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1. Introduction

Consider the fractional Kirchhoff problem(
a+ b

∫
RN

|(−△)s/2u|2dx
)
(−△)su+ λV (x)u = f(x, u) in RN , (1.1)

where s ∈ (0, 1), N > 2s, λ > 0 is a real parameter, a, b are positive constants, and (−△)s is a

fractional Laplacian operator defined by

(−△)su(x) = cN,s P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN .

Here P.V. is the principal value and cN,s is a normalization constant.

Notice that the stationary Kirchhoff variational model in bounded regular domains of RN ,

which takes into account the nonlocal aspect of the tension arising from nonlocal measurements

of the fractional length of the string, was first proposed by Fiscella and Valdinoci [1].

When λ = 0 and s = 1, problem (1.1) becomes the Kirchhoff type problem

−
(
a+ b

∫
RN

|∇u|2 dx
)
△u = f (x, u) in RN .

This problem is analogous to the stationary case of equations that arise in the study of string or

membrane vibrations, namely,

utt −
(
a+ b

∫
RN

|∇u|2dx
)
△u = f (x, u) ,

where u denotes the displacement, f(x, u) denotes the external force, b denotes the initial tension

and a is a number related to the intrinsic properties of the string. The above problem was first

proposed by Kirchhoff in 1883 to describe the transversal oscillations of stretched strings.
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When λ = 0 and a = 1, b = 0, problem (1.1) becomes the fractional Laplacian problem

(−△)su = f(x, u) in RN .

In recent years, a great attention has been focused on the study of the fractional Laplacian

equation [2–5]. In the context of fractional quantum mechanics, nonlinear fractional Schrödinger

equation has been proposed by Laskin [6, 7], as an extension of the Feynman path integral.

Literatures on fractional and nonlocal operators and on their applications are quite large, we

refer the readers to [3,8] and the references therein. For the basic properties of fractional Sobolev

spaces we refer to [9].

Nowadays, fractional Sobolev spaces and corresponding nonlocal equations were widely s-

tudied in various contexts, such as optimization, soft thin films, anomalous diffusion, ultra-

relativistic limits of quantum mechanics, flame propagation, materials science and water waves,

multiple scattering, molecular dynamics, turbulence models, minimal surfaces, anomalous diffu-

sion, conservation laws, quasi-geostrophic flows, crystal dislocation, semipermeable membranes,

finance, stratified materials and the thin obstacle problem [10–14].

In most papers on fractional Kirchhoff equations [15–20], to ensure the boundedness of Palais-

Smale or Cerami sequences and the mountain pass geometry of the associated Euler-Lagrange

functional, the Ambrosetti-Rabinowitz condition or other similar conditions are often assumed:

There exists µ > 4 such that 0 < µF (x, k) ≤ f(x, k)k, (x, k) ∈ RN × R+. (A.R.)

Recently, without considering the (A.R.) condition, Ref. [21] investigated the existence of radial

solutions for a fractional Kirchhoff-type problem by variational methods combined with a cut-off

function technique.

Inspired by [21], in this paper, by using Nehari manifold, we obtain the existence of ground

states for the fractional Kirchhoff equation (1.1) without the (A.R.) condition. Throughout this

work, we set F (x, k) =
∫ k

0
f (x, t) dt and assume that V (x) and f(x, k) satisfy the following

conditions:

(V) V ∈ C
(
RN ,R

)
, V (x) ≥ 0 and there exists v0 > 0 such that the Lebesgue measure of

the set V0 =
{
x ∈ RN : V (x) < v0

}
is finite.

(f1) f ∈ C1
(
RN × R,R

)
, f(x, k) ≡ 0 for all k ≤ 0, and f(x, k) = o(k) uniformly for x as

k → 0.

(f2) f(x, k)/k3 is strictly increasing for k > 0.

(f3) There exist a1 > 0, τ > max {1, N/2s} such that |f(x, k)|τ ≤ a1F(x, k)kτ for all

(x, k) ∈ RN × R+ with k large enough, where F(x, k) = 1
4f(x, k)k − F (x, k).

(f4) There exist µ > 4 and a constant C > 0 such that

F (x, k) ≥ Ckµ, ∀(x, k) ∈ RN × R+.

Remark 1.1 Under our assumptions the following conclusions hold:

(i) By (f2), F(x, k) = 1
4f(x, k)k − F (x, k) is strictly increasing for k > 0. Thus,

F(x, k) > F(x, 0) = 0 for k > 0.
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(ii) If f satisfies (f1), (f3) and (f4), then |f(x, k)|τ−1 ≤ 1
4a1k

τ+1 for k > 0 large enough.

Hence there exists a2 > 0, such that the following growth restriction condition holds:

|f (x, k)| ≤ a2(k + kp−1), (1.2)

where p = 2τ/(τ − 1) ∈ (2, 2∗s) (2
∗
s = 2N/ (N − 2s)).

(iii) Under (1.2) and the (A.R.) condition, (f3) holds for τ ∈ (N/2s, p/ (p− 2)) , τ > 1

(See [22, Lemma 2.2]).

We state our result as follows:

Theorem 1.2 Assume (V) and (f1)–(f4) hold. There exists Λ > 0 such that Eq. (1.1) has at

least one nontrivial nonnegative ground state uλ for λ ≥ Λ.

The rest of this paper is organized as follows. In Section 2, some notations and preliminaries

are presented. In Section 3, using Nehari manifold and Ekeland variational principle, we obtain

the existence of ground states for problem (1.1).

2. Preliminaries

Consider the Sobolev space Hs(RN ) = {u ∈ L2(RN ) : [u]s < ∞}, where [u]s denotes the

so-called Gagliardo semi-norm

[u]s :=
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

.

In light of [9, Proposition 3.6], the following characterization holds

[u]2s = 2C(N, s)−1

∫
RN

|(−△)s/2u(x)|2dx,

where 2C(N, s)−1 is a normalization constant. For the sake of simplicity, throughout the paper

we omit the normalization constant.

Denote the best Sobolev embedding constant as

S̄ := inf
|u|

L
2∗s =1

[u]2s.

Let us denote the inner product and norm of Hs(RN ) as follows:

(u, v)s =

∫
RN

(
(−△)s/2u · (−△)s/2v + uv

)
dx.

∥u∥s = (u, u)1/2s .

Set

E =
{
u ∈ Hs(RN ) :

∫
RN

V (x)u2dx <∞
}

with inner product

(u, v) =

∫
RN

(
a(−△)s/2u · (−△)s/2v + V (x)uv

)
dx

and the associated norm

∥u∥ = (u, u)1/2.
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For λ > 0, we denote the associated inner product and norm as follows:

(u, v)λ =

∫
RN

(
a(−△)s/2u · (−△)s/2v + λV (x)uv

)
dx,

∥u∥λ = (u, u)
1/2
λ .

Set Eλ = (E, ∥ · ∥λ). By (V), the definition of S̄ and the Hölder inequality, we obtain that

∥u∥2s = [u]
2
s +

∫
{x∈RN :V (x)<v0}

u2dx+

∫
{x∈RN :V (x)≥v0}

u2dx

≤ [u]
2
s +

(∫
{x∈RN :V (x)<v0}

u2
∗
sdx

)2/2∗s ∣∣{x ∈ RN : V (x) < v0
}∣∣(2∗s−2)/2∗s +

1

λv0

∫
RN

λV (x)u2dx

≤ [u]
2
s + S̄−1

∣∣{x ∈ RN : V (x) < v0
}∣∣(2∗s−2)/2∗s [u]

2
s +

1

λv0

∫
RN

λV (x)u2dx

≤max
{1
a
(1 + S̄−1

∣∣{x ∈ RN : V (x) < v0
}∣∣(2∗s−2)/2∗s ),

1

λv0

}
×∫

RN

(
a|(−∆)s/2u(x)|2 + λV (x)u2

)
dx,

which implies that the embedding Eλ ↪→ Hs(RN ) is continuous. By [9, Theorem 6.7], Hs(RN )

continuously embeds into Lq(RN ) for q ∈ [2, 2∗s] and compactly embeds into Lq
loc(RN ) for q ∈

[2, 2∗s). Thus, there exists cq > 0 (independent of λ ≥ 1) such that

|u|q ≤ cq∥u∥λ, (2.1)

where | · |q with q ∈ [2, 2∗s] denotes the usual norm in Lq(RN ).

The energy functional associated with Eq. (1.1) is defined by

Iλ (u) =
1

2
∥u∥2λ +

b

4
[u]4s −

∫
RN

F (x, u) dx.

It is easy to show that Iλ ∈ C1.

Definition 2.1 (i) We say any sequence {un} ⊂ Eλ is a (PS)c sequence for Iλ if Iλ(un) → c

and I ′λ(un) → 0 in E−1
λ .

(ii) We say that a C1 functional Iλ satisfies the (PS)c condition if any (PS)c sequence for

Iλ has a convergent subsequence.

We assume that the conditions (V) and (f1)–(f4) are satisfied from now on.

Lemma 2.2 Every (PS)c sequence of Iλ is bounded in Eλ.

Proof Let {un} ⊂ Eλ be a (PS)c sequence of Iλ, that is,

Iλ(un) → c, I ′λ(un) → 0 in E−1
λ .



Existence of ground states for fractional Kirchhoff equations 627

By Remark 1.1 (i), we obtain that

c+ 1 + ∥un∥λ ≥ Iλ(un)−
1

4
⟨I ′λ(un), un⟩

=
1

4
∥un∥2λ +

∫
RN

(
1

4
f (x, un)un − F (x, un))dx

>
1

4
∥un∥2λ

for n large enough. Thus, {un} is bounded in Eλ. �

Lemma 2.3 Let {un} ⊂ Eλ be a (PS)c sequence of Iλ. There exists a u ∈ Eλ such that

I ′λ(u) = 0; if u ̸= 0, then

[un]
2
s → [u]2s. (2.2)

Proof By Lemma 2.2, {un} is bounded in Eλ. Thus, up to a subsequence {un}, we may assume

that there exists a u ∈ Eλ such that un ⇀ u and there is a constant A ∈ R+ such that [un]
2
s → A2.

If u ≡ 0, the conclusion holds. If u ̸= 0, we claim that [u]2s = A2. In fact, by the weakly lower

semi-continuity of a norm, we get

[u]2s ≤ A2.

Suppose [u]2s < A2. Since I ′λ(un) → 0, we have for any φ ∈ Eλ,∫
RN

(
a(−△)s/2u · (−△)s/2φ+ λV (x)uφ

)
dx+ bA2

∫
RN

(−△)s/2u · (−△)s/2φdx−∫
RN

f(x, u)φdx = 0.

If we choose φ = u, then we get ⟨I ′λ(u), u⟩ < 0. By (f1) and (1.2), ⟨I ′λ(tu), tu⟩ > 0 for small t > 0.

Therefore, there exists t0 ∈ (0, 1), such that ⟨I ′λ(t0u), t0u⟩ = 0 and Iλ(t0u) = maxt∈[0,1] Iλ(tu).

Since F(x, u) is strictly increasing for u > 0, we get that

c ≤ Iλ(t0u)−
1

4
⟨I ′λ(t0u), t0u⟩ =

t20
4
∥u∥2λ +

∫
RN

F(x, t0u)dx

<
1

4
∥u∥2λ +

∫
RN

F(x, u)dx ≤ lim inf
n→∞

(
Iλ(un)−

1

4
⟨I ′λ(un), un⟩

)
= c,

this is a contradiction. Then, [u]2s = A2 and I ′λ(u) = 0. �

Lemma 2.4 Let β ∈ [2, 2∗s). There exists a subsequence {unj} such that for each ε > 0, there

exists rε > 0 satisfying

lim sup
j→∞

∫
Bj\Br

|unj |βdx ≤ ε

for all r ≥ rε, where Bj =
{
x ∈ RN : |x| ≤ j

}
.

Proof Refer to [23,24]. �
Let η : [0,∞) → [0, 1] be a smooth function satisfying η(t) = 1 if t ≤ 1; η(t) = 0 if t ≥ 2.

Define

ûj(x) = η (2 |x|/j)u(x).
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It is clear that

∥u− ûj∥λ → 0 as j → ∞. (2.3)

Lemma 2.5 Let {unj} and {ûj} be defined as above. Then

lim
j→∞

∫
RN

(
f(x, unj )− f(x, unj − ûj)− f(x, ûj)

)
ψdx = 0

uniformly for ψ ∈ E with ∥ψ∥ ≤ 1.

Proof ([23, 24]) Together with the results of Lemma 2.4 for both β = 2 and β = p, Remark

1.1 (ii), (2.1) and local compactness of Sobolev embedding imply that for any r > 0,

lim
j→∞

∫
Br

(
f
(
x, unj

)
− f

(
x, unj − ûj

)
− f (x, ûj)

)
wdx = 0 (2.4)

uniformly for w ∈ E with ∥w∥ ≤ 1. For any ε > 0, there is rε > 0 such that∫
RN\Br

|u|βdx < ε (2.5)

for any r ≥ rε. Then by (2.5), we have

lim sup
j→∞

∫
Bj\Br

|ûj |βdx ≤
∫
RN\Br

|u|βdx < ε

for any r ≥ rε. Using Lemma 2.4, for β = 2 and β = p, Remark 1.1 (ii) and (2.4), we get

lim sup
j→∞

∣∣∣ ∫
RN

(
f
(
x, unj

)
− f

(
x, unj − ûj

)
− f (x, ûj)

)
wdx

∣∣∣
= lim sup

j→∞

∣∣∣ ∫
Bj\Br

(
f
(
x, unj

)
− f

(
x, unj − ûj

)
− f (x, ûj)

)
wdx

∣∣∣
≤ C1 lim sup

j→∞

∫
Bj\Br

(∣∣unj

∣∣+ |ûj |
)
|w|dx+

C2 lim sup
j→∞

∫
Bj\Br

(
∣∣unj

∣∣p−1
+ |ûj |p−1

)|w|dx

≤ C1 lim sup
j→∞

(
∣∣unj

∣∣
L2(Bj\Br)

+ |ûj |L2(Bj\Br)
)|w|L2(RN )+

C2 lim sup
j→∞

(
∣∣unj

∣∣p−1

Lp(Bj\Br)
+ |ûj |p−1

Lp(Bj\Br)
)|w|Lp(RN )

≤ C3ε
1/2 + C4ε

(p−1)/p, (2.6)

thus we obtain the conclusion. �

Lemma 2.6 Let {unj} and {ûj} be defined as above. Then we have the following conclusions:

(i) Iλ(unj − ûj) → c− Iλ(u);

(ii) I ′λ(unj − ûj) → 0.

Proof By (2.2) and (2.3), we get that

[unj ]
2
s − [ûj ]

2
s → 0. (2.7)
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Thus, by (2.7), we obtain that

Iλ(unj − ûj) =
1

2

∥∥unj − ûj
∥∥2
λ
+
b

4
[unj − ûj ]

4
s −

∫
RN

F
(
x, unj − ûj

)
dx

=
1

2

∥∥unj − ûj
∥∥2
λ
+
b

4
(
[
unj

]2
s
− [ûj ]

2
s)

2 −
∫
RN

F
(
x, unj − ûj

)
dx+ o(1)

=Iλ(unj )− Iλ(ûj) +
b

2
[ûj ]

2
s([ûj ]

2
s −

[
unj

]2
s
)+∫

RN

(
F
(
x, unj

)
− F

(
x, unj − ûj

)
− F (x, ûj)

)
dx+ o(1)

=Iλ(unj )− Iλ(ûj) +

∫
RN

(
F
(
x, unj

)
− F

(
x, unj − ûj

)
− F (x, ûj)

)
dx+ o(1).

(2.8)

By (2.3) and the Brézis-Lieb lemma [25], we have that∫
RN

(
F
(
x, unj

)
− F

(
x, unj − ûj

)
− F (x, ûj)

)
dx→ 0. (2.9)

By Iλ(unj ) → c, Iλ(ûj) → Iλ(u) as j → ∞, (2.8) and (2.9), we obtain that

Iλ(unj − ûj) → c− Iλ(u).

Now we prove I ′λ(unj − ûj) → 0. Indeed, by ûj → u and unj ⇀ u in Eλ, we obtain that⟨
I ′λ(unj − ûj), w

⟩
=
⟨
I ′λ(unj ), w

⟩
− ⟨I ′λ(ûj), w⟩+∫

RN

(
f
(
x, unj

)
− f

(
x, unj − ûj

)
− f (x, ûj)

)
wdx+ o(1)∥w∥ (2.10)

for any w ∈ E with ∥w∥ ≤ 1. By (2.6), we get∫
RN

(
f
(
x, unj

)
− f

(
x, unj

− ûj
)
− f (x, ûj)

)
wdx→ 0 (2.11)

uniformly for w ∈ E with ∥w∥ ≤ 1. By I ′λ(unj ) → 0, I ′λ(ûj) → I ′λ(u) = 0, (2.10) and (2.11), we

conclude that I ′λ(unj − ûj) → 0. �

Lemma 2.7 There exists Λ > 0 such that for λ ≥ Λ, Iλ satisfies the (PS)c condition.

Proof Let {unj
} be defined as above. By Lemma 2.2, {unj

} is bounded in Eλ. Thus, up to a

subsequence {unj}, such that unj ⇀ u in Eλ. By (2.3), ûj → u in Eλ. Then, wj := unj − ûj =

(unj − u) + (u− ûj)⇀ 0 in Eλ. By (V), wj → 0 in L2(V0). Thus,

|wj |22 =

∫
{V (x)≥v0}

w2
jdx+

∫
{V (x)<v0}

w2
jdx ≤ ∥wj∥2λ

λv0
+ o(1). (2.12)

Moreover, for 2 < s0 < p < 2∗s, by (2.12), the Hölder inequality and the Sobolev inequality, we

get that

|wj |s0s0 ≤ |wj |2(p−s0)/(p−2)
2 |wj |p(s0−2)/(p−2)

p

≤ cp(s0−2)/(p−2)
p (λv0)

−(p−s0)/(p−2)∥wj∥s0λ + o(1). (2.13)

By (f1), for any ε > 0, there exists δ > 0 such that if |u| ≤ δ for all x ∈ RN , we have f(x, u) ≤ ε|u|.
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By (2.12), we have that∫
|wj |≤δ

f(x,wj)wjdx ≤ ε

∫
|wj |≤δ

w2
jdx ≤ ε|wj |22 ≤ ε

λv0
∥wj∥2λ + o(1). (2.14)

By Lemma 2.6, we have that∫
RN

F(x,wj)dx+
1

4
∥wj∥2λ = Iλ(wj)−

1

4
⟨I ′λ(wj), wj⟩ → c− Iλ(u).

Then, ∫
RN

F(x,wj)dx ≤ c− Iλ(u). (2.15)

By Remark 1.1 (i) and Lemma 2.3, we obtain that

Iλ(u) = Iλ(u)−
1

4
⟨I ′λ(u), u⟩ =

1

4
∥u∥2λ +

∫
RN

(1
4
f(x, u)u− F (x, u)

)
dx > 0. (2.16)

Thus, by (2.15) and (2.16), we conclude that∫
RN

F(x,wj)dx < c. (2.17)

By (f3), (2.13) with s0 = 2τ/ (τ − 1), (2.17) and the Hölder inequality, we have∫
|wj |>δ

f(x,wj)wjdx ≤ a
1/τ
1

∫
RN

(F(x,wj))
1/τ

w2
jdx

≤ a
1/τ
1

(∫
RN

F(x,wj)dx
)1/τ

|wj |2s0

≤ a
1/τ
1 c1/τ |wj |2s0

≤ a
1/τ
1 c1/τ c2p(s0−2)/s0(p−2)

p (λv0)
−2(p−s0)/s0(p−2)∥wj∥2λ + o(1), (2.18)

where 2(p− s0)/s0(p− 2) > 0. By (2.14), (2.18) and ⟨I ′λ(wj), wj⟩ → 0, we have

o(1) = ⟨I ′λ(wj), wj⟩ = ∥wj∥2λ + b[wj ]
4
s −

∫
RN

f(x,wj)wjdx

≥ ∥wj∥2λ −
∫
RN

f(x,wj)wjdx

≥
(
1− ε

λv0
− a

1/τ
1 c

2p(s0−2)/s0(p−2)
p c1/τ

(λv0)
2(p−s0)/s0(p−2)

)
∥wj∥2λ + o(1).

Set Λ = Λ(ε, v0, s0, a1, τ, p, cp, c) > 0 large enough, when λ ≥ Λ, we have wj → 0 in Eλ, i.e.,

unj → ûj in Eλ. By (2.3), unj → u in Eλ. �

3. Proof of Theorem 1.2

Define Nλ = {u ∈ Eλ \ {0} : ⟨I ′λ (u) , u⟩ = 0}, cλ = infNλ
Iλ(u). The following lemma implies

Nλ ̸= ∅.

Lemma 3.1 Assume (V ) and (f1)–(f4) hold. For any u ∈ Eλ\{0}, there exists a unique t(u) > 0

such that t(u)u ∈ Nλ.

Proof Clearly, Iλ(0) = 0. For u ∈ Eλ \{0}, by (f1) and (1.2), for every ε > 0, there exists cε > 0
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such that

F (x, u) ≤ ε

2
u2 +

cε
p
up for all (x, u) ∈ RN × R+.

By (2.1), we get that

Iλ(u) =
1

2
∥u∥2λ +

b

4
[u]4s −

∫
RN

F (x, u)dx ≥ 1

2
∥u∥2λ − ε

2
c22∥u∥2λ − cε

p
cpp∥u∥

p
λ.

Pick εc22 = 1/2, we obtain that

Iλ(u) ≥
1

4
∥u∥2λ − C∥u∥pλ,

where C is a constant independent of λ. Thus, there exist ρ > 0 and α > 0, independent of λ,

such that

inf
∥u∥λ=ρ

Iλ(u) ≥ α > 0.

Define the function g(t) := Iλ(tu), t ∈ [0,+∞). By (f4), we have

g(t) ≤ t2

2
∥u∥2λ +

bt4

4
[u]4s − Ctµ

∫
RN

uµdx→ −∞ as t→ +∞.

Moreover,

g′(t) = 0 ⇔ tu ∈ Nλ ⇔ t2∥u∥2λ + bt4[u]4s =

∫
RN

f(x, tu)tudx

⇔ ∥u∥2λ
t2

+ b[u]4s =
1

t3

∫
RN

f(x, tu)udx.

By (f2), the right hand side is an increasing function of t, the left hand side is a decreasing

function of t.

By the above discussion, we get that there exists a unique t = t(u) > 0 such that t(u)u ∈
Nλ. �

Lemma 3.2 Assume (V) and (f1)–(f4) hold. Iλ is coercive and bounded below on Nλ.

Proof For u ∈ Nλ, by Remark 1.1 (i), we have

Iλ(u) = Iλ(u)−
1

4
⟨I ′λ(u), u⟩ =

1

4
∥u∥2λ +

∫
RN

(1
4
f(x, u)u− F (x, u)

)
dx

≥ 1

4
∥u∥2λ.

Thus, Iλ is coercive and bounded below on Nλ. �
Define cλ = infu∈Nλ

Iλ(u). By Lemma 3.2, there exists a constant δ > 0 such that cλ > δ.

Lemma 3.3 Under the assumptions of Theorem 1.2. For each u ∈ Nλ, there exist ϵ > 0

and a differentiable function ξ : B(0, ϵ) ⊂ Hs(RN ) → R+ such that ξ(0) = 1, the function

ξ(v)(u− v) ∈ Nλ and

⟨ξ′(0), v⟩ =
2(u, v)λ + 4b[u]2s

∫
RN (−∆)s/2u(−∆)s/2vdx−

∫
RN f(x, u)vdx−

∫
RN f

′(x, u)uvdx

⟨Ψ′
λ(u), u⟩

for all v ∈ Hs(RN ), where Ψλ(u) = ⟨I ′λ (u) , u⟩.
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Proof The following argument is similar to [26, Lemma 3.1]. For u ∈ Nλ, define a function

F : R×Hs(RN ) → R by

F (ξ, w) = ⟨I ′λ (ξ (u− w)) , ξ (u− w)⟩

= ξ2 ∥u− w∥2λ + bξ4[u− w]4s −
∫
RN

f (x, ξ (u− w)) ξ (u− w) dx.

Then F (1, 0) = ⟨I ′λ (u) , (u)⟩ = 0 and

d

dξ
F (1, 0) = 2 ∥u∥2λ + 4b[u]4s −

∫
RN

f (x, u)udx−
∫
RN

f ′ (x, u)u2dx ̸= 0

⟨ d

dw
F (1, 0), v

⟩
= −2(u, v)λ − 4[u]2s

∫
RN

(−△)
s/2

u · (−△)
s/2

vdx+∫
RN

f (x, u) vdx+

∫
RN

f ′ (x, u)uvdx

for all v ∈ B(0, ϵ). Therefore, according to the implicit function theorem, there exist ϵ > 0 and

a differentiable function ξ : B(0, ϵ) ⊂ Hs(RN ) → R+ such that ξ(0) = 1,

⟨ξ′ (0) , v⟩ =
2(u, v)λ + 4[u]2s

∫
RN (−△)

s/2
u · (−△)

s/2
vdx−

∫
RN f (x, u) vdx−

∫
RN f

′ (x, u)uvdx

2 ∥u∥2λ + 4b[u]4s −
∫
RN f (x, u)udx−

∫
RN f ′ (x, u)u2dx

,

and F (ξ (v) , v) = 0 for every v ∈ B(0, ϵ). It is equivalent to

⟨I ′λ (ξ (v) (u− v)) , ξ (v) (u− v)⟩ = 0

for every v ∈ B(0, ϵ), i.e., ξ (v) (u− v) ∈ Nλ. �

Proposition 3.4 Under the assumptions of Theorem 1.2. There exists a minimizing sequence

{un} ⊂ Nλ such that

Iλ(un) = cλ + o(1), I ′λ(un) = o(1) in E−1
λ .

Proof By Lemma 3.2 and Ekeland variational principle [27], there exists a minimizing sequence

{un} ⊂ Nλ such that

Iλ(un) ≤ cλ +
1

n
(3.1)

and

Iλ(un) < Iλ(u0) +
1

n
∥un − u0∥λ (3.2)

for each u0 ∈ Nλ. By taking n large enough, we get that

Iλ(un) =
1

4
∥un∥2λ −

∫
RN

(
F (x, un)−

1

4
f(x, un)un

)
= cλ +

1

n
< 2cλ. (3.3)

By (3.3) and Remark 1.1 (i), we obtain that

1

4
∥un∥2λ < 2cλ. (3.4)

Thus,

∥un∥λ < (8cλ)
1/2. (3.5)
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Next we will show that

∥I ′λ (un)∥E−1
λ

→ 0 as n→ ∞.

Indeed, by Lemma 3.3, for un ∈ Nλ, there exists the function ξn : B(0, ϵn) ⊂ Hs(RN ) → R+ for

ϵn > 0, such that ξn(0) = 1 and ξn (v) (un − v) ∈ Nλ for all v ∈ Hs(RN ). Fixed n ∈ N, choose
0 < ρ < ϵn. Let u ∈ Hs(RN ) with u ̸= 0 and uρ = ρu

∥u∥λ
. Set

Pρ := ξn (uρ) (un − uρ) .

Since Pρ ∈ Nλ, we conclude from (3.2) that

Iλ(Pρ)− Iλ(un) ≥ − 1

n
∥un − Pρ∥λ .

By the mean value theorem, we get that

⟨I ′λ (un) , Pρ − un⟩+ o
(
∥un − Pρ∥λ

)
≥ − 1

n
∥un − Pρ∥λ .

Thus,

− ⟨I ′λ (un) , uρ⟩+ (ξn (uρ)− 1) ⟨I ′λ (un) , (un − uρ)⟩

≥ − 1

n
∥un − Pρ∥λ + o

(
∥un − Pρ∥λ

)
. (3.6)

It follows from Pρ ∈ Nλ and (3.6) that

− ρ
⟨
I ′λ (un) ,

u

∥u∥λ
⟩
+ (ξn (uρ)− 1) ⟨I ′λ (un)− I ′λ (Pρ) , un − uρ⟩

≥ − 1

n
∥un − Pρ∥λ + o

(
∥un − Pρ∥λ

)
.

Thus, ⟨
I ′λ (un) ,

u

∥u∥λ
⟩
≤
∥un − Pρ∥λ

nρ
+
o
(
∥un − Pρ∥λ

)
ρ

+

ξn (uρ)− 1

ρ
⟨I ′λ (un)− I ′λ (Pρ) , un − uρ⟩ . (3.7)

Clearly, we have

∥un − Pρ∥λ ≤ ρ |ξn (uρ)|+ |ξn (uρ)− 1| ∥un∥λ

and

lim
n→∞

|ξn (uρ)− 1|
ρ

≤ ∥ξ′n (0)∥ .

Let ρ → 0 in (3.7). Then by (3.5), we could find a constant C > 0, independent of ρ, such

that ⟨
I ′λ (un) ,

u

∥u∥λ
⟩
≤ C

n
(1 + ∥ξ′n (0)∥) . (3.8)

In the following we show that ∥ξ′n (0)∥ is uniformly bounded in n. In fact, by Lemma 3.3, (3.5)

and the Hölder inequality, we have

⟨ξ′n (0) , v⟩ ≤
d∥v∥λ

|⟨Ψ′
λ (un) , un⟩|

for some d > 0.
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In the following we only need to prove that

|⟨Ψ′
λ (un) , un⟩| > C

for some C > 0 and n large enough. If not, assume that there exists a subsequence {un} , such
that

⟨Ψ′
λ (un) , un⟩ = o(1) as n→ ∞. (3.9)

Together with (3.9), the fact that un ∈ Nλ yields∫
RN

(f ′ (x, un)un − 3f (x, un)) dx = −2∥un∥2λ + o(1) < 0.

However, by (f2), ∫
RN

(f ′ (x, un)un − 3f (x, un)) dx > 0.

This is a contradiction. Thus, by (3.8), we get⟨
I ′λ(un),

u

∥u∥λ
⟩
≤ C

n
.

Therefore, we complete the proof. �

Proof of Theorem 1.2 By Lemma 3.2 and Ekeland variational principle [27], there exists a

minimizing sequence {un} for Iλ on Nλ such that

Iλ(un) = cλ + o(1), I ′λ(un) = o(1) in E−1
λ .

By Lemma 2.7, for λ ≥ Λ, there exists a subsequence {un} and uλ ∈ Eλ such that

un → uλ in Eλ.

Thus, uλ ∈ Nλ and Iλ(uλ) = cλ. By (f1), uλ is a nontrivial nonnegative ground state for

Eq. (1.1). �
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[25] H. BRÉZIS, E. LIEB. A relation between pointwise convergence of functions and convergence of functionals.

Proc. Amer. Math. Soc., 1983, 88(3): 486–490.

[26] T. F. WU. Multiplicity results for a semi-linear elliptic equation involving sign-changing weight function.

Rocky Mountain J. Math., 2009, 39(3): 995–1011.

[27] I. EKELAND. On the variational principle. J. Math. Anal. Appl., 1974, 47: 324–353.


