_{j}}\right) \rightarrow c, I_{\lambda}\left(\hat{u}_{j}\right) \rightarrow I_{\lambda}(u)$ as $j \rightarrow \infty$, (2.8) and (2.9), we obtain that

$$
I_{\lambda}\left(u_{n_{j}}-\hat{u}_{j}\right) \rightarrow c-I_{\lambda}(u) .
$$

Now we prove $I_{\lambda}^{\prime}\left(u_{n_{j}}-\hat{u}_{j}\right) \rightarrow 0$. Indeed, by $\hat{u}_{j} \rightarrow u$ and $u_{n_{j}} \rightharpoonup u$ in E_{λ}, we obtain that

$$
\begin{align*}
\left\langle I_{\lambda}^{\prime}\left(u_{n_{j}}-\hat{u}_{j}\right), w\right\rangle= & \left\langle I_{\lambda}^{\prime}\left(u_{n_{j}}\right), w\right\rangle-\left\langle I_{\lambda}^{\prime}\left(\hat{u}_{j}\right), w\right\rangle+ \\
& \int_{\mathbb{R}^{N}}\left(f\left(x, u_{n_{j}}\right)-f\left(x, u_{n_{j}}-\hat{u}_{j}\right)-f\left(x, \hat{u}_{j}\right)\right) w d x+o(1)\|w\| \tag{2.10}
\end{align*}
$$

for any $w \in E$ with $\|w\| \leq 1$. By (2.6), we get

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(f\left(x, u_{n_{j}}\right)-f\left(x, u_{n_{j}}-\hat{u}_{j}\right)-f\left(x, \hat{u}_{j}\right)\right) w \mathrm{~d} x \rightarrow 0 \tag{2.11}
\end{equation*}
$$

uniformly for $w \in E$ with $\|w\| \leq 1$. By $I_{\lambda}^{\prime}\left(u_{n_{j}}\right) \rightarrow 0, I_{\lambda}^{\prime}\left(\hat{u}_{j}\right) \rightarrow I_{\lambda}^{\prime}(u)=0,(2.10)$ and (2.11), we conclude that $I_{\lambda}^{\prime}\left(u_{n_{j}}-\hat{u}_{j}\right) \rightarrow 0$.

Lemma 2.7 There exists $\Lambda>0$ such that for $\lambda \geq \Lambda, I_{\lambda}$ satisfies the $(P S)_{c}$ condition.
Proof Let $\left\{u_{n_{j}}\right\}$ be defined as above. By Lemma 2.2, $\left\{u_{n_{j}}\right\}$ is bounded in E_{λ}. Thus, up to a subsequence $\left\{u_{n_{j}}\right\}$, such that $u_{n_{j}} \rightharpoonup u$ in E_{λ}. By (2.3), $\hat{u}_{j} \rightarrow u$ in E_{λ}. Then, $w_{j}:=u_{n_{j}}-\hat{u}_{j}=$ $\left(u_{n_{j}}-u\right)+\left(u-\hat{u}_{j}\right) \rightharpoonup 0$ in E_{λ}. By $(\mathrm{V}), w_{j} \rightarrow 0$ in $L^{2}\left(\mathcal{V}_{0}\right)$. Thus,

$$
\begin{equation*}
\left|w_{j}\right|_{2}^{2}=\int_{\left\{V(x) \geq v_{0}\right\}} w_{j}^{2} \mathrm{~d} x+\int_{\left\{V(x)<v_{0}\right\}} w_{j}^{2} \mathrm{~d} x \leq \frac{\left\|w_{j}\right\|_{\lambda}^{2}}{\lambda v_{0}}+o(1) \tag{2.12}
\end{equation*}
$$

Moreover, for $2<s_{0}<p<2_{s}^{*}$, by (2.12), the Hölder inequality and the Sobolev inequality, we get that

$$
\begin{align*}
\left|w_{j}\right|_{s_{0}}^{s_{0}} & \leq\left|w_{j}\right|_{2}^{2\left(p-s_{0}\right) /(p-2)}\left|w_{j}\right|_{p}^{p\left(s_{0}-2\right) /(p-2)} \\
& \leq c_{p}^{p\left(s_{0}-2\right) /(p-2)}\left(\lambda v_{0}\right)^{-\left(p-s_{0}\right) /(p-2)}\left\|w_{j}\right\|_{\lambda}^{s_{0}}+o(1) \tag{2.13}
\end{align*}
$$

By $\left(\mathrm{f}_{1}\right)$, for any $\varepsilon>0$, there exists $\delta>0$ such that if $|u| \leq \delta$ for all $x \in \mathbb{R}^{N}$, we have $f(x, u) \leq \varepsilon|u|$.

By (2.12), we have that

$$
\begin{equation*}
\int_{\left|w_{j}\right| \leq \delta} f\left(x, w_{j}\right) w_{j} \mathrm{~d} x \leq \varepsilon \int_{\left|w_{j}\right| \leq \delta} w_{j}^{2} \mathrm{~d} x \leq \varepsilon\left|w_{j}\right|_{2}^{2} \leq \frac{\varepsilon}{\lambda v_{0}}\left\|w_{j}\right\|_{\lambda}^{2}+o(1) \tag{2.14}
\end{equation*}
$$

By Lemma 2.6, we have that

$$
\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, w_{j}\right) \mathrm{d} x+\frac{1}{4}\left\|w_{j}\right\|_{\lambda}^{2}=I_{\lambda}\left(w_{j}\right)-\frac{1}{4}\left\langle I_{\lambda}^{\prime}\left(w_{j}\right), w_{j}\right\rangle \rightarrow c-I_{\lambda}(u)
$$

Then,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, w_{j}\right) \mathrm{d} x \leq c-I_{\lambda}(u) . \tag{2.15}
\end{equation*}
$$

By Remark 1.1 (i) and Lemma 2.3, we obtain that

$$
\begin{equation*}
I_{\lambda}(u)=I_{\lambda}(u)-\frac{1}{4}\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=\frac{1}{4}\|u\|_{\lambda}^{2}+\int_{\mathbb{R}^{N}}\left(\frac{1}{4} f(x, u) u-F(x, u)\right) \mathrm{d} x>0 \tag{2.16}
\end{equation*}
$$

Thus, by (2.15) and (2.16), we conclude that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, w_{j}\right) \mathrm{d} x<c \tag{2.17}
\end{equation*}
$$

By $\left(\mathrm{f}_{3}\right),(2.13)$ with $s_{0}=2 \tau /(\tau-1),(2.17)$ and the Hölder inequality, we have

$$
\begin{align*}
\int_{\left|w_{j}\right|>\delta} f\left(x, w_{j}\right) w_{j} \mathrm{~d} x & \leq a_{1}^{1 / \tau} \int_{\mathbb{R}^{N}}\left(\mathcal{F}\left(x, w_{j}\right)\right)^{1 / \tau} w_{j}^{2} \mathrm{~d} x \\
& \leq a_{1}^{1 / \tau}\left(\int_{\mathbb{R}^{N}} \mathcal{F}\left(x, w_{j}\right) \mathrm{d} x\right)^{1 / \tau}\left|w_{j}\right|_{s_{0}}^{2} \\
& \leq a_{1}^{1 / \tau} c^{1 / \tau}\left|w_{j}\right|_{s_{0}}^{2} \\
& \leq a_{1}^{1 / \tau} c^{1 / \tau} c_{p}^{2 p\left(s_{0}-2\right) / s_{0}(p-2)}\left(\lambda v_{0}\right)^{-2\left(p-s_{0}\right) / s_{0}(p-2)}\left\|w_{j}\right\|_{\lambda}^{2}+o(1) \tag{2.18}
\end{align*}
$$

where $2\left(p-s_{0}\right) / s_{0}(p-2)>0$. By $(2.14),(2.18)$ and $\left\langle I_{\lambda}^{\prime}\left(w_{j}\right), w_{j}\right\rangle \rightarrow 0$, we have

$$
\begin{aligned}
o(1) & =\left\langle I_{\lambda}^{\prime}\left(w_{j}\right), w_{j}\right\rangle=\left\|w_{j}\right\|_{\lambda}^{2}+b\left[w_{j}\right]_{s}^{4}-\int_{\mathbb{R}^{N}} f\left(x, w_{j}\right) w_{j} \mathrm{~d} x \\
& \geq\left\|w_{j}\right\|_{\lambda}^{2}-\int_{\mathbb{R}^{N}} f\left(x, w_{j}\right) w_{j} \mathrm{~d} x \\
& \geq\left(1-\frac{\varepsilon}{\lambda v_{0}}-\frac{a_{1}^{1 / \tau} c_{p}^{2 p\left(s_{0}-2\right) / s_{0}(p-2)} c^{1 / \tau}}{\left(\lambda v_{0}\right)^{2\left(p-s_{0}\right) / s_{0}(p-2)}}\right)\left\|w_{j}\right\|_{\lambda}^{2}+o(1) .
\end{aligned}
$$

Set $\Lambda=\Lambda\left(\varepsilon, v_{0}, s_{0}, a_{1}, \tau, p, c_{p}, c\right)>0$ large enough, when $\lambda \geq \Lambda$, we have $w_{j} \rightarrow 0$ in E_{λ}, i.e., $u_{n_{j}} \rightarrow \hat{u}_{j}$ in E_{λ}. By (2.3), $u_{n_{j}} \rightarrow u$ in E_{λ}.

3. Proof of Theorem 1.2

Define $N_{\lambda}=\left\{u \in E_{\lambda} \backslash\{0\}:\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=0\right\}, c_{\lambda}=\inf _{N_{\lambda}} I_{\lambda}(u)$. The following lemma implies $N_{\lambda} \neq \varnothing$.

Lemma 3.1 Assume (V) and $\left(f_{1}\right)-\left(f_{4}\right)$ hold. For any $u \in E_{\lambda} \backslash\{0\}$, there exists a unique $t(u)>0$ such that $t(u) u \in N_{\lambda}$.

Proof Clearly, $I_{\lambda}(0)=0$. For $u \in E_{\lambda} \backslash\{0\}$, by $\left(f_{1}\right)$ and (1.2), for every $\varepsilon>0$, there exists $c_{\varepsilon}>0$
such that

$$
F(x, u) \leq \frac{\varepsilon}{2} u^{2}+\frac{c_{\varepsilon}}{p} u^{p} \text { for all }(x, u) \in \mathbb{R}^{N} \times \mathbb{R}^{+} .
$$

By (2.1), we get that

$$
I_{\lambda}(u)=\frac{1}{2}\|u\|_{\lambda}^{2}+\frac{b}{4}[u]_{s}^{4}-\int_{\mathbb{R}^{N}} F(x, u) \mathrm{d} x \geq \frac{1}{2}\|u\|_{\lambda}^{2}-\frac{\varepsilon}{2} c_{2}^{2}\|u\|_{\lambda}^{2}-\frac{c_{\varepsilon}}{p} c_{p}^{p}\|u\|_{\lambda}^{p} .
$$

Pick $\varepsilon c_{2}^{2}=1 / 2$, we obtain that

$$
I_{\lambda}(u) \geq \frac{1}{4}\|u\|_{\lambda}^{2}-C\|u\|_{\lambda}^{p}
$$

where C is a constant independent of λ. Thus, there exist $\rho>0$ and $\alpha>0$, independent of λ, such that

$$
\inf _{\|u\|_{\lambda}=\rho} I_{\lambda}(u) \geq \alpha>0
$$

Define the function $g(t):=I_{\lambda}(t u), t \in[0,+\infty)$. By $\left(\mathrm{f}_{4}\right)$, we have

$$
g(t) \leq \frac{t^{2}}{2}\|u\|_{\lambda}^{2}+\frac{b t^{4}}{4}[u]_{s}^{4}-C t^{\mu} \int_{\mathbb{R}^{N}} u^{\mu} \mathrm{d} x \rightarrow-\infty \text { as } t \rightarrow+\infty .
$$

Moreover,

$$
\begin{aligned}
g^{\prime}(t) & =0 \Leftrightarrow t u \in N_{\lambda} \Leftrightarrow t^{2}\|u\|_{\lambda}^{2}+b t^{4}[u]_{s}^{4}=\int_{\mathbb{R}^{N}} f(x, t u) t u \mathrm{~d} x \\
& \Leftrightarrow \frac{\|u\|_{\lambda}^{2}}{t^{2}}+b[u]_{s}^{4}=\frac{1}{t^{3}} \int_{\mathbb{R}^{N}} f(x, t u) u \mathrm{~d} x .
\end{aligned}
$$

By (f_{2}), the right hand side is an increasing function of t, the left hand side is a decreasing function of t.

By the above discussion, we get that there exists a unique $t=t(u)>0$ such that $t(u) u \in$ N_{λ}.

Lemma 3.2 Assume (V) and $\left(f_{1}\right)-\left(f_{4}\right)$ hold. I_{λ} is coercive and bounded below on N_{λ}.
Proof For $u \in N_{\lambda}$, by Remark 1.1 (i), we have

$$
\begin{aligned}
I_{\lambda}(u) & =I_{\lambda}(u)-\frac{1}{4}\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=\frac{1}{4}\|u\|_{\lambda}^{2}+\int_{\mathbb{R}^{N}}\left(\frac{1}{4} f(x, u) u-F(x, u)\right) \mathrm{d} x \\
& \geq \frac{1}{4}\|u\|_{\lambda}^{2} .
\end{aligned}
$$

Thus, I_{λ} is coercive and bounded below on N_{λ}.
Define $c_{\lambda}=\inf _{u \in N_{\lambda}} I_{\lambda}(u)$. By Lemma 3.2, there exists a constant $\delta>0$ such that $c_{\lambda}>\delta$.
Lemma 3.3 Under the assumptions of Theorem 1.2. For each $u \in N_{\lambda}$, there exist $\epsilon>0$ and a differentiable function $\xi: B(0, \epsilon) \subset H^{s}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}^{+}$such that $\xi(0)=1$, the function $\xi(v)(u-v) \in N_{\lambda}$ and

$$
\left\langle\xi^{\prime}(0), v\right\rangle=\frac{2(u, v)_{\lambda}+4 b[u]_{s}^{2} \int_{\mathbb{R}^{N}}(-\Delta)^{s / 2} u(-\Delta)^{s / 2} v \mathrm{~d} x-\int_{\mathbb{R}^{N}} f(x, u) v d x-\int_{\mathbb{R}^{N}} f^{\prime}(x, u) u v \mathrm{~d} x}{\left\langle\Psi_{\lambda}^{\prime}(u), u\right\rangle}
$$

for all $v \in H^{s}\left(\mathbb{R}^{N}\right)$, where $\Psi_{\lambda}(u)=\left\langle I_{\lambda}^{\prime}(u), u\right\rangle$.

Proof The following argument is similar to [26, Lemma 3.1]. For $u \in N_{\lambda}$, define a function $F: \mathbb{R} \times H^{s}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F(\xi, w) & =\left\langle I_{\lambda}^{\prime}(\xi(u-w)), \xi(u-w)\right\rangle \\
& =\xi^{2}\|u-w\|_{\lambda}^{2}+b \xi^{4}[u-w]_{s}^{4}-\int_{\mathbb{R}^{N}} f(x, \xi(u-w)) \xi(u-w) \mathrm{d} x
\end{aligned}
$$

Then $F(1,0)=\left\langle I_{\lambda}^{\prime}(u),(u)\right\rangle=0$ and

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \xi} F(1,0)=2\|u\|_{\lambda}^{2}+4 b[u]_{s}^{4}-\int_{\mathbb{R}^{N}} f(x, u) u \mathrm{~d} x-\int_{\mathbb{R}^{N}} f^{\prime}(x, u) u^{2} \mathrm{~d} x \neq 0 \\
\left\langle\frac{\mathrm{~d}}{\mathrm{~d} w} F(1,0), v\right\rangle=-2(u, v)_{\lambda}-4[u]_{s}^{2} \int_{\mathbb{R}^{N}}(-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} v \mathrm{~d} x+ \\
\int_{\mathbb{R}^{N}} f(x, u) v \mathrm{~d} x+\int_{\mathbb{R}^{N}} f^{\prime}(x, u) u v \mathrm{~d} x
\end{gathered}
$$

for all $v \in B(0, \epsilon)$. Therefore, according to the implicit function theorem, there exist $\epsilon>0$ and a differentiable function $\xi: B(0, \epsilon) \subset H^{s}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}^{+}$such that $\xi(0)=1$,
$\left\langle\xi^{\prime}(0), v\right\rangle=\frac{2(u, v)_{\lambda}+4[u]_{s}^{2} \int_{\mathbb{R}^{N}}(-\triangle)^{s / 2} u \cdot(-\triangle)^{s / 2} v \mathrm{~d} x-\int_{\mathbb{R}^{N}} f(x, u) v \mathrm{~d} x-\int_{\mathbb{R}^{N}} f^{\prime}(x, u) u v \mathrm{~d} x}{2\|u\|_{\lambda}^{2}+4 b[u]_{s}^{4}-\int_{\mathbb{R}^{N}} f(x, u) u \mathrm{~d} x-\int_{\mathbb{R}^{N}} f^{\prime}(x, u) u^{2} \mathrm{~d} x}$, and $F(\xi(v), v)=0$ for every $v \in B(0, \epsilon)$. It is equivalent to

$$
\left\langle I_{\lambda}^{\prime}(\xi(v)(u-v)), \xi(v)(u-v)\right\rangle=0
$$

for every $v \in B(0, \epsilon)$, i.e., $\xi(v)(u-v) \in N_{\lambda}$.
Proposition 3.4 Under the assumptions of Theorem 1.2. There exists a minimizing sequence $\left\{u_{n}\right\} \subset N_{\lambda}$ such that

$$
I_{\lambda}\left(u_{n}\right)=c_{\lambda}+o(1), I_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \text { in } E_{\lambda}^{-1}
$$

Proof By Lemma 3.2 and Ekeland variational principle [27], there exists a minimizing sequence $\left\{u_{n}\right\} \subset N_{\lambda}$ such that

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right) \leq c_{\lambda}+\frac{1}{n} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right)<I_{\lambda}\left(u_{0}\right)+\frac{1}{n}\left\|u_{n}-u_{0}\right\|_{\lambda} \tag{3.2}
\end{equation*}
$$

for each $u_{0} \in N_{\lambda}$. By taking n large enough, we get that

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right)=\frac{1}{4}\left\|u_{n}\right\|_{\lambda}^{2}-\int_{\mathbb{R}^{N}}\left(F\left(x, u_{n}\right)-\frac{1}{4} f\left(x, u_{n}\right) u_{n}\right)=c_{\lambda}+\frac{1}{n}<2 c_{\lambda} . \tag{3.3}
\end{equation*}
$$

By (3.3) and Remark 1.1 (i), we obtain that

$$
\begin{equation*}
\frac{1}{4}\left\|u_{n}\right\|_{\lambda}^{2}<2 c_{\lambda} \tag{3.4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left\|u_{n}\right\|_{\lambda}<\left(8 c_{\lambda}\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

Next we will show that

$$
\left\|I_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{E_{\lambda}^{-1}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Indeed, by Lemma 3.3, for $u_{n} \in N_{\lambda}$, there exists the function $\xi_{n}: B\left(0, \epsilon_{n}\right) \subset H^{s}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}^{+}$for $\epsilon_{n}>0$, such that $\xi_{n}(0)=1$ and $\xi_{n}(v)\left(u_{n}-v\right) \in N_{\lambda}$ for all $v \in H^{s}\left(\mathbb{R}^{N}\right)$. Fixed $n \in \mathbb{N}$, choose $0<\rho<\epsilon_{n}$. Let $u \in H^{s}\left(\mathbb{R}^{N}\right)$ with $u \neq 0$ and $u_{\rho}=\frac{\rho u}{\|u\|_{\lambda}}$. Set

$$
P_{\rho}:=\xi_{n}\left(u_{\rho}\right)\left(u_{n}-u_{\rho}\right)
$$

Since $P_{\rho} \in N_{\lambda}$, we conclude from (3.2) that

$$
I_{\lambda}\left(P_{\rho}\right)-I_{\lambda}\left(u_{n}\right) \geq-\frac{1}{n}\left\|u_{n}-P_{\rho}\right\|_{\lambda}
$$

By the mean value theorem, we get that

$$
\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), P_{\rho}-u_{n}\right\rangle+o\left(\left\|u_{n}-P_{\rho}\right\|_{\lambda}\right) \geq-\frac{1}{n}\left\|u_{n}-P_{\rho}\right\|_{\lambda}
$$

Thus,

$$
\begin{align*}
& -\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), u_{\rho}\right\rangle+\left(\xi_{n}\left(u_{\rho}\right)-1\right)\left\langle I_{\lambda}^{\prime}\left(u_{n}\right),\left(u_{n}-u_{\rho}\right)\right\rangle \\
& \quad \geq-\frac{1}{n}\left\|u_{n}-P_{\rho}\right\|_{\lambda}+o\left(\left\|u_{n}-P_{\rho}\right\|_{\lambda}\right) \tag{3.6}
\end{align*}
$$

It follows from $P_{\rho} \in N_{\lambda}$ and (3.6) that

$$
\begin{aligned}
& -\rho\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{\lambda}}\right\rangle+\left(\xi_{n}\left(u_{\rho}\right)-1\right)\left\langle I_{\lambda}^{\prime}\left(u_{n}\right)-I_{\lambda}^{\prime}\left(P_{\rho}\right), u_{n}-u_{\rho}\right\rangle \\
& \quad \geq-\frac{1}{n}\left\|u_{n}-P_{\rho}\right\|_{\lambda}+o\left(\left\|u_{n}-P_{\rho}\right\|_{\lambda}\right)
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{\lambda}}\right\rangle \leq & \frac{\left\|u_{n}-P_{\rho}\right\|_{\lambda}}{n \rho}+\frac{o\left(\left\|u_{n}-P_{\rho}\right\|_{\lambda}\right)}{\rho}+ \\
& \frac{\xi_{n}\left(u_{\rho}\right)-1}{\rho}\left\langle I_{\lambda}^{\prime}\left(u_{n}\right)-I_{\lambda}^{\prime}\left(P_{\rho}\right), u_{n}-u_{\rho}\right\rangle . \tag{3.7}
\end{align*}
$$

Clearly, we have

$$
\left\|u_{n}-P_{\rho}\right\|_{\lambda} \leq \rho\left|\xi_{n}\left(u_{\rho}\right)\right|+\left|\xi_{n}\left(u_{\rho}\right)-1\right|\left\|u_{n}\right\|_{\lambda}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\left|\xi_{n}\left(u_{\rho}\right)-1\right|}{\rho} \leq\left\|\xi_{n}^{\prime}(0)\right\|
$$

Let $\rho \rightarrow 0$ in (3.7). Then by (3.5), we could find a constant $C>0$, independent of ρ, such that

$$
\begin{equation*}
\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{\lambda}}\right\rangle \leq \frac{C}{n}\left(1+\left\|\xi_{n}^{\prime}(0)\right\|\right) . \tag{3.8}
\end{equation*}
$$

In the following we show that $\left\|\xi_{n}^{\prime}(0)\right\|$ is uniformly bounded in n. In fact, by Lemma 3.3, (3.5) and the Hölder inequality, we have

$$
\left\langle\xi_{n}^{\prime}(0), v\right\rangle \leq \frac{d\|v\|_{\lambda}}{\left|\left\langle\Psi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right|} \text { for some } d>0
$$

In the following we only need to prove that

$$
\left|\left\langle\Psi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right|>C
$$

for some $C>0$ and n large enough. If not, assume that there exists a subsequence $\left\{u_{n}\right\}$, such that

$$
\begin{equation*}
\left\langle\Psi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=o(1) \text { as } n \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Together with (3.9), the fact that $u_{n} \in N_{\lambda}$ yields

$$
\int_{\mathbb{R}^{N}}\left(f^{\prime}\left(x, u_{n}\right) u_{n}-3 f\left(x, u_{n}\right)\right) \mathrm{d} x=-2\left\|u_{n}\right\|_{\lambda}^{2}+o(1)<0
$$

However, by (f_{2}),

$$
\int_{\mathbb{R}^{N}}\left(f^{\prime}\left(x, u_{n}\right) u_{n}-3 f\left(x, u_{n}\right)\right) \mathrm{d} x>0
$$

This is a contradiction. Thus, by (3.8), we get

$$
\left\langle I_{\lambda}^{\prime}\left(u_{n}\right), \frac{u}{\|u\|_{\lambda}}\right\rangle \leq \frac{C}{n}
$$

Therefore, we complete the proof.
Proof of Theorem 1.2 By Lemma 3.2 and Ekeland variational principle [27], there exists a minimizing sequence $\left\{u_{n}\right\}$ for I_{λ} on N_{λ} such that

$$
I_{\lambda}\left(u_{n}\right)=c_{\lambda}+o(1), I_{\lambda}^{\prime}\left(u_{n}\right)=o(1) \text { in } E_{\lambda}^{-1}
$$

By Lemma 2.7, for $\lambda \geq \Lambda$, there exists a subsequence $\left\{u_{n}\right\}$ and $u_{\lambda} \in E_{\lambda}$ such that

$$
u_{n} \rightarrow u_{\lambda} \text { in } E_{\lambda}
$$

Thus, $u_{\lambda} \in N_{\lambda}$ and $I_{\lambda}\left(u_{\lambda}\right)=c_{\lambda}$. By $\left(f_{1}\right), u_{\lambda}$ is a nontrivial nonnegative ground state for Eq. (1.1).

References

[1] A. FISCELLA, E. VALDINOCI. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal., 2014, 94: 156-170.
[2] L. ACETO, P. NOVATI. Rational approximation to the fractional Laplacian operator in reaction-diffusion problems. SIAM J. Sci. Comput., 2017, 39(1): A214-A228.
[3] G. AUTUORI, P. PUCCI. Elliptic problems invilving the fractional Laplacian in \mathbb{R}^{N}. J. Differential Equations, 2013, 255: 2340-2362.
[4] V. TARASOV. Exact discretization of fractional Laplacian. Comput. Math. Appl., 2017, 73(5): 855-863.
[5] Hui ZHOU, Yang LIU, P. AGARWAL. Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval. J. Appl. Math. Comput., 2017, 53(1-2): 51-76.
[6] N. LASKIN. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 2000, 268(4-6): 298-305.
[7] N. LASKIN. Fractional Schrödinger equation. Phys. Rev. E (3), 2002, 66(5): 1-7.
[8] Xiaojun CHANG, Zhiqiang WANG. Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differential Equations, 2014, 256(8): 2965-2992.
[9] E. DI NEZZA, G. PALATUCCI, E. VALDINOCI. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math., 2012, 136(5): 521-573.
[10] D. APPLEBAUM. Lévy processes-from probablity to finance and quantum groups. Notices Amer. Math. Soc., 2004, 51: 1336-1347.
[11] L. CAFFARELLI, L. SILVESTER. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 2007, 32(7-9): 1245-1260.
[12] G. MOLICA BISCI. Fractional equations with bounded primitive. Appl. Math. Lett., 2014, 27: 53-58.
[13] P. PUCCI, Mingqi XIANG, Binlin ZHANG. Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal., 2016, 5(1): 27-55.
[14] Mingqi XIANG, Binlin ZHANG, V. T. D. RADULESCU. Existence of solutions for perturbed fractional p-Laplacian equationa. J. Differential Equations, 2016, 260(2): 1392-1413.
[15] Wenjing CHEN. Multiplicity of solutions for a fractional Kirchhoff type problem. Commun. Pure Appl. Anal., 2015, 14(5): 2009-2020.
[16] Hua JIN, Wenbin LIU. Fractional Kirchhoff equation with a general critical nonlinearity. Appl. Math. Lett., 2017, 74: 140-146.
[17] Mingqi XIANG, G. MOLICA BISCI, Guohua TIAN, et al. Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian. Nonlinearity, 2016, 29(2): 357-374.
[18] Mingqi XIANG, Binlin ZHANG, Xiuying GUO. Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem. Nonlinear Anal., 2015, 120: 299-313.
[19] Mingqi XIANG, Binlin ZHANG, V. T. D. RADULSCU. Existence of solutions for a binonlocal fractional p-Kirchhoff type problem. Comput. Math. Appl., 2016, 71: 255-266.
[20] Xia ZHANG, Chao ZHANG. Existence of solutions for critical fractional Kirchhoff problems. Math. Methods Appl. Sci., 2017, 40(5): 1649-1665.
[21] Mingqi XIANG, Binlin ZHANG, Miaomiao YANG. A fractional Kirchhoff-type problem in \mathbb{R}^{N} without the (AR) condition. Complex Var. Elliptic Equ., 2016, 61(11): 1481-1493.
[22] Yanheng DING, A. SZUKIN. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differential Equations, 2007, 29(3): 397-419.
[23] Yanheng DING, Fanghua LIN. Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. Partial Differential Equations, 2007, 30(2): 231-249.
[24] Qilin XIE, Shiwang MA. Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential. J. Math. Anal. Appl., 2015, 431(2): 1210-1223.
[25] H. BRÉZIS, E. LIEB. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 1983, 88(3): 486-490.
[26] T. F. WU. Multiplicity results for a semi-linear elliptic equation involving sign-changing weight function. Rocky Mountain J. Math., 2009, 39(3): 995-1011.
[27] I. EKELAND. On the variational principle. J. Math. Anal. Appl., 1974, 47: 324-353.

[^0]: Received June 8, 2018; Accepted August 12, 2018

 * Corresponding author

 E-mail address: louqing.jun@163.com (Qingjun LOU); hanzhiq@dlut.edu.cn (Zhiqing HAN)

