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Abstract In this paper, we estimate the infimum of the spectrum of the Laplace-Beltrami
operator with K&hler metric on the classical bounded symmetric domains. We will give an
explicit range for the infimum of the spectrum of the Laplace-Beltrami operator on the second
type classical bounded symmetric domains. In particular, for those domains with rank 1, we

obtain an explicit formula, which agrees with a previously known result.
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1. Introduction

Let (M, g) be a Kahler manifold of complex dimension n with Kéhler metric
g= Z 9;7dz; ® dz;.
ij=1
The Laplace-Beltrami operator with respect to the Kahler metric g is defined by

n — 62

- _ ij_9

Bo=—4D 05

ij=1 J

where [g7]! = [9;717 " Let
= O0h Oh
s 1] . 00 2 _
A(Ay) _mf{4/Mg 5z 97 Vi h e G (M),/M\h| dv, 1}.

Here dVj is the volume measure of M with respect to the Kéahler metric g.

(1.2)

When (M, g) is compact and A, is uniformly elliptic, A\1(A,) is the first eigenvalue of Ag.

When (M, g) is a complete noncompact manifold, A1 (4A,) is not an eigenvalue of A,. However,
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A1(Ag) is the infimum of the positive spectrum of A,. Estimation of the spectrum of the Laplace-
Beltrami operator on Riemannian and Kahler manifolds have been studied by many authors,
including Cheng, Li, Wang and Li, etc. There have been many breakthrough results [1-12]. Since
the spectral property of A, on M will reflect the geometric properties of the manifold M, many
people have studied the geometric properties of manifolds by estimating A; (Ag) (see [1-6,10-12]).

In the complete noncompact case, Li and Wang [5] and Munteanu [8] gave upper bounds for
A1(4Ag). Li and Wang [5] proved that if the holomorphic bisectional curvature of a manifold has
negative lower bound —1, then A\;(A,) < n?. Munteanu in [8] proved that A;(A,) < n? with
the assumption that the Ricci curvature satisfies Rz > —(n+ 1)95. Both Li and Wang’s and
Munteanu’s results are sharp.

By estimating the upper bound and lower bound of A;(4A,), Li and Tran [9] gave the in-
fimum of the spectrum of the Laplace-Beltrami operator with Bergman metric on a bounded
pseudoconvex domain.

Let D be a bounded pseudoconvex domain in C" and u(z) € C°°(D) be a strictly plurisubhar-

monic exhaustion function for D. Let g = Z? =1 %{%jdzi x dz; be the Kahler metric induced
by u. Let
" = 0u Ou
oul? = W 1.3
ouly = 3 o750 5 (13)
i,j=1
and
ag = sup{a: / (det[g;7])*dv < oo} (1.4)
D

Theorem 1.1 ([9]) Let u be a strictly plurisubharmonic exhaustion function for D and g be
the Kéhler metric induced by u. Assuming that |0u|? < 3, one has

(i) M(d,) = n?/8;

(i) M(A,) < Bc% (1 — ay)?, where cp is constant which is dependent on D.

(ii) If p = —e~" is a strictly plurisubharmonic function for D, then \; = n?.

Li and Tran [9] gave many examples of bounded strongly pseudoconvex domains with smooth
boundary, where A (A,) can be explicitly formulated. However, for most non-smooth domains,
like the classical bounded symmetric domains, the value of A\i(A,) is not clear. In this paper,

we will give a sharp range of A\;(A,) on the second type classical bounded symmetric domains.

2. Classical bounded symmetric domains

Let M (™™ be the set of all m x n matrices with entries in C. For any A = [a;;] € M ™™
let
A=A = [az).
Let I,, be the m x m identity matrix. The second type classical bounded symmetric domains

can be represented by [13],

Rir:=Ry(m)={ZeM™™ .72 =71, - ZZ* > 0}. (2.1)
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Let A = [a;;] be an m x m matrix. Then we define the m(";“) X m(”;“) matrix (AxA)s as
follows:
(A)(A)6 = [a(jr)(ks)] m(n;+1) % m,(7r2L+1) 5 (2.2)
A(jr)(ks) = pj’r‘pks(ajkars + ajsark) J < k<s (23)
where
J5 1=1J;
bij = { V2 . . (24)
1, i 7.

According to Lu [14], one has the following proposition:
Proposition 2.1 Let A and B be m x m and n X n matrices. Then
(AxA)s(BxB)s = (ABxAB),, [(AxA),) = (A'xA"), (2.5)

and
(A>.<A)S_1 = (A_1>'<A_1)S7 det(A>'<A)s = (det A)"H'l. (2.6)

Let C = [cpq] be an s x s matrix where ¢, is a function of z;. Then

dlogdet C 0 0cpq
- —Pq 2.
8zk Z ¢ 8Zk ( 7)
p,q=1
and
0?logdet C > va Cpq > iq_pj OCpq OCij
—_— = —_— — Py P91 2.8
021,0%, Z ¢ 021,0%Z j%:lc Oz, 0% ( )
where

j=1
For Z € R;;, we denote
Zjk T, 0= J;
Z=[7—], py=q V¥ ’ (2.10)
Vp 1, i
Let
m(m+1)
2= (2115 21m, 222, - - -y Z2ms - - - » 2qq) € 2 (2.11)

Then ||z||? = tr(ZZ*). Let K;;(Z,Z) be the Bergman kernel function of Rr;, and K;;(Z) :=
K;1(Z,7), and V(Rys) be the volume of R;;. The Bergman kernel function was discovered by
Hua [13], the details can be found in [14, Section 3.3], and
Ki(Z) = L ! . (2.12)
V(Rrr) det(I — ZZ*)m+1

We consider the Bergman metric g;; which is induced by

UII(Z> = IOgKII(Z), Z € Ryy. (2.13)

m+1
Lu proved in [14] the following:
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Proposition 2.2 The complex Hessian matrix for Ry; can be stated by
H(ui)(2)=[I-ZZ")"'x(I-2ZZ")" ", (2.14)

and
H(u)™(2) = (I - ZZ")%(1 - ZZ")].. (2.15)

Proof For Z = [ﬁij}mxm € Ryp, let wj = ;”

O(pr2<) 1 9(wpsWer)

aZjoz B \/ipjoz awja
1
== [pjapja Z((Shjdsa@sf + 6ha§jswsf)]

V2pja .

\/;pm [Pjapja(%%é T ‘SMW)} ’

:1737'3 V2 ;kﬁ &Uakﬁ(éhjwaé o)
Ix);g Tapeg LOriPrspesGradae + Sredas)+

ShaPrpPes(0jx050 + 5jﬁ5ke)] ,

by (2.7) and (2.8), one has

2loec K 2 log det I, —Z27*
07 log K11 :7(m+1)3 og e(, )
8Zja8§k5 Z=0 8Zjaazkﬂ

Z=0
2 N Zhs Zst
a (Zs:l i pgﬁ )

—(m+1) ( —77)" ) Phs P
h,24:21 he  02ja0Zkp Z=0

_ PjaPkps
= J « a
(m + 1) 22 § 5M[5h-(5k S0 + Oredap)+
=1

Sha (86050 + 5]-55M)]
=(m + 1)pjaprs(djkdas + Okadjp)-
Thus,

62’LL[[

m”z:o = [ImXIm]s~

H(urr)(0) = |
(2.14) can be proved by reference to the proof of (3.3.33) in [14, P116-125]. We omit the details
here. By (2.14) and Proposition 2.1, (2.15) follows. O

Proposition 2.3 With the notations above, one has
1

. 2.1
det(I — ZZ*)m+1 (2.16)

det H(’U,I[)(Z) =
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Proof By (2.6) and (2.14), we have

det H(urr)(z) =det|[(I — ZZ")~

(I -ZZ")"Y,

=det(I — ZZ" )~ "D = det(I — zz*)~"tD . O

3. Main results

Let
oo
82_ 821’“-78277,.
Since
Ou Ou Ou Ou
(au) ou B 821.821 0z .azn
0z oz : : ’
ou Ou. ou Ou
0z, 0Z1 Ozp OZp
we have
" - 0u du = 0u,,0u
2 — ig 2= 77 17
ouly = 2 975 5, tr|lo”)(5) 55 |

ij=1

Proposition 3.1 On Rjj, one has the following estimate:

|urrl;

Proof For Z = [\/ipk
6‘u ou

H=3 ¥

7,k=1j5<rk<s

+Z
]>’I‘

+Zajsark

1 m

5 a]kars

=3 2. (Z

Jk,r=1 k<s

= 1
AjkQrs

ou Ou

(ajkars + ajsark)pjrpks

2(ajka7‘s + ajsark)pj

+ § arkajs

2pjrPrs 8er OZys’

< m.

grr —

Zk_] € Ry, since zj, = 21 and

ou Ou

Nt G, ks

ou Ou
6ij 0%

Ou Ou
rPks 8er 65]%'

aTSajk

ou

+ \[Za]sark 82
ks

e

+ \[Zaﬂcam Ju )

+ fzajk;ars )+
Zjr

1 Ou
Pir az]r

47

(3.1)

(3.3)

(3.4)

(3.5)
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by (3.2) and (3.5), one has

m
10wy 2 Z Z ikt Ourr Oury
g1 1 0z;x afjg

,j=1k>i£>]

=%, - —— 6u11 8UI1
—te{[(I = ZZ" )% (I — ZZ")), 4L
(- 72" %1 - 72", S Oy
o i 1 auU 8uU
- (I— 22— 22" . 3.6
ZZ:: ; ' o 2pikpje Oz 0Zj4 (8:6)
Let D[Ay,...,Am] be m x m diagonal matrix with all diagonal entries being A1,..., Ay,. For

Z € Ryy, since ZZ* is the Hermite matrix, there exists m x m unitary matrix U such that
UZZ*U* = DM, ..., Am) (3.7)

and A; € [0,1),A\ > Ay > --- > X, > 0. Without loss of generality, we assume that ZZ* =
]

DA, ..., Ap), otherwise we let Z =UZU’. Then
(I, — Z2%) ZA LY AL (3.8)
k=0
When i = k,
OQurr  Ologdet(l — ZZ*)
Oz 0zik
- _ 0 -
= (Um —Z2Z7) 1)st7 Ost —
s,tZ:l 8ZZk ( Z \[p‘;é \[pté>
1 S _ - Zte
= ((Im - ZZ*) 1)st - 6i56k€
V2pin S%:l ( ; \/ipuz)
1 A
= & (3.9)
V2pir 1= A
When ¢ < k,
ury _ Ologdet(I — ZZ*)
0zik 0zix,
1 m m Z y
= (I ZZ* 6155k2 + 0500k ‘
V2pi S;:l ( >9t gz:; ( \f Do \/ipw)
2pik 2pki
= + . 3.10
\@pik(l T )\k) (3.10)
Thus,
Ourr  pik Zik 1 1
= + . 3.11
Similarly,
0 i ; 1 1
oI Pit %t ). (3.12)

— = +
Zje V2V 1= 1=
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Therefore,

m
Burd]? = ik,jeOurr Qury
Urrly,, = Uy

Oz, 0Z;
i1 k200> T

1 - — 1 1 Zik o
== (1 =) (1 = A + )?| |
et L=XA  1=XM" V2pi
1 i 1— )\k Zik 2
= +1 <m. 3.13
Pl (3.13)

For the convenience of reader, we state the following proposition [13, Theorem 2.2.1]:

Proposition 3.2 ([13]) With the notations above, one has,

Im () ::/ det(I — ZZ*)\dZ < +o0 <= X > —1. (3.14)
Rir

Finally, we will be able to prove the following main theorem of this article.

Theorem 3.3 Let Ay, be the Laplace-Beltrami operator with respect to grr, and Ai(Ag,,)
be the infimum of the spectrum of the Laplace-Beltrami operator on Ry; with Bergman metric
grr- Then

1 2
m(m:_ ) 7m3].

AM(Arr) €] (3.15)

Proof By statement (i) of Theorem 1.1 ([9, Proposition 2.1]) and Proposition 3.1, one has

m(m+1)\2 2
M(Arr) > ) = m(m + 1) .
m 4

For f(Z) = e~"1(2) by Proposition 2.3, one has
_72-,—
| 1@Pvi,2) = [ K227 v, 2)
R[} RII

=C;; | Kpn(2,2)" 7250 dv(z), (3.16)
Rrr

where dV,,,, = det[H (ur7)]dv, ¢c;; = m + 1 and Cj; is a constant which depends on Ry;.

By Faraut and Koranyi [15] and Proposition 3.2,

= 400 CVZCVH = min’
K[[(Z, Z)ad’U (317)

Rix <400 a<ar =

m+n’

Now choose 7 such that

1
1-2-" <y = 7> =crr(1— o). (3.18)
Crr 2
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Applying the argument of the proof of [9, Theorem 2.2] and Proposition 3.1, one has

ik,j 8f Of

J. u oL qv;
A Rpr II 9z, Oz~  UII
/\1( !]11) <4 2

B fRU |f‘2dvu11

Sy, 1FP Yy’ Gt G av,,,

5 Dzin 0Zj1
=47 fR” |f12d Vi, J
=472 S, fi|2||a;|;i1|‘§/”j%” < 4r%m. (3.19)
. u
Let 7 — %cu(l — agr). Then
A (Ag,) < 4m[%cn(1 —a)]? =mc (1 —app)? (3.20)

Thus,

1
M (By,) < mé (L= an)? = mlm+ 121 - ——)* =m®. O

Remark 3.4 In particular, when R;; has rank 1, the upper bound and lower bound of A; (Ay,,)

are equal, and A\ (Ag,;) = 1, which agrees with the known result in [9].
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