The Normalized Laplacian Spectrum of Subdivision Vertex-Edge Corona for Graphs

Muchun LI, You ZHANG, Fei WEN*
Institute of Applied Mathematics, Lanzhou Jiaotong University, Gansu 730070, P. R. China

Abstract

A subdivision vertex-edge corona $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ is a graph that consists of $S\left(G_{1}\right)$, $\left|V\left(G_{1}\right)\right|$ copies of G_{2} and $\left|I\left(G_{1}\right)\right|$ copies of G_{3} by joining the i-th vertex in $V\left(G_{1}\right)$ to each vertex in the i-th copy of G_{2} and i-th vertex of $I\left(G_{1}\right)$ to each vertex in the i-th copy of G_{3}. In this paper, we determine the normalized Laplacian spectrum of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ in terms of the corresponding normalized Laplacian spectra of three connected regular graphs G_{1}, G_{2} and G_{3}. As applications, we construct some non-regular normalized Laplacian cospectral graphs. In addition, we also give the multiplicative degree-Kirchhoff index, the Kemeny's constant and the number of the spanning trees of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ on three regular graphs.

Keywords normalized Laplacian spectrum; cospectral graphs; spanning trees; subdivision vertex-edge corona

MR(2010) Subject Classification 05C50

1. Introduction

Throughout this paper, all graphs considered are simple undirected and connected. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where $|V(G)|=n$ and $|E(G)|=m$. Let $d_{G}\left(v_{i}\right)$ be the degree of the vertex v_{i} in G. The incidence matrix of G, denoted by $R(G)$, is the $n \times m$ matrix whose (i, j)-entry is 1 if v_{i} and e_{j} are adjacent in G and 0 otherwise. As usual, we denote by $A(G)$ and $D(G)$ the adjacency matrix and the degree diagonal matrix of G, respectively. The Laplacian matrix of G is $L(G)=D(G)-A(G)$ and the signless Laplacian matrix of G is $Q(G)=D(G)+A(G)$. Chung [1] introduced the normalized Laplacian matrix of G, denoted by $\mathcal{L}(G)=D^{-1 / 2}(G)(D(G)-$ $A(G)) D^{-1 / 2}(G)=I-D^{-1 / 2}(G) A(G) D^{-1 / 2}(G)$, which is a square matrix with rows and columns being indexed by vertices of G. The \mathcal{L}-characteristic polynomial of G is defined as $\Phi_{\mathcal{L}(G)}(\lambda)=$ $\operatorname{det}(\lambda I-\mathcal{L}(G))$. Since $\mathcal{L}(G)$ is real symmetric, their eigenvalues are real number. The multiset of eigenvalues of $\mathcal{L}(G)$ is called the \mathcal{L}-spectrum of G and the \mathcal{L}-eigenvalues are arranged as $0=\lambda_{1}<$ $\lambda_{2} \leq \cdots \leq \lambda_{n} \leq 2$. Graphs G and H are said to be A-cospectral (resp., \mathcal{L}-cospectral) if they share the same A-spectrum (resp., \mathcal{L}-spectrum). Furthermore, K_{n} and P_{n} denote, respectively, the complete graph and the path on n vertices.

[^0]Graph operations are becoming increasingly useful mathematical models for a broad range of applications, such as complex systems theory, computer security [2], and so on. Recently, many graph operations such as the disjoint union, the corona, the edge corona and the neighborhood corona have been introduced, and their adjacency, Laplacian and signless Laplacian spectra are computed in [3-8], respectively. Banerjee [9] investigated how the normalized Laplacian spectrum is affected by operations like joining. For the aspect of the \mathcal{L}-cospectral spectrum, Butler [10] produced large families of non-bipartite, non-regular graphs which are mutually \mathcal{L}-cospectral. In 2016, Song [11] obtained the A-spectrum and L-spectrum by graph operation of the subdivision vertex-edge corona $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$, which is the graph described below.

For a graph G_{1}, let $S\left(G_{1}\right)$ be the subdividing graph of G_{1} whose vertex set has two parts: one the original vertices $V\left(G_{1}\right)$, another, denoted by $I\left(G_{1}\right)$, the inserting vertices corresponding to the edges of G_{1}. Let G_{2} and G_{3} be other two disjoint graphs.

Definition 1.1 ([11]) The subdivision vertex-edge corona (briefly $S V E$-corona) of G_{1} with G_{2} and G_{3}, denoted by $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$, is the graph consisting of $S\left(G_{1}\right),\left|V\left(G_{1}\right)\right|$ copies of G_{2} and $\left|I\left(G_{1}\right)\right|$ copies of G_{3} by joining the i-th vertex in $V\left(G_{1}\right)$ to each vertex in the i-th copy of G_{2} and i-th vertex of $I\left(G_{1}\right)$ to each vertex in the i-th copy of G_{3}. (for example, see $P_{4}^{S} \circ\left(P_{3}^{V} \cup P_{2}^{E}\right)$ in Figure 1)

Figure $1 \quad P_{4}^{S} \circ\left(P_{3}^{V} \cup P_{2}^{E}\right)$
One can easily check that $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ has $n=n_{1}+m_{1}+n_{1} n_{2}+m_{1} n_{3}$ vertices and $m=2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}$ edges, where n_{i} and m_{i} are the number of vertices and edges of G_{i} for $i=1,2,3$. We see that $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ will be a subdivision-vertex corona if G_{3} is null, and will be a subdivision-edge corona if G_{2} is null. Thus subdivision vertex-edge corona can be viewed as the generalizations of both subdivision-vertex corona (denoted by $G_{1} \odot G_{2}$) (see [12]) and subdivision-edge corona (denoted by $G_{1} \ominus G_{2}$).

Calculating the spectra of graphs as well as formulating the characteristic polynomials of graphs is a fundamental and very meaningful work in spectral graph theory. In this paper, we determine the normalized Laplacian spectrum of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ in terms of the corresponding normalized Laplacian spectra of three connected regular graphs G_{1}, G_{2} and G_{3}. As applications, we construct some non-regular normalized Laplacian cospectral graphs. In addition, we also give the multiplicative degree-Kirchhoff index, the Kemeny's constant and the number of the spanning trees of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ for three regular graphs.

2. Preliminaries

In this section we give some useful established results which are required in the proof of the main result.

Lemma 2.1 ([3]) For a graph G, let $R(G)$ be the incidence matrix of G. Then

$$
R(G) R(G)^{T}=D(G)+A(G)=Q(G)
$$

Lemma 2.2 ([13]) Let $M_{1}, M_{2}, M_{3}, M_{4}$ be respectively $p \times p, p \times q, q \times p, q \times q$ matrices with M_{1} and M_{4} invertible. Then

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ll}
M_{1} & M_{2} \\
M_{3} & M_{4}
\end{array}\right) & =\operatorname{det}\left(M_{4}\right) \cdot \operatorname{det}\left(M_{1}-M_{2} M_{4}^{-1} M_{3}\right) \\
& =\operatorname{det}\left(M_{1}\right) \cdot \operatorname{det}\left(M_{4}-M_{3} M_{1}^{-1} M_{2}\right)
\end{aligned}
$$

where $M_{1}-M_{2} M_{4}^{-1} M_{3}$ and $M_{4}-M_{3} M_{1}^{-1} M_{2}$ are called the Schur complements of M_{4} and M_{1}.
Lemma 2.3 ([14]) The Kronecker product $A \otimes B$ of two matrices $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{p \times q}$ is the $m p \times n q$ matrix obtained from A by replacing each element $a_{i j}$ by $a_{i j} B$. It is known that:
(a) $(M \otimes P)(N \otimes Q)=M N \otimes P Q$, for matrices M, N, P, Q of suitable sizes;
(b) $(M \otimes N)^{-1}=M^{-1} \otimes N^{-1}$, for non-singular matrices M and N;
(c) $\operatorname{det}(M \otimes N)=(\operatorname{det} M)^{s}(\operatorname{det} N)^{k}$, where M is a matrix of order k and N is a matrix of order s;
(d) $(M \otimes N)^{T}=M^{T} \otimes N^{T}$, for any two matrices M and N.

The reader is referred to [14] for other properties of the Kronecker product not mentioned here.
Definition 2.4 ([14]) For two matrices $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$, the Hadamard product $A \bullet B$ is a matrix of size $m \times n$ with entries given by

$$
(A \bullet B)_{i j}=a_{i j} \cdot b_{i j}
$$

Definition $2.5([15])$ Let matrix $B=c J_{n}-(c-1) I_{n}$ where c is a constant and J_{n} denotes the matrix of size n whose entry equal to one, and C denotes the column vector of dimension n, respectively. For the regular graph G with n vertices and parameter λ, we have

$$
\chi_{G}(B, C, \lambda)=C^{T}\left(\lambda I_{n}-(\mathcal{L}(G) \bullet B(G))\right)^{-1} C
$$

where the notion $\chi_{G}(B, C, \lambda)$ is similar to the notion 'coronal' in [13].
Definition 2.6 ([16]) The multiplicative degree-Kirchhoff index of G is defined as:

$$
K f^{*}(G)=\sum_{i<j} d_{i} d_{j} r_{i j}
$$

where $r_{i j}$ denotes the resistance distance between v_{i} and v_{j}. It has been proved [16] that $K f^{*}(G)$ can be expressed by the edge number m and the normalized Laplacian spectrum $\operatorname{Spec}_{\mathcal{L}}(G)=$
$\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ below:

$$
K f^{*}(G)=2 m \sum_{k=2}^{n} \frac{1}{\lambda_{k}}, \quad \text { where } 0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \leq 2
$$

For a graph G, Kemeny's constant $K(G)$, is the expected number of steps required for the transition from a starting vertex i to a destination vertex, which is independent of the selection of starting vertex i (see [17]). Moreover, Kemeny's [18] constant can be computed from the normalized Laplacian spectrum as follows:

$$
K(G)=\sum_{k=2}^{n} \frac{1}{\lambda_{k}}
$$

3. Main results

In this section, we present the normalized Laplacian matrix, \mathcal{L}-spectra and some applications of subdivision vertex-edge corona for three regular graphs. For convenience, let η_{i}, μ_{j} and θ_{k} be an eigenvalue of $\mathcal{L}\left(G_{1}\right), \mathcal{L}\left(G_{2}\right)$ and $\mathcal{L}\left(G_{3}\right)$, respectively.

For $i=1,2,3$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges. First we label the vertices of $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right): V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}, I\left(G_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{m_{1}}\right\}, V\left(G_{2}\right)=$ $\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$ and $V\left(G_{3}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n_{3}}\right\}$; for $i=1,2, \ldots, n_{1}$, let $U_{i}=\left\{u_{1}^{i}, u_{2}^{i}, \ldots, u_{n_{2}}^{i}\right\}$ denote the vertices of the i-th copy of G_{2} in G, and $W_{j}=\left\{w_{1}^{j}, w_{2}^{j}, \ldots, w_{n_{3}}^{j}\right\}\left(j=1,2, \ldots, m_{1}\right)$ the j-th copy of G_{3} in G. Then the vertices of G are partitioned by

$$
V\left(G_{1}\right) \cup I\left(G_{1}\right) \cup\left(U_{1} \cup U_{2} \cup \cdots \cup U_{n_{1}}\right) \cup\left(W_{1} \cup W_{2} \cup \cdots \cup W_{m_{1}}\right)
$$

Clearly, the degrees of the vertices of $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ are:

$$
\begin{gathered}
d_{G}\left(v_{i}\right)=d_{G_{1}}\left(v_{i}\right)+n_{2}, \quad i=1,2, \ldots, n_{1} \\
d_{G}\left(e_{i}\right)=n_{3}+2, \quad i=1,2, \ldots, m_{1} \\
d_{G}\left(u_{j}^{i}\right)=d_{G_{2}}\left(u_{j}\right)+1, \quad j=1,2, \ldots, n_{2}, \quad i=1,2, \ldots, n_{1} \\
d_{G}\left(w_{j}^{i}\right)=d_{G_{3}}\left(w_{j}\right)+1, \quad j=1,2, \ldots, n_{3}, \quad i=1,2, \ldots, m_{1}
\end{gathered}
$$

Theorem 3.1 Let $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$. If G_{i} is an r_{i}-regular graph with n_{i} vertices and m_{i} edges $(i=1,2,3)$, then

$$
\mathcal{L}(G)=\left(\begin{array}{cccc}
I_{n_{1}} & -a R\left(G_{1}\right) & -I_{n_{1}} \otimes b_{n_{2}}^{T} & O_{n_{1} \times m_{1} n_{3}} \\
-a R\left(G_{1}\right)^{T} & I_{m_{1}} & O_{m_{1} \times n_{1} n_{2}} & -I_{m_{1}} \otimes c_{n_{3}}^{T} \\
-I_{n_{1}} \otimes b_{n_{2}} & O_{n_{1} n_{2} \times m_{1}} & I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) & O_{n_{1} n_{2} \times m_{1} n_{3}} \\
O_{m_{1} n_{3} \times n_{1}} & -I_{m_{1}} \otimes c_{n_{3}} & O_{m_{1} n_{3} \times n_{1} n_{2}} & I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)
\end{array}\right)
$$

where $b_{n_{2}}$ and $c_{n_{3}}$ are the column vector of size n_{2} and n_{3} with all entries equal to $\frac{1}{\sqrt{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)}}$ and $\frac{1}{\sqrt{\left(n_{3}+2\right)\left(r_{3}+1\right)}}$, respectively. $B\left(G_{2}\right)$ is the $n_{2} \times n_{2}$ matrix whose all diagonal entries are 1 and
off-diagonal entries are $\frac{r_{2}}{r_{2}+1}, B\left(G_{3}\right)$ is the $n_{3} \times n_{3}$ matrix whose all diagonal entries are 1 and offdiagonal entries are $\frac{r_{3}}{r_{3}+1}, O$ is zero matrix and a is the constant whose value is $\frac{1}{\sqrt{\left(r_{1}+n_{2}\right)\left(n_{3}+2\right)}}$. Proof The adjacency matrix and the degree diagonal matrix of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ can be represented in the form of block-matrix according to the ordering of $V\left(G_{1}\right), I\left(G_{1}\right), U_{1}, \ldots, U_{n_{1}}, W_{1}, \ldots, W_{m_{1}}$ as follows:

$$
A(G)=\left(\begin{array}{cccc}
O_{n_{1} \times n_{1}} & R\left(G_{1}\right) & I_{n_{1}} \otimes \mathbf{1}_{n_{2}}^{T} & O_{n_{1} \times m_{1} n_{3}} \\
R\left(G_{1}\right)^{T} & O_{m_{1} \times m_{1}} & O_{m_{1} \times n_{1} n_{2}} & I_{m_{1}} \otimes \mathbf{1}_{n_{3}}^{T} \\
I_{n_{1}} \otimes \mathbf{1}_{n_{2}} & O_{n_{1} n_{2} \times m_{1}} & I_{n_{1}} \otimes A\left(G_{2}\right) & O_{n_{1} n_{2} \times m_{1} n_{3}} \\
O_{m_{1} n_{3} \times n_{1}} & I_{m_{1}} \otimes \mathbf{1}_{n_{3}} & O_{m_{1} n_{3} \times n_{1} n_{2}} & I_{m_{1}} \otimes A\left(G_{3}\right)
\end{array}\right),
$$

where $\mathbf{1}_{n_{2}}$ is the column vector of size n_{2} with all entries equal to 1 .

$$
D(G)=\left(\begin{array}{llll}
\left(r_{1}+n_{2}\right) I_{n_{1}} & & & \\
& \left(n_{3}+2\right) I_{m_{1}} & & \\
& & \left(r_{2}+1\right) I_{n_{1} n_{2}} & \\
& & & \left(r_{3}+1\right) I_{m_{1} n_{3}}
\end{array}\right)
$$

Since G_{2} is an r_{2}-regular graph, we have $\mathcal{L}\left(G_{2}\right)=I_{n_{2}}-\frac{1}{r_{2}} A\left(G_{2}\right)$. So

$$
\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=\left(I_{n_{2}}-\frac{1}{r_{2}} A\left(G_{2}\right)\right) \bullet B\left(G_{2}\right)=I_{n_{2}}-\frac{1}{r_{2}+1} A\left(G_{2}\right) .
$$

Thus

$$
I_{n_{1} n_{2}}-\frac{1}{r_{2}+1} I_{n_{1}} \otimes A\left(G_{2}\right)=I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)
$$

Furthermore, we can obtain that

$$
I_{m_{1} n_{3}}-\frac{1}{r_{3}+1} I_{m_{1}} \otimes A\left(G_{3}\right)=I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right) .
$$

By $\mathcal{L}(G)=I-D(G)^{-1 / 2} A(G) D(G)^{-1 / 2}$, the required normalized Laplacian matrix is given below:

$$
\mathcal{L}(G)=\left(\begin{array}{cccc}
I_{n_{1}} & -a R\left(G_{1}\right) & -I_{n_{1}} \otimes b_{n_{2}}^{T} & O_{n_{1} \times m_{1} n_{3}} \\
-a R\left(G_{1}\right)^{T} & I_{m_{1}} & O_{m_{1} \times n_{1} n_{2}} & -I_{m_{1}} \otimes c_{n_{3}}^{T} \\
-I_{n_{1}} \otimes b_{n_{2}} & O_{n_{1} n_{2} \times m_{1}} & I_{n_{1}} \otimes\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) & O_{n_{1} n_{2} \times m_{1} n_{3}} \\
O_{m_{1} n_{3} \times n_{1}} & -I_{m_{1}} \otimes c_{n_{3}} & O_{m_{1} n_{3} \times n_{1} n_{2}} & I_{m_{1}} \otimes\left(\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)
\end{array}\right) .
$$

Theorem 3.2 Let $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$. If G_{i} is an r_{i}-regular graph with n_{i} vertices and m_{i} edges $(i=1,2,3)$, then the normalized Laplacian spectrum of G consists of:
(a) $\frac{1+r_{2} \mu_{j}}{r_{2}+1}$ repeated n_{1} times for each eigenvalue μ_{j} of $\mathcal{L}\left(G_{2}\right), j=2,3, \ldots, n_{2}$;
(b) $\frac{1+r_{3} \theta_{k}}{r_{3}+1}$ repeated m_{1} times for each eigenvalue θ_{k} of $\mathcal{L}\left(G_{3}\right), k=2,3, \ldots, n_{3}$;
(c) two roots of the equation $\left(n_{3} r_{3}+n_{3}+2 r_{3}+2\right) \lambda^{2}-\left(n_{3} r_{3}+2 n_{3}+2 r_{3}+4\right) \lambda+2=0$,
where each root repeats $m_{1}-n_{1}$ times;
(d) four roots of the equation

$$
\left(r_{1}+n_{2}\right)\left(n_{3}+2\right)\left(\left(n_{3}+2\right)\left(r_{3}+1\right) \lambda^{2}-\left(n_{3}+2\right)\left(r_{3}+2\right) \lambda+2\right)\left(\left(r_{1}+n_{2}\right)\left(r_{2}+1\right) \lambda^{2}-\right.
$$

$$
\begin{aligned}
& \left.\left(r_{1}+n_{2}\right)\left(r_{2}+2\right) \lambda+r_{1}\right)-r_{1}\left(2-\eta_{i}\right)\left(\left(n_{3}+2\right)\left(r_{3}+1\right) \lambda-\right. \\
& \left.\left(n_{3}+2\right)\right)\left(\left(r_{1}+n_{2}\right)\left(r_{2}+1\right) \lambda-\left(r_{1}+n_{2}\right)\right)=0
\end{aligned}
$$

where each eigenvalue η_{i} of $\mathcal{L}\left(G_{1}\right), i=1,2, \ldots, n_{1}$.
Proof According to Theorem 3.1, the normalized Laplacian characteristic polynomial of $G_{1}^{S} \circ$ $\left(G_{2}^{V} \cup G_{3}^{E}\right)$ is

$$
\Phi_{\mathcal{L}(G)}(\lambda)=\operatorname{det}\left(\lambda I_{n}-\mathcal{L}(G)\right)=\operatorname{det}\left(B_{0}\right)
$$

where

$$
B_{0}=\left(\begin{array}{cccc}
(\lambda-1) I_{n_{1}} & a R\left(G_{1}\right) & I_{n_{1}} \otimes b_{n_{2}}^{T} & O \\
a R\left(G_{1}\right)^{T} & (\lambda-1) I_{m_{1}} & O & I_{m_{1}} \otimes c_{n_{3}}^{T} \\
I_{n_{1}} \otimes b_{n_{2}} & O & I_{n_{1}} \otimes\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) & O \\
O & I_{m_{1}} \otimes c_{n_{3}} & O & I_{m_{1}} \otimes\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)
\end{array}\right)
$$

Denote by X the elementary block matrices below,

$$
X=\left(\begin{array}{cccc}
I_{n_{1}} & O & -I_{n_{1}} \otimes\left(b_{n_{2}}^{T}\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)^{-1}\right) & O \\
O & I_{m_{1}} & O & -I_{m_{1}} \otimes\left(c_{n_{3}}^{T}\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)^{-1}\right) \\
O & O & I_{n_{1}} \otimes I_{n_{2}} & O \\
O & O & O & I_{m_{1}} \otimes I_{n_{3}}
\end{array}\right)
$$

Let $B=X B_{0}$. Then

$$
B=\left(\begin{array}{cccc}
\left(\lambda-1-\chi_{2}\right) I_{n_{1}} & a R\left(G_{1}\right) & O & O \\
a R\left(G_{1}\right)^{T} & \left(\lambda-1-\chi_{3}\right) I_{m_{1}} & O & O \\
I_{n_{1}} \otimes b_{n_{2}} & O & I_{n_{1}} \otimes\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) & O \\
O & I_{m_{1}} \otimes c_{n_{3}} & O & I_{m_{1}} \otimes\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)
\end{array}\right)
$$

where χ_{2} and χ_{3} refer to $\chi_{G_{2}}\left(B\left(G_{2}\right), b_{n_{2}}, \lambda\right)$ and $\chi_{G_{3}}\left(B\left(G_{3}\right), c_{n_{3}}, \lambda\right)$, respectively.
Set

$$
S_{1}=\left(\begin{array}{cc}
\left(\lambda-1-\chi_{2}\right) I_{n_{1}} & a R\left(G_{1}\right) \\
a R\left(G_{1}\right)^{T} & \left(\lambda-1-\chi_{3}\right) I_{m_{1}}
\end{array}\right)
$$

By applying Lemma 2.2, the result follows from

$$
\begin{aligned}
\operatorname{det}\left(S_{1}\right) & =\left|\begin{array}{cc}
\left(\lambda-1-\chi_{2}\right) I_{n_{1}} & a R\left(G_{1}\right) \\
a R\left(G_{1}\right)^{T} & \left(\lambda-1-\chi_{3}\right) I_{m_{1}}
\end{array}\right| \\
& =\operatorname{det}\left(\left(\lambda-1-\chi_{3}\right) I_{m_{1}}\right) \cdot \operatorname{det}\left(\left(\lambda-1-\chi_{2}\right) I_{n_{1}}-\frac{a^{2}}{\lambda-1-\chi_{3}} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right) \\
& =\left(\lambda-1-\chi_{3}\right)^{m_{1}} \cdot \operatorname{det}\left(\left(\lambda-1-\chi_{2}\right) I_{n_{1}}-\frac{a^{2}}{\lambda-1-\chi_{3}} R\left(G_{1}\right) R\left(G_{1}\right)^{T}\right) \\
& =\left(\lambda-1-\chi_{3}\right)^{m_{1}-n_{1}} \cdot \operatorname{det}\left(\left(\lambda-1-\chi_{3}\right)\left(\lambda-1-\chi_{2}\right) I_{n_{1}}-a^{2} r_{1}\left(2 I_{n_{1}}-\mathcal{L}\left(G_{1}\right)\right)\right) \\
& =\left(\lambda-1-\chi_{3}\right)^{m_{1}-n_{1}} \cdot \prod_{i=1}^{n_{1}}\left(\left(\lambda-1-\chi_{3}\right)\left(\lambda-1-\chi_{2}\right)-\frac{r_{1}\left(2-\eta_{i}\right)}{\left(r_{1}+n_{2}\right)\left(n_{3}+2\right)}\right)
\end{aligned}
$$

From Lemma 2.1, we can obtain that $R\left(G_{1}\right) R\left(G_{1}\right)^{T}=A\left(G_{1}\right)+r_{1} I_{n_{1}}$. Combining the equation $A\left(G_{1}\right)=r_{1}\left(I_{n_{1}}-\mathcal{L}\left(G_{1}\right)\right)$, we get

$$
R\left(G_{1}\right) R\left(G_{1}\right)^{T}=r_{1}\left(2 I_{n_{1}}-\mathcal{L}\left(G_{1}\right)\right)
$$

As $\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=I_{n_{2}}-\frac{1}{r_{2}+1} A\left(G_{2}\right)$, we get

$$
\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)=\frac{1}{r_{2}+1}\left(I_{n_{2}}+r_{2} \mathcal{L}\left(G_{2}\right)\right)
$$

Obviously, we have $\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)=\frac{1}{r_{3}+1}\left(I_{n_{3}}+r_{3} \mathcal{L}\left(G_{3}\right)\right)$.
Since $\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right) b_{n_{2}}=\left(I_{n_{2}}-\frac{1}{r_{2}+1} A\left(G_{2}\right)\right) b_{n_{2}}=\left(1-\frac{r_{2}}{r_{2}+1}\right) b_{n_{2}}=\frac{1}{r_{2}+1} b_{n_{2}}$, we have $\left(\lambda I_{n_{2}}-\left(\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) b_{n_{2}}=\left(\lambda-\frac{1}{r_{2}+1}\right) b_{n_{2}}$. Also, $b_{n_{2}}^{T} b_{n_{2}}=\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)}$. Moreover, the sum of all entries on every row of matrix $\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)$ is $\frac{1}{r_{2}+1}$, so

$$
\chi_{2}=b_{n_{2}}^{T}\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)^{-1} b_{n_{2}}=\frac{b_{n_{2}}^{T} b_{n_{2}}}{\lambda-\frac{1}{r_{2}+1}}=\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)} .
$$

The value of χ_{3} is similar to that of χ_{2}, so

$$
\chi_{3}=c_{n_{3}}^{T}\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)^{-1} c_{n_{3}}=\frac{c_{n_{3}}^{T} c_{n_{3}}}{\lambda-\frac{1}{r_{3}+1}}=\frac{n_{3}}{\left(n_{3}+2\right)\left(r_{3}+1\right)\left(\lambda-\frac{1}{r_{3}+1}\right)} .
$$

Note that $\operatorname{det}(X)=1$. Then

$$
\Phi_{\mathcal{L}(G)}(\lambda)=\operatorname{det}\left(B_{0}\right)=\operatorname{det}\left(X^{-1}\right) \operatorname{det}(B)=\operatorname{det}(B)
$$

where

$$
\operatorname{det}(B)=\operatorname{det}\left(I_{n_{1}} \otimes\left(\lambda I_{n_{2}}-\mathcal{L}\left(G_{2}\right) \bullet B\left(G_{2}\right)\right)\right) \cdot \operatorname{det}\left(I_{m_{1}} \otimes\left(\lambda I_{n_{3}}-\mathcal{L}\left(G_{3}\right) \bullet B\left(G_{3}\right)\right)\right) \cdot \operatorname{det}\left(S_{1}\right)
$$

In summary, the normalized Laplacian characteristic polynomial of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ is

$$
\begin{aligned}
\Phi_{\mathcal{L}(G)}(\lambda)= & \prod_{j=1}^{n_{2}}\left(\lambda-\frac{1+r_{2} \mu_{j}}{r_{2}+1}\right)^{n_{1}} \cdot \prod_{k=1}^{n_{3}}\left(\lambda-\frac{1+r_{3} \theta_{k}}{r_{3}+1}\right)^{m_{1}} \cdot \operatorname{det}\left(S_{1}\right) \\
= & \left(\lambda-1-\frac{n_{3}}{\left(n_{3}+2\right)\left(r_{3}+1\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right)^{m_{1}-n_{1}} \cdot \prod_{j=1}^{n_{2}}\left(\lambda-\frac{1+r_{2} \mu_{j}}{r_{2}+1}\right)^{n_{1}} \\
& \prod_{k=1}^{n_{3}}\left(\lambda-\frac{1+r_{3} \theta_{k}}{r_{3}+1}\right)^{m_{1}} \cdot \prod_{i=1}^{n_{1}}\left(\left(\lambda-1-\frac{n_{3}}{\left(n_{3}+2\right)\left(r_{3}+1\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}\right)\right. \\
& \left.\left(\lambda-1-\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(\lambda-\frac{1}{r_{2}+1}\right)}\right)-\frac{r_{1}\left(2-\eta_{i}\right)}{\left(r_{1}+n_{2}\right)\left(n_{3}+2\right)}\right)
\end{aligned}
$$

(1) From the above we see that (a) and (b) are obtained, for $\frac{1}{r_{2}+1}$ and $\frac{1}{r_{3}+1}$ are extreme point of χ_{2} and χ_{3}, respectively.
(2) Besides, the 2 eigenvalues are obtained from the equation

$$
\lambda-1-\frac{n_{3}}{\left(n_{3}+2\right)\left(r_{3}+1\right)\left(\lambda-\frac{1}{r_{3}+1}\right)}=0
$$

and the eigenvalues repeat $m_{1}-n_{1}$ in (c).
(3) The remaining $4 n_{1}$ eigenvalues of $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ are obtained by solving

$$
\begin{aligned}
& \left((\lambda-1)\left(\lambda-\frac{1}{r_{3}+1}\right)-\frac{n_{3}}{\left(n_{3}+2\right)\left(r_{3}+1\right)}\right)\left((\lambda-1)\left(\lambda-\frac{1}{r_{2}+1}\right)-\frac{n_{2}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)}\right)- \\
& \quad \frac{\left(\lambda-\frac{1}{r_{3}+1}\right)\left(\lambda-\frac{1}{r_{2}+1}\right) r_{1}\left(2-\eta_{i}\right)}{\left(r_{1}+n_{2}\right)\left(n_{3}+2\right)}=0
\end{aligned}
$$

for each $i=1,2, \ldots, n_{1}$, and this yields the eigenvalues in (d).
Remark 3.3 By Theorem 3.2, we observe that the normalized Laplacian spectrum of $G_{1}^{S} \circ\left(G_{2}^{V} \cup\right.$ G_{3}^{E}) depends on the degrees of regularities, number of vertices, number of edges and normalized Laplacian eigenvalues of regular graph $G_{i}(i=1,2,3)$.

Example 3.4 One can easily see that the normalized Laplacian eigenvalues of K_{4} are 0 and $\frac{4}{3}$ (multiplicity 3). The normalized Laplacian eigenvalues of K_{3} are 0 and $\frac{3}{2}$ (multiplicity 2). The normalized Laplacian eigenvalues of K_{2} are 0 and 2. Let $G_{1}=K_{4}, G_{2}=K_{3}$ and $G_{3}=K_{2}$. Then we consider the normalized Laplacian spectrum of $K_{4}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ (see Figure 2).

From Theorem 3.2, the normalized Laplacian spectrum of $K_{4}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ consists of: $\frac{4}{3}$ (multiplicity 8), $\frac{3}{2}$ (multiplicity 6), each root of the equation $4 \lambda^{2}-6 \lambda+1=0$ with multiplicity 2 (that is $\frac{3+\sqrt{5}}{4}$ (multiplicity 2), $\frac{3-\sqrt{5}}{4}$ (multiplicity 2)), each root of the equation $144 \lambda^{4}-408 \lambda^{3}+$ $336 \lambda^{2}-74 \lambda+4=0$ with multiplicity 3 , four roots of the equation $144 \lambda^{4}-408 \lambda^{3}+312 \lambda^{2}-54 \lambda=0$ (including 0 eigenvalue).

Figure $2 K_{4}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$

Figure $3 \quad G_{1}$ and H_{1}
Theorem 3.5 If G_{i} and H_{i} (not necessarily distinct) $(i=1,2,3)$ are cospectral regular graphs, then $G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ and $H_{1}^{S} \circ\left(H_{2}^{V} \cup H_{3}^{E}\right)$ are \mathcal{L}-cospectral graphs.

Proof For an r-regular graph G, we have $\mathcal{L}(G)=I_{n}-\frac{1}{r} A(G)$. In other words, the normalized Laplacian spectrum of regular graph is determined by their adjacency spectrum. Since G_{i} and $H_{i}(i=1,2,3)$ are cospectral regular graphs, G_{i} and H_{i} are \mathcal{L}-cospectral graphs. From Remark 3.3, the subdivision vertex-edge corona graphs in the theorem statement must then be \mathcal{L}-cospectral.

Example 3.6 Using MATLAB 7.0 software we obtain the two cospectral graphs G_{1} and H_{1}
(see Figure 3) on 14 vertices. The \mathcal{L}-characteristic polynomial of G_{1} and H_{1} is

$$
\begin{aligned}
\Phi_{G_{1}}(\lambda)= & \Phi_{H_{1}}(\lambda)=\lambda^{14}-14 \lambda^{13}+\frac{266}{3} \lambda^{12}-\frac{9068}{27} \lambda^{11}+\frac{26270}{31} \lambda^{10}-\frac{49541}{33} \lambda^{9}+ \\
& \frac{155276}{81} \lambda^{8}-\frac{30299}{17} \lambda^{7}+\frac{15644}{13} \lambda^{6}-\frac{24988}{43} \lambda^{5}+ \\
& \frac{11474}{59} \lambda^{4}-\frac{7534}{177} \lambda^{3}+\frac{1643}{302} \lambda^{2}-\frac{233}{763} \lambda .
\end{aligned}
$$

From Theorem 3.5, no regular graphs $G_{1}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ and $H_{1}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ (show in Figure 4) are \mathcal{L}-cospectral graphs.

$G_{1}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$

Figure $4 G_{1}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ and $H_{1}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$
Theorem 3.7 Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges, $i=1,2,3$. The multiplicative degree-Kirchhoff index of $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ is related as follows:

$$
\begin{aligned}
K f^{*}(G) & =2\left(2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}\right)\left(\sum_{j=2}^{n_{2}} \frac{n_{1}\left(r_{2}+1\right)}{1+r_{2} \mu_{j}}+\sum_{k=2}^{n_{3}} \frac{m_{1}\left(r_{3}+1\right)}{1+r_{3} \theta_{k}}+\right. \\
& \sum_{i=2}^{n_{1}} \frac{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-r_{1}\left(2-\eta_{i}\right)\left(r_{2}+r_{3}+2\right)}{r_{1} \eta_{i}}+ \\
& \frac{\left(n_{3} r_{3}+2 n_{3}+2 r_{3}+4\right)\left(m_{1}-n_{1}\right)}{2}+ \\
& \left.\frac{2\left(r_{2}+1\right)\left(n_{2}-r_{1} r_{3}\right)+\left(n_{3}+2\right)\left(r_{1}\left(r_{3}+1\right)+\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)\left(r_{3}+2\right)\right)}{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-2 r_{1}\left(r_{2}+r_{3}+2\right)}\right)
\end{aligned}
$$

Proof By Definition 2.6, $K f^{*}(G)=2 m \sum_{k=2}^{n} \frac{1}{\lambda_{k}}$, then the multiplicative degree-Kirchhoff index $K f^{*}(G)$ can be computed in the following way:

From Theorem 3.2(c), let α_{1} and α_{2} be the eigenvalues of equation

$$
\begin{equation*}
\left(n_{3} r_{3}+n_{3}+2 r_{3}+2\right) \lambda^{2}-\left(n_{3} r_{3}+2 n_{3}+2 r_{3}+4\right) \lambda+2=0 \tag{3.1}
\end{equation*}
$$

By Vieta Theorem, we have

$$
\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}=\frac{\alpha_{1}+\alpha_{2}}{\alpha_{1} \alpha_{2}}=\frac{n_{3} r_{3}+2 n_{3}+2 r_{3}+4}{2}
$$

In light of Theorem 3.2(d), for $i=2,3, \ldots, n_{1}$, let $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} be the eigenvalues of equation

$$
\begin{aligned}
& \left(r_{1}+n_{2}\right)\left(n_{3}+2\right)\left(\left(n_{3}+2\right)\left(r_{3}+1\right) \lambda^{2}-\left(n_{3}+2\right)\left(r_{3}+2\right) \lambda+2\right)\left(\left(r_{1}+n_{2}\right)\left(r_{2}+1\right) \lambda^{2}-\right. \\
& \left.\quad\left(r_{1}+n_{2}\right)\left(r_{2}+2\right) \lambda+r_{1}\right)-r_{1}\left(2-\eta_{i}\right)\left(\left(n_{3}+2\right)\left(r_{3}+1\right) \lambda-\left(n_{3}+2\right)\right) .
\end{aligned}
$$

$$
\begin{equation*}
\left(\left(r_{1}+n_{2}\right)\left(r_{2}+1\right) \lambda-\left(r_{1}+n_{2}\right)\right)=0 \tag{3.2}
\end{equation*}
$$

By Vieta Theorem, we have

$$
\begin{aligned}
\frac{1}{\beta_{1}}+\frac{1}{\beta_{2}}+\frac{1}{\beta_{3}}+\frac{1}{\beta_{4}} & =\frac{\beta_{2} \beta_{3} \beta_{4}+\beta_{1} \beta_{3} \beta_{4}+\beta_{1} \beta_{2} \beta_{4}+\beta_{1} \beta_{2} \beta_{3}}{\beta_{1} \beta_{2} \beta_{3} \beta_{4}} \\
& =\frac{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-r_{1}\left(2-\eta_{i}\right)\left(r_{2}+r_{3}+2\right)}{r_{1} \eta_{i}}
\end{aligned}
$$

Note that $\eta_{1}=0$. Let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and 0 be the eigenvalues of equation

$$
\begin{align*}
& \left(r_{1}+n_{2}\right)\left(n_{3}+2\right)\left(\left(n_{3}+2\right)\left(r_{3}+1\right) \lambda^{2}-\left(n_{3}+2\right)\left(r_{3}+2\right) \lambda+2\right)\left(\left(r_{1}+n_{2}\right)\left(r_{2}+1\right) \lambda^{2}-\right. \\
& \left.\quad\left(r_{1}+n_{2}\right)\left(r_{2}+2\right) \lambda+r_{1}\right)-2 r_{1}\left(\left(n_{3}+2\right)\left(r_{3}+1\right) \lambda-\left(n_{3}+2\right)\right) \\
& \quad\left(\left(r_{1}+n_{2}\right)\left(r_{2}+1\right) \lambda-\left(r_{1}+n_{2}\right)\right)=0 \tag{3.3}
\end{align*}
$$

By Vieta Theorem, we have

$$
\begin{aligned}
\frac{1}{\gamma_{1}}+\frac{1}{\gamma_{2}}+\frac{1}{\gamma_{3}} & =\frac{\gamma_{2} \gamma_{3}+\gamma_{1} \gamma_{3}+\gamma_{1} \gamma_{2}}{\gamma_{1} \gamma_{2} \gamma_{3}} \\
& =\frac{2\left(r_{2}+1\right)\left(n_{2}-r_{1} r_{3}\right)+\left(n_{3}+2\right)\left(r_{1}\left(r_{3}+1\right)+\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)\left(r_{3}+2\right)\right)}{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-2 r_{1}\left(r_{2}+r_{3}+2\right)}
\end{aligned}
$$

In summary, the multiplicative degree-Kirchhoff index of $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ is related as

$$
\begin{aligned}
K f^{*}(G)= & 2\left(2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}\right)\left(\sum_{j=2}^{n_{2}} \frac{n_{1}\left(r_{2}+1\right)}{1+r_{2} \mu_{j}}+\sum_{k=2}^{n_{3}} \frac{m_{1}\left(r_{3}+1\right)}{1+r_{3} \theta_{k}}+\right. \\
& \sum_{i=2}^{n_{1}} \frac{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-r_{1}\left(2-\eta_{i}\right)\left(r_{2}+r_{3}+2\right)}{r_{1} \eta_{i}}+ \\
& \frac{\left(n_{3} r_{3}+2 n_{3}+2 r_{3}+4\right)\left(m_{1}-n_{1}\right)}{2}+ \\
& \left.\frac{2\left(r_{2}+1\right)\left(n_{2}-r_{1} r_{3}\right)+\left(n_{3}+2\right)\left(r_{1}\left(r_{3}+1\right)+\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)\left(r_{3}+2\right)\right)}{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-2 r_{1}\left(r_{2}+r_{3}+2\right)}\right) .
\end{aligned}
$$

Note that by Definition 2.6, we have $K f^{*}(G)=2 E \cdot K(G)$, so the result given in Corollary below is immediate.

Corollary 3.8 Let G_{i} be an r_{i}-regular graph with n_{i} vertices and m_{i} edges, $i=1,2,3$. The Kemeny's constant of $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$ is related as follows:

$$
\begin{aligned}
K(G)= & \sum_{i=2}^{n_{1}} \frac{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-r_{1}\left(2-\eta_{i}\right)\left(r_{2}+r_{3}+2\right)}{r_{1} \eta_{i}}+ \\
& \frac{\left(n_{3} r_{3}+2 n_{3}+2 r_{3}+4\right)\left(m_{1}-n_{1}\right)}{2}+\sum_{j=2}^{n_{2}} \frac{n_{1}\left(r_{2}+1\right)}{1+r_{2} \mu_{j}}+\sum_{k=2}^{n_{3}} \frac{m_{1}\left(r_{3}+1\right)}{1+r_{3} \theta_{k}}+ \\
& \frac{2\left(r_{2}+1\right)\left(n_{2}-r_{1} r_{3}\right)+\left(n_{3}+2\right)\left(r_{1}\left(r_{3}+1\right)+\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)\left(r_{3}+2\right)\right)}{2\left(r_{1}+n_{2}\right)\left(r_{2}+2\right)+r_{1}\left(n_{3}+2\right)\left(r_{3}+2\right)-2 r_{1}\left(r_{2}+r_{3}+2\right)} .
\end{aligned}
$$

A known result from Chung [1] allows the calculation of spanning trees from the normalized

Laplacian spectrum and the degrees of all the vertices, that is

$$
t(G)=\frac{\prod_{i=1}^{n} d_{i} \prod_{i=2}^{n} \lambda_{i}}{\sum_{i=1}^{n} d_{i}}
$$

Thus, we give closed formulas for the spanning trees below:
Corollary 3.9 Let $G=G_{1}^{S} \circ\left(G_{2}^{V} \cup G_{3}^{E}\right)$. If G_{i} is an r_{i}-regular graph with n_{i} vertices and m_{i} edges $(i=1,2,3)$, then

$$
t(G)=\frac{\prod_{i=2}^{n_{1}}\left(r_{1} \eta_{i}\right) \cdot \prod_{j=2}^{n_{2}}\left(1+r_{2} \mu_{j}\right)^{n_{1}} \cdot \prod_{k=2}^{n_{3}}\left(1+r_{3} \theta_{k}\right)^{m_{1}} \cdot 2^{m_{1}-n_{1}-1} \cdot\left(r_{1} r_{3} n_{3}+2 r_{1} n_{3}+2 r_{2} n_{2}+4 n_{2}+4 r_{1}\right)}{2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}}
$$

Proof In order to get the result, we consider the normalized Laplacian eigenvalues of G in the following way:

From Theorem 3.7(3.1), we have

$$
\alpha_{1} \alpha_{2}=\frac{2}{n_{3} r_{3}+n_{3}+2 r_{3}+2}
$$

By Theorem 3.7(3.2), we have

$$
\beta_{1} \beta_{2} \beta_{3} \beta_{4}=\frac{r_{1} \eta_{i}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(n_{3}+2\right)\left(r_{3}+1\right)}
$$

By means of Theorem 3.7(3.3), we obtain that

$$
\gamma_{1} \gamma_{2} \gamma_{3}=\frac{r_{1} r_{3} n_{3}+2 r_{1} n_{3}+2 r_{2} n_{2}+4 n_{2}+4 r_{1}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(n_{3}+2\right)\left(r_{3}+1\right)}
$$

From the above we see that

$$
\begin{aligned}
t(G)= & \frac{\prod_{i=1}^{n} d_{i} \prod_{i=2}^{n} \lambda_{i}}{\sum_{i=1}^{n} d_{i}} \\
= & \frac{\left(r_{1}+n_{2}\right)^{n_{1}}\left(n_{3}+2\right)^{m_{1}}\left(r_{2}+1\right)^{n_{1} n_{2}}\left(r_{3}+1\right)^{m_{1} n_{3}}}{2\left(2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}\right)}\left(\left(\prod_{k=2}^{n_{3}} \frac{1+r_{3} \theta_{k}}{r_{3}+1}\right)^{m_{1}} \cdot\left(\frac{2}{n_{3} r_{3}+n_{3}+2 r_{3}+2}\right)^{m_{1}-n_{1}} \times\right. \\
& \left.\left(\prod_{j=2}^{n_{2}} \frac{1+r_{2} \mu_{j}}{r_{2}+1}\right)^{n_{1}} \cdot\left(\prod_{i=2}^{n_{1}} \frac{r_{1}\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(n_{3}+2\right)\left(r_{3}+1\right)}{l}\right) \cdot \frac{r_{1} r_{3} n_{3}+2 r_{1} n_{3}+2 r_{2} n_{2}+4 n_{2}+4 r_{1}}{\left(r_{1}+n_{2}\right)\left(r_{2}+1\right)\left(n_{3}+2\right)\left(r_{3}+1\right)}\right) \\
= & \frac{\prod_{i=2}^{n_{1}}\left(r_{1} \eta_{i}\right) \cdot \prod_{j=2}^{n_{2}}\left(1+r_{2} \mu_{j}\right)^{n_{1}} \cdot \prod_{k=2}^{n_{3}}\left(1+r_{3} \theta_{k}\right)^{m_{1}} \cdot 2^{m_{1}-n_{1}-1} \cdot\left(r_{1} r_{3} n_{3}+2 r_{1} n_{3}+2 r_{2} n_{2}+4 n_{2}+4 r_{1}\right)}{2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}} .
\end{aligned}
$$

Example 3.10 From Example 3.4, for a graph $K_{4}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ (see Figure 2) we know that

$$
\prod_{i=2}^{n_{1}}\left(r_{1} \eta_{i}\right)=64, \prod_{j=2}^{n_{2}}\left(1+r_{2} \mu_{j}\right)^{n_{1}}=4^{8}, \prod_{k=2}^{n_{3}}\left(1+r_{3} \theta_{k}\right)^{m_{1}}=3^{6}, 2^{m_{1}-n_{1}-1}=2
$$

Also, $r_{1} r_{3} n_{3}+2 r_{1} n_{3}+2 r_{2} n_{2}+4 n_{2}+4 r_{1}=54$. The number of edges of graph $K_{4}^{S} \circ\left(K_{3}^{V} \cup K_{2}^{E}\right)$ is $2 m_{1}+n_{1} n_{2}+m_{1} n_{3}+n_{1} m_{2}+m_{1} m_{3}=54$. Hence,

$$
t(G)=\frac{64 \times 4^{8} \times 3^{6} \times 2 \times 54}{54}=1458 \times 4^{11}
$$

According to Song [11], we know that

$$
t(G)=t\left(K_{4}\right) \cdot 2^{m_{1}-n_{1}+1} \cdot \prod_{i=2}^{n_{2}}\left(1+\nu_{i}\left(K_{3}\right)\right)^{n_{1}} \cdot \prod_{i=2}^{n_{3}}\left(1+\nu_{i}\left(K_{2}\right)\right)^{m_{1}}
$$

where $\nu_{i}(G)$ is non-zero Laplacian eigenvalue of G. So

$$
t(G)=4^{2} \times 2^{3} \times(1+3)^{8} \times(1+2)^{6}=1458 \times 4^{11}
$$

Acknowledgements The authors would like to thank the anonymous referees for their constructive corrections and valuable comments on this paper, which have considerably improved the presentation of this paper.

References

[1] F. R. K. CHUNG. Spectral Graph Theory. CBMS, Betascript Publishing, 1997.
[2] Xinyue YE, Bing SHE, S. BENYA. Exploring regionalization in the network urban space. Journal of Geovisualization and Spatial Analysis, 2018, 2(1): 4.
[3] D. CVETKOVIĆ, P. ROWLINSON, S. K. SIMIĆ. An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge, 2010.
[4] Shuyu CUI, Guixian TIAN. The spectrum and the signless Laplacian spectrum of coronae. Linear Algabra Appl., 2012, 437(7): 1692-2703.
[5] G. INDULAL. The spectrum of neighborhood corona of graphs. Kragujevac J. Math., 2011, 35(3): 493-500.
[6] Yaoping HOU, W. C. SHIU. The spectrum of edge corona two graphs. Electronic Journal of Linear Algebra, 2010, 20(1): 586-594.
[7] Shilin WANG, Bo ZHOU. The signless Laplacian spectra of corona and edge corona of two graphs. Linear and Multilinear Algebra, 2013, 61(2): 8.
[8] Xiaogang LIU, Pengli LU. Spectra of the subdivision-vertex and subdivision-edge neighborhood coronae. Linear Algebra Appl., 2013, 438(8): 3547-3559.
[9] A. BANERJEE, J. JOST. On the spectrum of the normalized graph Laplacian. Linear Algebra Appl., 2008, 428(11-12): 3015-3022.
[10] S. BUTLER, J. GROUT. A construction of cospectral graphs for the normalized Laplacian. Electronic Journal of Combinatorics, 2012, 18(1): 706-725.
[11] Caixia SONG, Qiongxiang HUANG, Xueyi HUANG. Spectra of subdivision vertex-edge corona for graphs. Adv. Math. (China), 2016, 45(1): 37-47.
[12] Pengli LU, Yufang MIAO. Spectra of subdivision-vexter and subdivision-edge corona. arxiv. org/abs/1302. 0457.
[13] R. A. HORN, Fuzhen ZHANG. The Schur Complement and Its Application. Springer-Verlag, New York, 2005.
[14] R. A. HORN, C. R. JOHNSON. Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.
[15] C. MCLEMAN, E. MCNICHOLAS. Spectra of coronae. Linear Algebra Appl., 2011, 435(5): 998-1007.
[16] Haiyuan CHEN, Fuji ZHANG. Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math., 2007, 155(5): 654-661.
[17] M. LEVENE, G. LOIZOU. Kemeny's constant and the random surfer. Amer. Math. Monthly, 2002, 109(8): 741-745.
[18] S. BUTLER. Algebraic aspects of the Normalized Laplacian. Springer, [Cham], 2016.

[^0]: Received June 12, 2018; Accepted October 10, 2018
 Supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University (Grant Nos. 2016014; 2017004; 2017021), the Education Foundation of Gansu Province (Grant No. 2017A-021) and the National Natural Science Foundation of China (Grant Nos. 11461038; 61163010).

 * Corresponding author

 E-mail address: limuchunmath@163.com (Muchun LI); wenfei@mail.lzjtu.cn (Fei WEN)

