
Journal of Mathematical Research with Applications

Nov., 2018, Vol. 38, No. 6, pp. 636–642

DOI:10.3770/j.issn:2095-2651.2018.06.009

Http://jmre.dlut.edu.cn

RL-Topology and the Related Compactness

Hongyan LI1,∗, Qinghua LI2

1. School of Mathematics and Information Science, Shandong Technology and Business University,

Shandong 264005, P. R. China;

2. School of Mathematics and Information Science, Yantai University, Shandong 264005, P. R. China

Abstract In this paper, the concept of RL-topology on L-fuzzy subset A is defined, which

makes the L-topology become special cases. The definition of RL-continuous map between RL-

ts’s is given on the topology. Furthermore, the definition of compactness is introduced by means

of an inequality in RL-topology, and some properties of compactness are studied.
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1. Introduction

Chang [1] firstly introduced fuzzy set theory into topology. Afterward, many researchers

have tried successfully to discuss various aspects of fuzzy topology, which are treated as a crisp

subset of a powerset. For a more general case, in an L-topology, a lot of good results have been

achieved [2–11].

Researching a topology or a fuzzy topology on a fuzzy subset is a pretty essential problem.

The notion of L-topology on the fuzzy subset was first proposed in [12] and was applied to the

study of the separation of axioms in the literature [13]. In [14], a fully stratified L-topological

on a fuzzy subset was proposed and it was verified that the compactness and connectedness are

absolute properties. At the same time, many more general fuzzy topologies on fuzzy sets have

been studied [15–20].

The aim of this paper is to establish the L-topology on the L-fuzzy subset and to discuss its

related properties. Therefore, the concept of RL-topology on the L-fuzzy subset A is introduced,

and the L-topology is its special cases. The concept of RL-continuous map between RL-ts’s

is given on the RL-topology, and the definition of compactness is introduced by means of an

inequality. Some properties of compactness are studied. And the result that the compactness is

preserved under RL-continuous map is confirmed.

2. Preliminaries
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In this paper, (L,∨,∧,′ ) is a completely distributive DeMorgan algebra (i.e., completely

distributive lattice with order-reversing involution) [6, 7]. The largest element and the smallest

element in L are denoted by ⊤ and ⊥, respectively.

For a nonempty set X, the family of all L-sets on X is denoted by LX . A ∈ LX is called

valuable if A � A′, the family of all valuable L-sets on X is denoted by VL
X , that is, VL

X =

{A|A � A′, A ∈ LX}. For A ∈ VL
X , we denote FL

X(A) = {G|G ≤ A,G ∈ LX}, which is called the

powerset of the fuzzy set A.

Definition 2.1 Let A ∈ VL
X , G ∈ FL

X(A). ⟨ALG is called the pseudo-complement of G relative

to A, which is definend via ⟨ALG =

{
A ∧G′, G ̸= A,

⊥X , G = A.

Proposition 2.2 For all A ∈ VL
X , we have

(1) ⟨ALG = A ⇔ G ≤ A′ for all G ∈ FL
X(A);

(2) G ≤ H ⇒ ⟨ALH ≤ ⟨ALG for all G,H ∈ FL
X(A);

(3) For all {Gj |j ∈ J} ⊆ FL
X(A), ⟨AL

∧
j∈J Gj =

∨
j∈J⟨ALGj ;

(4) For all {Gj |j ∈ J} ⊆ FL
X(A), ⟨AL

∨
j∈J Gj ≤

∧
j∈J⟨ALGj . The equation holds when∨

j∈J Gj ̸= A.

Definition 2.3 ([5,6]) An L-topological space (or L-space for short) is a pair (X, T ), where T
is a subfamily of LX which contains three following requirements:

(1) ⊤X ,⊥X ∈ T ;

(2) G ∧H ∈ T for all G,H ∈ T ;

(3)
∨

j∈J Gj ∈ T for all Gj ∈ T , j ∈ J .

Definition 2.4 ([21]) Let (X, T ) be an L-space. G ∈ LX is called fuzzy compact if for every

family U ⊆ T , it follows that∧
x∈X

(
G′(x) ∧

∧
A∈U

A(x)
)
≤

∨
V∈2(U)

∧
x∈X

(
G′(x) ∧

∧
A∈V

A(x)
)
.

3. RL-topology and RL-cotopology

First, we will introduce the concept of RL-topology on an L-subset A as follows.

Definition 3.1 Let A ∈ VL
X . A relative L-topology τ on an L-subset A, is a subfamily on

FL
X(A), that satisfies the following conditions:

(RL-O1) A ∈ τ and G ∈ τ for all G ≤ A′;

(RL-O2) G ∧H ∈ τ for all G,H ∈ τ ;

(RL-O3)
∨

j∈J Gj ∈ τ for all Gj ∈ τ , j ∈ J .

The pair (A, τ) is called a relative L-topological space on A (RL-ts, in short). Each member

of τ (that is, G ∈ τ) is called an RL-open set and H is called an RL-closed set if ⟨ALH ∈ τ .

When A = ⊤X , it is easy to see that the relative L-topology on A degenerates to L-topology
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[5, 6].

Write ⟨ALτ to represent the class of all RL-closed set, that is, ⟨ALτ = {H|⟨ALH ∈ τ}. We have

the following conclusions:

Theorem 3.2 Let (A, τ) be an RL-ts. Then the following three conclusions are true for ⟨ALτ .

(RL-C1) A ∈ ⟨ALτ and H ∈ ⟨ALτ for all H ≤ A′;

(RL-C2) G ∨H ∈ ⟨ALτ for all G,H ∈ ⟨ALτ ;

(RL-C3)
∧

j∈J Gj ∈ ⟨ALτ for all Gj ∈ ⟨ALτ , j ∈ J .

Proof (RL-C1) A ∈ ⟨ALτ is obvious from ⊥X ∈ τ ; For all H ≤ A′, we have that H ̸= A since

H ≤ A′ and A � A′. So ⟨ALH = H ′ ∧A = A from H ≤ A′ ⇔ A ≤ H ′. Therefore H ∈ ⟨ALτ .

(RL-C2) Suppose that G,H ∈ ⟨ALτ . Then ⟨ALG, ⟨ALH ∈ τ according to the definition of ⟨ALτ .

If G ∨H = A, then ⟨AL(G ∨H) = ⊥X ∈ τ . So G ∨H ∈ ⟨ALτ . If G ∨H ̸= A, then G ̸= A and

H ̸= A from G,H ∈ FL
X(A). So ⟨AL(G∨H) = (G∨H)′∧A = (G′∧H ′)∧A = (G′∧A)∧(H ′∧A) =

⟨ALG ∧ ⟨ALH ∈ τ by (RL-O2). Therefore G ∨H ∈ ⟨ALτ .

(RL-C3) Suppose that Gj ∈ ⟨ALτ , j ∈ J . Then ⟨ALGj ∈ τ for all j ∈ J . If
∧

j∈J Gj = A, then

⟨AL(
∧

j∈J Gj) = ⊥X ∈ τ . So
∧

j∈J Gj ∈ ⟨ALτ . If
∧

j∈J Gj ̸= A, let K = {j|Gj ̸= A, j ∈ J}. Then

K ̸= ∅. Thus ⟨AL(
∧

j∈J Gj) = ⟨AL(
∧

j∈K Gj) = A∧ (
∧

j∈K Gj)
′ =

∨
j∈K(A∧G′j) =

∨
j∈K⟨ALGj ∈ τ

by (RL-O3). Therefore
∧

j∈J Gj ∈ ⟨ALτ . �
Given a function f : X → Y. Let G ∈ LX and H ∈ LY . Here f→L (G)(y) =

∨
{G(x)|f(x) = y}

for all y ∈ Y and f←L (H)(x) =
∨
{G(x)|f→L (G) ≤ H} = H(f(x)) for all x ∈ X as defined by

Zadeh.

Definition 3.3 Let A ∈ VL
X and B ∈ VL

Y . The restriction of f→L on A

f→L |A : FL
X(A) → LY

G ∈ FL
X(A) 7→ f→L (G)

is called an RL-fuzzy mapping from A to B denoted f→L,A : A → B if f→L (A) ≤ B. The inverse

image of a fuzzy subset H ∈ FL
Y (B) under f→L,A is defined by

f←L,A(H) =
∨

{G|f→L (G) ≤ H,G ∈ FL
X(A)}.

Obviously, we have that f←L,A(H) = A ∧ f←L (H).

Definition 3.4 Let A ∈ VL
X , B ∈ VL

Y and (A, τ), (B, δ) be two RL-ts’s. An RL-fuzzy mapping

f→L,A : A → B is called a continuous map between RL-ts’s if f←L,A(H) ∈ ⟨ALτ for all H ∈ ⟨ALδ.

Lemma 3.5 Let A ∈ VL
X , B ∈ VL

Y , f
→
L,A : A → B be a relative L-fuzzy mapping from A to B

and G ∈ FL
X(A). Then for any P ⊆ LX , it follows that∨

y∈Y

(
f→L,A(G)(y) ∧

∧
H∈P

H(y)
)
=

∨
x∈X

(
G(x) ∧

∧
H∈P

f←L,A(H)(x)
)
.
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Proof This can be proved from the following two equations.∨
y∈Y

(
f→L,A(G)(y) ∧

∧
H∈P

H(y)
)
=

∨
y∈Y

(( ∨
f(x)=y

G(x)
)
∧

∧
H∈P

H(y)
)

=
∨
y∈Y

( ∨
f(x)=y

(
G(x) ∧

∧
H∈P

H(f(x))
))

=
∨
x∈X

(
G(x) ∧

∧
H∈P

f←L (H)(x)
)
,

∨
x∈X

(
G(x) ∧

∧
H∈P

f←L,A(H)(x)
)
=

∨
x∈X

(
G(x) ∧

∧
H∈P

(f←L (H) ∧A)(x)
)

=
∨
x∈X

(
G(x) ∧A(x) ∧

∧
H∈P

f←L (H)(x)
)

=
∨
x∈X

(
G(x) ∧

∧
H∈P

f←L (H)(x)
)
. �

4. Compactness on RL-topology

In order to generalize the notion of compactness to RL-topology, an equivalent proposition

about compactness in L-topology is recalled.

Theorem 4.1 ([21]) Let (X, T ) be an L-space. Then G ∈ LX is fuzzy compact if and only if

for every subfamily P ⊆ T ′, it follows that∨
x∈X

(
G(x) ∧

∧
B∈P

B(x)
)
≥

∧
F∈2(P)

∨
x∈X

(
G(x) ∧

∧
B∈F

B(x)
)
.

Accordingly, we get the following definition of the compactness of RL-topology.

Definition 4.2 Let (A, τ) be an RL-ts. G ∈ FL
X(A) is called RL-compact with respect to τ if

for every subfamily P ⊆ ⟨ALτ , it follows that∨
x∈X

(
G(x) ∧

∧
H∈P

H(x)
)
≥

∧
R∈2(P)

∨
x∈X

(
G(x) ∧

∧
H∈R

H(x)
)
.

Theorem 4.3 Let (A, τ) be an RL-ts. If G1, G2 ∈ FL
X(A) are RL-compact with respect to τ ,

then G1 ∨G2 is also RL-compact with respect to τ .

Proof Suppose that P ⊆ ⟨ALτ . Since G1, G2 ∈ FL
X(A) are RL-compact with respect to τ , we

have that ∨
x∈X

(
G1(x) ∧

∧
H∈P

H(x)
)
≥

∧
R∈2(P)

∨
x∈X

(
G1(x) ∧

∧
H∈R

H(x)
)
,

∨
x∈X

(
G2(x) ∧

∧
H∈P

H(x)
)
≥

∧
R∈2(P)

∨
x∈X

(
G2(x) ∧

∧
H∈R

H(x)
)
.
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So, we can get the following inequalities∨
x∈X

(
(G1 ∨G2)(x) ∧

∧
H∈P

H(x)
)

=
∨
x∈X

(
(G1(x) ∨G2(x)) ∧

∧
H∈P

H(x)
)

=
∨
x∈X

((
G1(x) ∧

∧
H∈P

H(x)
)
∨
(
G2(x) ∧

∧
H∈P

H(x)
))

=≥
∧

R∈2(P)

∨
x∈X

(
G1(x) ∧

∧
H∈R

H(x)
)
∨

∧
R∈2(P)

∨
x∈X

(
G2(x) ∧

∧
H∈R

H(x)
)

=
∧

R∈2(P)

( ∨
x∈X

(
G1(x) ∧

∧
H∈R

H(x)
)
∨

∨
x∈X

(
G2(x) ∧

∧
H∈R

H(x)
))

=
∧

R∈2(P)

∨
x∈X

((
G1(x) ∨G2(x)

)
∧

∧
H∈R

H(x)
)

=
∧

R∈2(P)

∨
x∈X

((
G1 ∨G2

)
(x) ∧

∧
H∈R

H(x)
)
.

Thus G1 ∨G2 is RL-compact with respect to τ by Definition 4.2. �

Theorem 4.4 Let (A, τ) be an RL-ts. If G1 ∈ FL
X(A) is RL-compact with respect to τ and

G2 ∈ ⟨ALτ , then G1 ∧G2 is RL-compact with respect to τ as well.

Proof Suppose that P ⊆ ⟨ALτ . We have that S = {G2} ∪ P ⊆ ⟨ALτ by G2 ∈ ⟨ALτ . Because

G1 ∈ FL
X(A) is RL-compact with respect to τ , we know that∨

x∈X

(
G1(x) ∧

∧
H∈S

H(x)
)
≥

∧
R∈2(S)

∨
x∈X

(
G1(x) ∧

∧
H∈R

H(x)
)
.

And from the following two equations,∨
x∈X

((
G1 ∧G2

)
(x) ∧

∧
H∈P

H(x)
)
=

∨
x∈X

((
G1(x) ∧G2(x)

)
∧

∧
H∈P

H(x)
)

=
∨
x∈X

(
G1(x) ∧

(
G2(x) ∧

∧
H∈P

H(x)
))

=
∨
x∈X

(
G1(x) ∧

∧
H∈S

H(x)
)

and ∧
R∈2(S)

∨
x∈X

(
G1(x) ∧

∧
H∈R

H(x)
)

=
∧

R∈2(P)

∨
x∈X

(
G1(x) ∧G2(x) ∧

∧
H∈R

H(x)
)
∧

∧
R∈2(P)

∨
x∈X

(
G1(x) ∧

∧
H∈R

H(x)
)

=
∧

R∈2(P)

∨
x∈X

(
G1(x) ∧G2(x) ∧

∧
H∈R

H(x)
)

=
∧

R∈2(P)

∨
x∈X

((
G1 ∧G2

)
(x) ∧

∧
H∈R

H(x)
)
,



RL-topology and the related compactness 641

we can get the following inequality:∨
x∈X

((
G1 ∧G2

)
(x) ∧

∧
H∈P

H(x)
)
≥

∧
R∈2(P)

∨
x∈X

((
G1 ∧G2

)
(x) ∧

∧
H∈R

H(x)
)

Thus G1 ∧G2 is RL-compact with respect to τ by Definition 4.2, the proof is completed. �

Theorem 4.5 Let A ∈ VL
X , B ∈ VL

Y , (A, τ), (B, δ) be two RL-ts’s and f→L,A : A → B be a

relative L-fuzzy continuous mapping from A to B. If G ∈ FL
X(A) is RL-compact with respect to

τ , then f→L,A(G) is also RL-compact with respect to δ.

Proof Suppose that P ⊆ ⟨ALδ. Since f→L,A : A → B is continuous, we have that f←L,A(H) ∈ ⟨ALτ
for all H ∈ P by Definition 3.4. So S = {f←L,A(H)|H ∈ P} ⊆ ⟨ALτ . Because G ∈ FL

X(A) is

RL-compact with respect to τ , we have that∨
x∈X

(
G(x) ∧

∧
D∈S

D(x)
)
≥

∧
R∈2(S)

∨
x∈X

(
G(x) ∧

∧
D∈R

D(x)
)
,

and from Lemma 3.5, we can know that∨
y∈Y

(
f→L,A(G)(y) ∧

∧
H∈P

H(y)
)
=

∨
x∈X

(
G(x) ∧

∧
H∈P

f←L,A(H)(x)
)

=
∨
x∈X

(
G(x) ∧

∧
D∈S

D(x)
)

and ∧
Q∈2(P)

∨
y∈Y

(
f→L,A(G)(y) ∧

∧
H∈Q

H(y)
)
=

∧
Q∈2(P)

∨
x∈X

(
G(x) ∧

∧
H∈Q

f←L,A(H)(x)
)

=
∧
R∈2(S)

∨
x∈X

(
G(x) ∧

∧
D∈R

D(x)
)
.

Thus ∨
y∈Y

(
f→L,A(G)(y) ∧

∧
H∈P

H(y)
)
≥

∧
Q∈2(P)

∨
y∈Y

(
f→L,A(G)(y) ∧

∧
H∈Q

H(y)
)
.

Therefore, f→L,A(G) is RL-compact with respect to δ. �
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