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Abstract Let R1 and R2 be two rings with unit I. We give some characterizations of ring

homomorphisms and ring isomorphisms between R1 and R2 in term of complete preservers of

fixed points of multipliers, under some mild assumption on R1. Applications to several kinds of

operator algebras such as Banach algebras, nest algebras, matrix algebras and standard operator

algebras are presented.
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1. Introduction

Let R1 and R2 be two rings. For any A ∈ R1, denote by LA and RA the left multiplier

and the right multiplier defined, respectively, by LAT = AT and RAT = TA for all T ∈ R1. If

LAT = T (RAT = T ), we say that T is a fixed point of left multiplier LA (right multiplier RA).

Let π : R1 → R2 be a ring homomorphism. Then it is clear that π preserves the fixed points of all

multipliers, that is, LAT = T (RAT = T ) implies that Lπ(A)π(T ) = π(T ) (Rπ(A)π(T ) = π(T )).

Much more can be said. For each positive integer n, denote by Mn(R) the set of all n × n

matrices over R, which is still a ring. Let Φ : R1 → R2 be a map. For each n ∈ N, Φ can be

extended naturally to a map Φn from Mn(R1) into Mn(R2) by defining

Φn((Sij)n×n) = (Φ(Sij))n×n.

Note that, if π : R1 → R2 is a ring homomorphism, then πn is a ring homomorphism from

Mn(R1) into Mn(R2) for each n = 1, 2, . . . . Therefore, πn preserves fixed points for all multi-

pliers on Mn(R1). We are interested in the question of whether or not the converse is true.

Generally speaking, let (P) be a property that a ring may have. Then Φ is said to be n-(P)

preserving if Φn preserves (P); Φ is said to be completely (P) preserving if Φ is n-(P) preserving

for every positive integer n. The complete preserver problems ask how to characterize the maps

on R that completely preserve some property (P), and then to get some characterizations of ring

homomorphisms or ring isomorphisms.
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The matrix structure is an intrinsic property for operator algebras and operator spaces. It is

natural to consider the complete preserver problems [1], and find rigid properties of isomorphisms

in the sense that such properties are preserved completely by a map will imply that such a

map has “nice” structure. In this respect, some kinds of complete preserving linear maps are

already intensively studied in operator algebras and operator spaces. For example, the study of

completely positive linear maps and completely bounded linear maps are very important topics

in operator algebra and operator space theory [2]. Hadwin and Larson introduced the notion

of completely rank-nonincreasing linear maps on B(H) and characterized such maps in [3], later

generalized to B(X) in [4], where H is a Hilbert space, X is a Banach space and B(X) is

the algebra of all bounded linear operators acting on X. Completely invertibility preserving

linear maps and completely trace-rank preserving linear maps were discussed and characterized

in [5, 6]. General surjective maps between standard operator algebras that completely preserve

idempotents, square-zero, commutativity, Jordan zero-products were characterized in [7, 8].

In the present paper we want to characterize the ring isomorphisms and ring homomorphisms

in term of complete preservers of fixed points for multipliers. Here we define the complete

preservers of fixed points in a simpler form.

We say that a map Φ : R1 → R2 is n-fixed points preserving (in both directions) for left

multipliers if

(Aij)n×n(Tj)n×1 = (Tj)n×1 (1.1)

implies that (if and only if)

(Φ(Aij))n×n(Φ(Tj))n×1 = (Φ(Tj))n×1. (1.2)

In this case, we also say that Φn is fixed points preserving (in both directions) for left multipliers.

Φ is said to be completely fixed point preserving (in both directions) for left multipliers if it is

n-fixed points preserving (in both directions) for left multipliers for every positive integer n.

Similarly, one can define the complete preservers of fixed points for right multipliers.

In this paper, we give some characterizations of ring homomorphisms and ring isomorphisms

for rings in term of complete preservers of fixed points for left multipliers. After that, we apply the

general results to some operator algebras such as Banach algebras, nest algebras, matrix algebras

and standard operator algebras. The case for preservers of fixed points for right multipliers are

dealt with similarly.

2. General results for rings

We first discuss the problem of characterizing the complete preservers of fixed points for left

multipliers. From now on, for convenience’s sake, we simply say preservers of fixed points and

omit “for left multipliers”.

We begin with a general lemma.

Lemma 2.1 Let R1 and R2 be two unital rings with unit denoted by I for both, and let
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Φ : R1 → R2 be a map. If the range of Φ contains 0, I and if Φ2 is fixed points preserving, then

the following statements are true:

(i) Φ(0) = 0,Φ(I) = I.

(ii) Φ is multiplicative.

(iii) Φ(−2I) = −Φ(2I).

(iv) Φ(S − T ) = Φ(S)− Φ(T ) for any T ∈ R1 and invertible S ∈ R1.

In addition, if Φ2 is fixed points preserving in both directions, then Φ is injective.

Proof For any T ∈ R1, we have(
I I

0 0

)(
T

0

)
=

(
T

0

)
.

Since Φ2 is fixed points preserving, by the definition (see Eqs. (1.1) and (1.2)), we get(
Φ(I) Φ(I)

Φ(0) Φ(0)

)(
Φ(T )

Φ(0)

)
=

(
Φ(T )

Φ(0)

)
.

It follows that

Φ(I)Φ(T ) + Φ(I)Φ(0) = Φ(T ), (2.1)

and

Φ(0)Φ(T ) + Φ(0)2 = Φ(0). (2.2)

Since 0, I are in the range of Φ, there exists some T0 and T1 in R1 such that Φ(T0) = 0 and

Φ(T1) = I. Taking T = T1 in Eqs. (2.1) and (2.2) yields, respectively

Φ(I) + Φ(I)Φ(0) = I and Φ(0)2 = 0. (2.3)

Also, taking T = T0 in Eqs. (2.1) and (2.2) yields respectively that Φ(I)Φ(0) = 0 and Φ(0)2 =

Φ(0). These, together with Eq. (2.3), ensure that Φ(0) = 0 and Φ(I) = I. So (i) is true.

For any T ∈ R1, since (
T I

0 I

)(
I

I − T

)
=

(
I

I − T

)
,

we see that (
Φ(T ) I

0 I

)(
I

Φ(I − T )

)
=

(
I

Φ(I − T )

)
,

which gives

Φ(I − T ) = I − Φ(T ). (2.4)

For any T, S ∈ R1, as (
I − T TS

0 I

)(
S

I

)
=

(
S

I

)
,

by Eq. (2.4) one gets (
I − Φ(T ) Φ(TS)

0 I

)(
Φ(S)

I

)
=

(
Φ(S)

I

)
.
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This implies that Φ(TS) = Φ(T )Φ(S) holds for any T, S ∈ R1, and hence, (ii) is true.

For any T ∈ R1, since (
2I I

0 I

)(
−T

T

)
=

(
−T

T

)
,

we see that (
Φ(2I) I

0 I

)(
Φ(−T )

Φ(T )

)
=

(
Φ(−T )

Φ(T )

)
.

So

Φ(2I)Φ(−T ) + Φ(T ) = Φ(−T ). (2.5)

Taking T = I in Eq. (2.5) and using (ii), we have Φ(−2I) + I = Φ(−I). Taking T = −I in

Eq. (2.4) yields that Φ(2I) = I−Φ(−I). These ensure that Φ(−2I) = −Φ(2I). So the statement

(iii) is true.

For any T ∈ R1 and invertible S ∈ R1, by (ii) and (2.4), we have

Φ(S − T ) =Φ((I − TS−1)S) = Φ(I − TS−1)Φ(S)

=(I − Φ(T )Φ(S−1))Φ(S) = Φ(S)− Φ(T ),

hence (iv) is true.

Now assume further that Φ2 is fixed point preserving in both directions. For T, S ∈ R1,

assume Φ(T ) = Φ(S). Since (
T I − T

T I − T

)(
I

I

)
=

(
I

I

)
,

by (i) we have (
Φ(T ) Φ(I − T )

Φ(T ) Φ(I − T )

)(
I

I

)
=

(
I

I

)
.

Then, Φ(T ) = Φ(S) gives (
Φ(S) Φ(I − T )

Φ(T ) Φ(I − T )

)(
I

I

)(
I

I

)
.

As Φ2 preserves the fixed points in both directions, we get(
S I − T

T I − T

)(
I

I

)
=

(
I

I

)
,

which entails that T = S. So Φ is an injection. �
Recall that a ring R is prime if for any A,B ∈ R, ARB = {0} implies either A = 0 or B = 0.

The following lemma comes from [9].

Lemma 2.2 Let R be a prime ring containing an idempotent e ̸= 0, I (R need not have an

identity). Then every multiplicative bijection from R onto an arbitrary ring S is additive.

Theorem 2.3 Let R1 and R2 be two unital rings with units denoted by I for both, and let

Φ : R1 → R2 be a surjective map. If R1 is prime, then the following statements are equivalent:
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(1) Φ is completely fixed points preserving in both directions.

(2) Φ4 is fixed points preserving in both directions.

(3) Φ is a ring isomorphism.

Proof Clearly, every ring isomorphism is completely fixed points preserving in both directions.

So (3)⇒(1)⇒(2). We only need to prove (2)⇒(3).

Assume that Φ is surjective and 4-fixed points preserving in both directions. By the as-

sumption, Φ2 is also surjective and 2-fixed points preserving in both directions on M2(R1). So

by Lemma 2.1 we conclude that Φ2(0) = 0, Φ2(I) = I, Φ2 is bijective and multiplicative. In

addition,

(
I 0

0 0

)
is a nontrivial idempotent in M2(R1), which implies by Lemma 2.2 that Φ2

is additive. Hence Φ2 is a ring isomorphism, and consequently, Φ is a ring isomorphism. �

Corollary 2.4 Let R1 and R2 be two unital rings with units denoted by I for both, and let

Φ : R1 → R2 be a surjective map. If R1 is prime and contains a nontrivial idempotent, then the

following statements are equivalent:

(1) Φ is completely fixed points preserving in both directions.

(2) Φ2 is fixed points preserving in both directions.

(3) Φ is a ring isomorphism.

Proof This is obvious by Lemmas 2.1 and 2.2. �
The following Theorem gives a characterization of (injective) ring homomorphisms for some

rings that may not be prime.

Theorem 2.5 Let R1 and R2 be two unital rings with units denoted by I for both, and let

Φ : R1 → R2 be a map so that 0, I are contained in the range of Φ. If 1
2I ∈ R1 and for any

S ∈ R1, there exists some positive integer k such that 2kI + S ∈ R1 is invertible in R1. Then

the following statements are equivalent:

(1) Φ is completely fixed points preserving (in both directions).

(2) Φ is 2-fixed points preserving (in both directions).

(3) Φ is a (an injective) ring homomorphism with Φ(I) = I.

Proof Clearly, every ring homomorphism is completely fixed points preserving. So (3)⇒(1)⇒(2).

We only need to prove (2)⇒(3).

Assume that Φ2 preserves fixed points. Then by Lemma 2.1, Φ is a multiplicative map so

that Φ(−2I) = −Φ(2I) and Φ(S−T ) = Φ(S)−Φ(T ) for any T ∈ R1 and invertible S ∈ R1. On

account of 1
2I ∈ R1, we have Φ(−I) = Φ( 12I · (−2I)) = Φ( 12I)Φ(−2I) = −Φ(I). Consequently,

Φ(−T ) = −Φ(T ) holds for all T ∈ R1. So, Φ(S+T ) = Φ(S)−Φ(−T ) = Φ(S)+Φ(T ) holds for any

T ∈ R1 and invertible S ∈ R1. Now, if S ∈ R1 is not invertible, by the assumption, there exists

some positive integer k such that 2kI +S is invertible in R1. Also. note that 2kI is invertible in

R1. Hence we have Φ(S+T ) = Φ(2kI+S)+Φ(−2kI+T ) = Φ(2kI)+Φ(S)+Φ(−2kI)+Φ(T ) =

Φ(S) + Φ(T ). It follows that Φ is additive. Therefore, Φ is a ring homomorphism.
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Moreover, if Φ2 preserves fixed points in both directions, by Lemma 2.1, Φ is an injective

ring homomorphism. �

3. Application to operator algebras

In this section, we apply the general results in Section 2 to some operator algebras.

Theorem 3.1 Let A and B be real or complex Banach algebras with identity I and let

Φ : A → B be a map so that 0, I are contained in the range of Φ. Then the following statements

are equivalent:

(1) Φ is completely fixed points preserving (in both directions).

(2) Φ2 is fixed points preserving (in both directions).

(3) Φ is a (an injective) ring homomorphism.

Proof Since A is a Banach algebra, for any nonzero scalar λ, we have λI, λ−1I ∈ A and λI+S is

invertible in A whenever |λ| > ∥S∥. Now, the theorem follows from Theorem 2.5 immediately. �
Let X be a real or complex Banach space and A be a subalgebra (not assumed to be closed

under any operator topology) in B(X). Recall that, A is called a standard operator algebra if A
contains the identity I and F(X), the set of all finite rank operators.

Theorem 3.2 Let X,Y be Banach spaces over the real or complex field F with dimX ≥ 2. Let

A,B be standard operator algebras on X,Y , respectively. Let Φ : A → B be a map. If the range

of Φ contains 0, I and all rank-1 idempotents, then the following statements are equivalent:

(1) Φ is completely fixed points preserving in both directions.

(2) Φ2 is fixed points preserving in both directions.

(3) There exists a ring automorphism τ : F → F and a τ -linear bijective transformation

T : X → Y with TAT−1 = B such that Φ(A) = TAT−1 for all A ∈ A. Moreover, if X,Y are

real, then T is a linear bounded invertible operator; if X,Y are complex and dimX = ∞, then

T is a linear or conjugate linear bounded invertible operator.

(4) Φ is a ring isomorphism.

Proof Note that the maps of the form (3) are ring isomorphisms from A onto B. If the spaces

are real or if the spaces are complex and dimX = ∞, then Φ is continuous under the weak

operator topology (WOT, briefly). On the other hand, since the range of Φ contains all finite

rank operators as an injective algebraic homomorphism or conjugate algebraic homomorphism,

this implies that Φ is surjective because F(Y ) is dense in B under WOT. If dimX < ∞, Φ is an

injective τ -algebraic homomorphism. Thus the range of Φ contains all finite rank operators on

Y and consequently, dimY = dimX and Φ is surjective.

So the implications (3)⇒(4)⇒(1)⇒(2) are obvious. We only need to prove (2)⇒(3). Assume

(2). Note that, A may not be closed in any operator topology and thus Theorem 3.1 is unappli-

cable. Also, Corollary 2.4 is not applicable as Φ is not assumed surjective. However, one can use

Lemma 2.1 to see that Φ is a multiplicative injection, Φ(0) = 0, Φ(I) = I, Φ(−2I) = −Φ(2I)
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and Φ(A − B) = Φ(A) − Φ(B) whenever A is invertible in A. Moreover, as 1
2I ∈ A, we get

Φ(−I) = −Φ(I) and consequently Φ(A+B) = Φ(A) +Φ(B) for any A,B ∈ A with A invertible

in A.

For any F ∈ F(X), take a positive integer k so that 2k > ∥F∥. Then 2kI − F is invertible

in B(X). But the fact that F is of finite rank ensures that (2kI − F )−1 = λI + E for some

scalar λ and some operator E ∈ F(X). Therefore, the subalgebra FI + F(X) ⊆ A satisfies the

assumptions on R1 in Theorem 2.5 and consequently, the restriction Φ|FI+F(X) : FI+F(X) → B
is an injective ring homomorphism.

Note that a nonzero operator A ∈ A is of rank one if and only if, for any rank-1 idempotents

B,C, BAC = 0 implies that BA = 0 or AC = 0. By this fact, if A is of rank-one, so is Φ(A).

For any λ ∈ F, the multiplicativity of Φ implies that Φ(λI)Φ(A) = Φ(A)Φ(λI). Hence Φ(λI)

commutes with every rank-1 idempotent. It follows that Φ(λI) ∈ FI, that is, Φ(FI) ⊆ FI.
Then Φ(Fx ⊗ f) ⊆ FΦ(x ⊗ f) for every rank-1 idempotent x ⊗ f . This entails that all rank-1

operators are in the range of Φ. Therefore, Φ|FI+F(X) is a ring isomorphism from FI + F(X)

onto FI + F(Y ). Then, as is well known, there exist a ring automorphism τ : F → F and a

τ -linear bijective transformation T : X → Y such that Φ(F ) = TFT−1 for all F ∈ FI + F(X).

Now, for any A ∈ A, as

Φ(A)T (x⊗ f)T−1 = Φ(Ax⊗ f) = TA(x⊗ f)T−1 = TAT−1T (x⊗ f)T−1

holds for all rank-1 operators x ⊗ f , we see that Φ(A) = TAT−1 for every A ∈ A. The claims

on T are then true by [10] or [11, Theorem 2.4.2]. The proof is completed. �
Recall that a nest N of a Banach space X is a chain of subspaces of X so that {0}, X ∈ N ,

and, for any subset {Nα} ⊆ N , ∩αNα and the closed linear span of ∪αNα are still in N . The nest

algebra AlgN is the algebra consisting of all operators T ∈ B(X) such that TN ⊆ N holds for

all N ∈ N . A subalgebra A is called a standard subalgebra of nest algebra AlgN if A contains

the identity I and all finite rank operators in the nest algebra.

If A is a standard subalgebra of a nest algebra on a Banach space X of dimension at least

3, then, by [12, Theorem 2.1], every multiplicative isomorphism Φ of A onto an arbitrary ring

is additive. Also, a characterization of ring isomorphisms of A can be found in [13]. So the

following result is true.

Theorem 3.3 Let A be a standard subalgebra of a nest algebra AlgN on an infinite-dimensional

real or complex Banach space X. Let Φ : A → A be a surjective map. Then the following

statements are equivalent:

(1) Φ is completely fixed points preserving in both directions.

(2) Φ2 is fixed points preserving in both directions.

(3) There exists a dimension preserving order isomorphism θ : N → N , and an invertible

bounded either linear or conjugate linear operator T : X → X satisfying T (N) = θ(N) for every

N ∈ N such that

Φ(A) = TAT−1 for all A ∈ A.
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Denote by T (n1, n2, . . . , nk) the algebras of upper triangular block matrices over the real or

complex field F. The following corollary is the finite dimension version of Theorem 3.3.

Corollary 3.4 Let Φ : T (n1, n2, . . . , nk) → T (n1, n2, . . . , nk) be a surjective map. Then the

following statements are equivalent:

(1) Φ is completely fixed points preserving in both directions.

(2) Φ2 is fixed points preserving in both directions.

(3) There exist an automorphism τ of F and an invertible matrix T ∈ T (n1, n2, . . . , nk) such

that Φ((aij)) = T (τ(aij))T
−1 for all (aij) ∈ T (n1, n2, . . . , nk).

For matrix algebras the condition that all rank-1 idempotents are contained in the range of

the map in Theorem 3.2 can be weakened.

Theorem 3.5 Let Mn(F) be the algebra of all n× n matrices over the real or complex field F
and Φ : Mn(F) → Mn(F) be a nonzero map. If the range of Φ contains 0, I, then the following

statements are equivalent:

(1) Φ is completely fixed points preserving.

(2) Φ2 is fixed points preserving.

(3) There exists a ring homomorphism τ : F → F and an invertible matrix T ∈ Mn(F) such
that Φ(A) = TAτT

−1 for all A ∈ Mn(F), where Aτ = (τ(aij)) for A = (aij).

(4) There exists a homomorphism τ : F → F so that Φ is a τ -algebraic homomorphism.

(5) Φ is a ring homomorphism.

Note that, if F = R, the ring homomorphism τ in (3) is in fact the identity and Φ is an

algebraic isomorphism; if F = C, τ is an injective homomorphism and may not be surjective.

Proof of Theorem 3.5 Note that every nonzero ring homomorphism of Mn(F) is injective

as it is a simple algebra. So, the implications (3)⇒(4)⇒(5)⇒(1)⇒(2) are obvious. Let us check

(2)⇒(3). Assume (2) is true; that is, assume that Φ2 is fixed points preserving. Then, by

Theorem 2.5, Φ is a homomorphism with Φ(I) = I.

Now we need the following lemma which is a special case of a result in [14] (also [15, Theorem

2.5] and [11, Theorem 10.1.4]).

Lemma 3.6 Every multiplicative map Ψ : Mn(F) → Mn(F) must have one of the following

three forms:

(i) Ψ(A) = 0 for all matrices A with rank ≤ 1.

(ii) There exists an invertible matrix T ∈ Mn(F), a positive integer k ≤ n and a multi-

plicative map Φ0 : Mn(F) → Mn−k(F) satisfying Φ0(A) = 0 whenever rank(A) ≤ 1, such that

Ψ(A) = T

(
Ik 0

0 Φ0(A)

)
T−1 for all A ∈ Mn(F).

(iii) There exists a ring homomorphism τ : F → F and an invertible matrix T ∈ Mn(F) such
that Ψ(A) = TAτT

−1 for all A ∈ Mn(F).
Observe that, by Lemma 3.6, the case (i) implies that Φ = 0 and the case (ii) implies that Φ

is not additive. So, Φ must have the form (iii); that is, the statement (3) is true. �
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As a corollary of Theorem 3.5, we obtain the following well-known characterization of homo-

morphisms on Mn(F).

Corollary 3.7 Let Mn(F) be the algebra of all n× n matrices over the real or complex field

F and Φ : Mn(F) → Mn(F) be a nonzero map. Then Φ is a ring homomorphism if and only

if there exists a ring homomorphism τ : F → F and an invertible matrix T ∈ Mn(F) such that

Φ(A) = TAτT
−1 for all A ∈ Mn(F).

To deal with the infinite-dimensional case, we need a result due to An and Hou that can

be found in [11, Theorem 10.3.1’], where the result is for the maps from B(X) into B(Y ), but,

by checking the proof there, still valid for maps between closed standard operator algebras.

Recall that, for any linear manifold M1 in X, there exists a linear manifold M2 in X so that

M1 ∩ M2 = {0} and M1 + M2 = X, and there exists an idempotent linear transformation

P : X → X such that P (M1) = M1 and P (M2) = {0}. M2 is called an algebraic complementary

submanifold of M1. In this case, every transformation C from X into itself can be represented

as a matrix

C =

(
C11 C12

C21 C22

)
,

where Cij is a transformation from Mj into Mi. Note that, P is bounded if and only if both

M and N are closed. For any subset L in a Banach space X, we denote by span{L} the closed

linear subspace spanned by L.

Lemma 3.8 LetX and Y be two Banach spaces over the real or complex field F with dimX = ∞,

and let A and B be closed standard operator algebras respectively on X and Y . Let Ψ : A → B
be a multiplicative map. Assume further that there exists some rank-1 operator F0 ∈ A so that

the rank of Ψ(F0) is not greater than 1 and there exists some rank-k idempotent operator P0 ∈ A
so that the rank of Ψ(P0) is not greater than k, where 2 ≤ k < ∞. Then one of the following

statements is true:

(a) Ψ(F ) = 0 for every F with rank ≤ 1.

(b) Ψ(0) is of rank one and there exists a space decomposition Y = Y1+̇ran(Ψ(0)) such that

Ψ(A) =

(
Ψ0(A) 0

0 1

)
,

where Ψ0 : A → PBP is a multiplicative map satisfying Ψ0(F ) = 0 for every F with rank ≤ 1

and P is the idempotent operator with P (Y1) = Y1 and P (ran(Ψ(0))) = {0}.
(c) There exists a complementary submanifoldN of the closed subspaceM = span{range(Ψ(F )) :

rank(F ) = 1} of Y , an invertible bounded linear or conjugate linear operator T : X → M , a

multiplicative map Ψ0 : A → (I − Q)B(I − Q) vanishing on operators with rank ≤ 1 and a

map Ψ12 : A → QB(I − Q) which satisfies Ψ12(AB) = TAT−1Ψ12(B) + Ψ12(A)Ψ0(B) for any

A,B ∈ A such that

Ψ(A) =

(
TAT−1 Ψ12(A)

0 Ψ0(A)

)
(3.1)



98 Ting ZHANG and Jinchuan HOU

for all A ∈ A, where Q : Y → Y is the idempotent so that Q(Y ) = M and Q(N) = {0}.
Generally speaking, in Lemma 3.8, Q may not belong to A even if when it is bounded. So,

QAQ and (I −Q)A(I −Q) may not be algebras. The point of (c) is that, for each A ∈ A, Ψ(A)

has a matrix representation of the form in Eq. (3.1). We do not know if Ψ12 is additive.

Theorem 3.9 Let X,Y be Banach spaces over the real or complex field F with dimX = ∞
and A,B be closed standard operator algebras on X,Y , respectively. Let Φ : A → B be a map

so that 0, I are contained in the range of Φ. Assume further that rank(Φ(F0)) ≤ 1 for some

rank-1 operator F0 ∈ A and rank(Φ(P0)) ≤ k for some rank-k idempotent operator P0 ∈ A with

2 ≤ k < ∞. Then the following statements are equivalent:

(1) Φ is completely fixed points preserving in both directions.

(2) Φ is 2-fixed points preserving in both directions.

(3) There exists a complementary submanifoldN of the closed subspaceM = span{range(Φ(F )) :

rank(F ) = 1} of Y , an invertible bounded linear or conjugate linear operator T : X → M , an

idempotent linear transformation Q : Y → Y with the range of Q equal to M and kerQ = N ,

a unital ring homomorphism Φ0 : A → Φ0(A) ⊂ (I − Q)B(I − Q) which vanishes on all fi-

nite rank operators, and an additive map Φ12 : A → QB(I − Q) which satisfies Φ12(AB) =

TAT−1Φ12(B) + Φ12(A)Φ0(B) for any A,B ∈ A, such that

Φ(A) =

(
TAT−1 Φ12(A)

0 Φ0(A)

)
for all A ∈ A.

(4) Φ is a unital injective ring homomorphism.

Proof (2) ⇒(3). Assume that Φ2 is fixed points preserving in both directions. As the range

of Φ contains 0, I and A is a Banach algebra, by Theorem 3.1, Φ is a unital injective ring

homomorphism. Applying Lemma 3.8, we see that Φ can only take the form (c) because the

maps of form (a) or (b) are not injective. Thus Φ must have the form

Φ(A) =

(
TAT−1 Φ12(A)

0 Φ0(A)

)
for all A ∈ A, where A : X → M is a linear or conjugate linear invertible bounded operator,

Φ12 : A → QA(I −Q) is an additive map which satisfies

Φ12(AB) = TAT−1Φ12(B) + Φ12(A)Φ0(B) (3.2)

for any A,B ∈ A, Φ0(A) ⊂ (I −Q)A(I −Q) is a ring and Φ0 is a ring homomorphism from A
onto Φ0(A) which vanishes all finite rank operators, and Q : X → X is an idempotent linear

transformation with range M = span{range(Φ(F )) : rank(F ) = 1}.
Now, the implications (3)⇒(4)⇒(1)⇒(2) are obvious. �
We do not know the general structure of Φ12. However, in some situations, Φ12 = 0. For

example, it is clear that, in Theorem 3.9 (3), if M = Y , then Φ(T ) = ATA−1 for all T ∈ A. The

following corollary is a generalization of the above observation.
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Corollary 3.10 Under the assumption of Theorem 3.9, if dimM⊥ < ∞, then the following

statements are equivalent:

(1) Φ is completely fixed points preserving in both directions.

(2) Φ2 is fixed points preserving in both directions.

(3) M = Y and there exists an invertible bounded linear or conjugate linear operator

A : X → Y such that Φ(T ) = ATA−1 for all T ∈ A.

(4) Φ is an algebraic isomorphism or conjugate algebraic isomorphism.

Proof We need only to check (2)⇒(3). By Theorem 3.9, Φ has the form of Theorem 3.9(3). We

claim that Φ12 = 0 and Φ0 = 0. In fact, since N is of finite dimension, it is obvious that Φ0 = 0.

Thus, for any S, T ∈ A, we have Φ(TS) = ATA−1Φ12(S). By Eq. (3.2) it is easily checked that

Φ12(I) = 0. This entails that

Φ12(T ) = Φ12(T · I) = ATA−1Φ12(I) = 0

for every T ∈ A; that is, Φ12 = 0. However, as Φ(I) = I, we must have kerQ = {0}. This entails
(3). �

There exist injective unital ring homomorphisms that have the form in Theorem 3.9 (3) with

Φ12 = 0.

Example 3.11 Let X be an infinite dimensional Banach space and K(X) be the closed ideal

of all compact operators acting on X. Let C(X) = B(X)/K(X) be the Calkin algebra and

π : B(X) → C(X) be the quotient map. Then, π is a surjective algebraic homomorphism which

vanishes at all compact operators. Note that C(X) ⊂ B(C(X)). Let Y = X ⊕ C(X). For an

invertible operator A ∈ B(X), let Φ : B(X) → B(Y ) be defined by

Φ(T ) =

(
ATA−1 0

0 π(T )

)
for all T ∈ B(X). Then, Φ is a unital injective algebraic homomorphism.
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