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Abstract A subdivision vertex-edge corona GS
1 ◦ (GV

2 ∪GE
3 ) is a graph that consists of S(G1),

|V (G1)| copies of G2 and |I(G1)| copies of G3 by joining the i-th vertex in V (G1) to each

vertex in the i-th copy of G2 and i-th vertex of I(G1) to each vertex in the i-th copy of G3.

In this paper, we determine the normalized Laplacian spectrum of GS
1 ◦ (GV

2 ∪GE
3 ) in terms of

the corresponding normalized Laplacian spectra of three connected regular graphs G1, G2 and

G3. As applications, we construct some non-regular normalized Laplacian cospectral graphs. In

addition, we also give the multiplicative degree-Kirchhoff index, the Kemeny’s constant and the

number of the spanning trees of GS
1 ◦ (GV

2 ∪GE
3 ) on three regular graphs.

Keywords normalized Laplacian spectrum; cospectral graphs; spanning trees; subdivision

vertex-edge corona
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1. Introduction

Throughout this paper, all graphs considered are simple undirected and connected. Let

G = (V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =

{e1, e2, . . . , em}, where |V (G)| = n and |E(G)| = m. Let dG(vi) be the degree of the vertex vi

in G. The incidence matrix of G, denoted by R(G), is the n × m matrix whose (i, j)-entry is

1 if vi and ej are adjacent in G and 0 otherwise. As usual, we denote by A(G) and D(G) the

adjacency matrix and the degree diagonal matrix of G, respectively. The Laplacian matrix of G

is L(G) = D(G)−A(G) and the signless Laplacian matrix of G is Q(G) = D(G)+A(G). Chung

[1] introduced the normalized Laplacian matrix of G, denoted by L(G) = D−1/2(G)(D(G) −
A(G))D−1/2(G) = I−D−1/2(G)A(G)D−1/2(G), which is a square matrix with rows and columns

being indexed by vertices of G. The L-characteristic polynomial of G is defined as ΦL(G)(λ) =

det(λI−L(G)). Since L(G) is real symmetric, their eigenvalues are real number. The multiset of

eigenvalues of L(G) is called the L-spectrum of G and the L-eigenvalues are arranged as 0 = λ1 <

λ2 ≤ · · · ≤ λn ≤ 2. Graphs G and H are said to be A-cospectral (resp., L-cospectral) if they

share the same A-spectrum (resp., L-spectrum). Furthermore, Kn and Pn denote, respectively,

the complete graph and the path on n vertices.
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Graph operations are becoming increasingly useful mathematical models for a broad range of

applications, such as complex systems theory, computer security [2], and so on. Recently, many

graph operations such as the disjoint union, the corona, the edge corona and the neighborhood

corona have been introduced, and their adjacency, Laplacian and signless Laplacian spectra are

computed in [3–8], respectively. Banerjee [9] investigated how the normalized Laplacian spectrum

is affected by operations like joining. For the aspect of the L-cospectral spectrum, Butler [10]

produced large families of non-bipartite, non-regular graphs which are mutually L-cospectral. In
2016, Song [11] obtained the A-spectrum and L-spectrum by graph operation of the subdivision

vertex-edge corona GS
1 ◦ (GV

2 ∪GE
3 ), which is the graph described below.

For a graph G1, let S(G1) be the subdividing graph of G1 whose vertex set has two parts:

one the original vertices V (G1), another, denoted by I(G1), the inserting vertices corresponding

to the edges of G1. Let G2 and G3 be other two disjoint graphs.

Definition 1.1 ([11]) The subdivision vertex-edge corona (briefly SV E-corona) of G1 with G2

and G3, denoted by GS
1 ◦ (GV

2 ∪GE
3 ), is the graph consisting of S(G1), |V (G1)| copies of G2 and

|I(G1)| copies of G3 by joining the i-th vertex in V (G1) to each vertex in the i-th copy of G2

and i-th vertex of I(G1) to each vertex in the i-th copy of G3. (for example, see PS
4 ◦ (PV

3 ∪PE
2 )

in Figure 1)

P4
P3

P2

P
S
4 ◦ (P V

3 ∪ P
E
2 )

Figure 1 PS
4 ◦ (PV

3 ∪ PE
2 )

One can easily check that GS
1 ◦ (GV

2 ∪ GE
3 ) has n = n1 + m1 + n1n2 + m1n3 vertices and

m = 2m1+n1n2+m1n3+n1m2+m1m3 edges, where ni and mi are the number of vertices and

edges of Gi for i = 1, 2, 3. We see that GS
1 ◦ (GV

2 ∪GE
3 ) will be a subdivision-vertex corona if G3

is null, and will be a subdivision-edge corona if G2 is null. Thus subdivision vertex-edge corona

can be viewed as the generalizations of both subdivision-vertex corona (denoted by G1 ⊙ G2)

(see [12]) and subdivision-edge corona (denoted by G1 ⊖G2).

Calculating the spectra of graphs as well as formulating the characteristic polynomials of

graphs is a fundamental and very meaningful work in spectral graph theory. In this paper, we

determine the normalized Laplacian spectrum of GS
1 ◦ (GV

2 ∪GE
3 ) in terms of the corresponding

normalized Laplacian spectra of three connected regular graphs G1, G2 and G3. As applications,

we construct some non-regular normalized Laplacian cospectral graphs. In addition, we also

give the multiplicative degree-Kirchhoff index, the Kemeny’s constant and the number of the

spanning trees of GS
1 ◦ (GV

2 ∪GE
3 ) for three regular graphs.
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2. Preliminaries

In this section we give some useful established results which are required in the proof of the

main result.

Lemma 2.1 ([3]) For a graph G, let R(G) be the incidence matrix of G. Then

R(G)R(G)T = D(G) +A(G) = Q(G).

Lemma 2.2 ([13]) Let M1, M2, M3, M4 be respectively p× p, p× q, q× p, q× q matrices with

M1 and M4 invertible. Then

det

(
M1 M2

M3 M4

)
= det(M4) · det(M1 −M2M

−1
4 M3)

= det(M1) · det(M4 −M3M
−1
1 M2),

where M1 −M2M
−1
4 M3 and M4 −M3M

−1
1 M2 are called the Schur complements of M4 and M1.

Lemma 2.3 ([14]) The Kronecker product A⊗B of two matrices A = (aij)m×n and B = (bij)p×q

is the mp×nq matrix obtained from A by replacing each element aij by aijB. It is known that:

(a) (M ⊗ P )(N ⊗Q) = MN ⊗ PQ, for matrices M , N , P , Q of suitable sizes;

(b) (M ⊗N)−1 = M−1 ⊗N−1, for non-singular matrices M and N ;

(c) det(M ⊗N) = (detM)s(detN)k, where M is a matrix of order k and N is a matrix of

order s;

(d) (M ⊗N)T = MT ⊗NT , for any two matrices M and N .

The reader is referred to [14] for other properties of the Kronecker product not mentioned here.

Definition 2.4 ([14]) For two matrices A = (aij)m×n and B = (bij)m×n, the Hadamard product

A •B is a matrix of size m× n with entries given by

(A •B)ij = aij · bij .

Definition 2.5 ([15]) Let matrix B = cJn − (c − 1)In where c is a constant and Jn denotes

the matrix of size n whose entry equal to one, and C denotes the column vector of dimension n,

respectively. For the regular graph G with n vertices and parameter λ, we have

χG(B,C, λ) = CT (λIn − (L(G) •B(G)))−1C,

where the notion χG(B,C, λ) is similar to the notion ‘coronal’ in [13].

Definition 2.6 ([16]) The multiplicative degree-Kirchhoff index of G is defined as:

Kf∗(G) =
∑
i<j

didjrij ,

where rij denotes the resistance distance between vi and vj . It has been proved [16] that Kf∗(G)

can be expressed by the edge number m and the normalized Laplacian spectrum SpecL(G) =
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{λ1, λ2, . . . , λn} below:

Kf∗(G) = 2m
n∑

k=2

1

λk
, where 0 = λ1 < λ2 ≤ · · · ≤ λn ≤ 2.

For a graph G, Kemeny’s constant K(G), is the expected number of steps required for the

transition from a starting vertex i to a destination vertex, which is independent of the selection

of starting vertex i (see [17]). Moreover, Kemeny’s [18] constant can be computed from the

normalized Laplacian spectrum as follows:

K(G) =
n∑

k=2

1

λk
.

3. Main results

In this section, we present the normalized Laplacian matrix, L-spectra and some applications

of subdivision vertex-edge corona for three regular graphs. For convenience, let ηi, µj and θk be

an eigenvalue of L(G1), L(G2) and L(G3), respectively.

For i = 1, 2, 3, let Gi be an ri-regular graph with ni vertices and mi edges. First we label the

vertices of G = GS
1 ◦ (GV

2 ∪GE
3 ): V (G1) = {v1, v2, . . . , vn1}, I(G1) = {e1, e2, . . . , em1}, V (G2) =

{u1, u2, . . . , un2} and V (G3) = {w1, w2, . . . , wn3}; for i = 1, 2, . . . , n1, let Ui = {ui
1, u

i
2, . . . , u

i
n2
}

denote the vertices of the i-th copy of G2 in G, and Wj = {wj
1, w

j
2, . . . , w

j
n3
} (j = 1, 2, . . . ,m1)

the j-th copy of G3 in G. Then the vertices of G are partitioned by

V (G1) ∪ I(G1) ∪ (U1 ∪ U2 ∪ · · · ∪ Un1) ∪ (W1 ∪W2 ∪ · · · ∪Wm1).

Clearly, the degrees of the vertices of G = GS
1 ◦ (GV

2 ∪GE
3 ) are:

dG(vi) = dG1(vi) + n2, i = 1, 2, . . . , n1;

dG(ei) = n3 + 2, i = 1, 2, . . . ,m1;

dG(u
i
j) = dG2(uj) + 1, j = 1, 2, . . . , n2, i = 1, 2, . . . , n1;

dG(w
i
j) = dG3(wj) + 1, j = 1, 2, . . . , n3, i = 1, 2, . . . ,m1.

Theorem 3.1 Let G = GS
1 ◦ (GV

2 ∪GE
3 ). If Gi is an ri-regular graph with ni vertices and mi

edges (i = 1, 2, 3), then

L(G) =


In1 −aR(G1) −In1 ⊗ bTn2

On1×m1n3

−aR(G1)
T Im1 Om1×n1n2 −Im1 ⊗ cTn3

−In1 ⊗ bn2 On1n2×m1 In1 ⊗ (L(G2)•B(G2)) On1n2×m1n3

Om1n3×n1 −Im1 ⊗ cn3 Om1n3×n1n2 Im1 ⊗ (L(G3)•B(G3))

 ,

where bn2 and cn3 are the column vector of size n2 and n3 with all entries equal to 1√
(r1+n2)(r2+1)

and 1√
(n3+2)(r3+1)

, respectively. B(G2) is the n2×n2 matrix whose all diagonal entries are 1 and
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off-diagonal entries are r2
r2+1 , B(G3) is the n3×n3 matrix whose all diagonal entries are 1 and off-

diagonal entries are r3
r3+1 , O is zero matrix and a is the constant whose value is 1√

(r1+n2)(n3+2)
.

Proof The adjacency matrix and the degree diagonal matrix ofGS
1 ◦(GV

2 ∪GE
3 ) can be represented

in the form of block-matrix according to the ordering of V (G1), I(G1), U1, . . . , Un1 ,W1, . . . ,Wm1

as follows:

A(G) =


On1×n1 R(G1) In1 ⊗ 1T

n2
On1×m1n3

R(G1)
T Om1×m1 Om1×n1n2 Im1 ⊗ 1T

n3

In1 ⊗ 1n2 On1n2×m1 In1 ⊗A(G2) On1n2×m1n3

Om1n3×n1
Im1

⊗ 1n3
Om1n3×n1n2

Im1
⊗A(G3)

 ,

where 1n2 is the column vector of size n2 with all entries equal to 1.

D(G) =


(r1 + n2)In1

(n3 + 2)Im1

(r2 + 1)In1n2

(r3 + 1)Im1n3

 .

Since G2 is an r2-regular graph, we have L(G2) = In2 − 1
r2
A(G2). So

L(G2) •B(G2) = (In2 −
1

r2
A(G2)) •B(G2) = In2 −

1

r2 + 1
A(G2).

Thus

In1n2
− 1

r2 + 1
In1

⊗A(G2) = In1
⊗ (L(G2) •B(G2)).

Furthermore, we can obtain that

Im1n3 −
1

r3 + 1
Im1 ⊗A(G3) = Im1 ⊗ (L(G3) •B(G3)).

By L(G) = I − D(G)−1/2A(G)D(G)−1/2, the required normalized Laplacian matrix is given

below:

L(G) =


In1 −aR(G1) −In1 ⊗ bTn2

On1×m1n3

−aR(G1)
T Im1 Om1×n1n2 −Im1 ⊗ cTn3

−In1 ⊗ bn2 On1n2×m1 In1 ⊗ (L(G2)•B(G2)) On1n2×m1n3

Om1n3×n1 −Im1 ⊗ cn3 Om1n3×n1n2 Im1 ⊗ (L(G3)•B(G3))

 . �

Theorem 3.2 Let G = GS
1 ◦ (GV

2 ∪GE
3 ). If Gi is an ri-regular graph with ni vertices and mi

edges (i = 1, 2, 3), then the normalized Laplacian spectrum of G consists of:

(a)
1+r2µj

r2+1 repeated n1 times for each eigenvalue µj of L(G2), j = 2, 3, . . . , n2;

(b) 1+r3θk
r3+1 repeated m1 times for each eigenvalue θk of L(G3), k = 2, 3, . . . , n3;

(c) two roots of the equation (n3r3 + n3 + 2r3 + 2)λ2 − (n3r3 + 2n3 + 2r3 + 4)λ + 2 = 0,

where each root repeats m1 − n1 times;

(d) four roots of the equation

(r1+n2)(n3 + 2)((n3 + 2)(r3 + 1)λ2 − (n3 + 2)(r3 + 2)λ+ 2)((r1 + n2)(r2 + 1)λ2−
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(r1 + n2)(r2 + 2)λ+ r1)− r1(2− ηi)((n3 + 2)(r3 + 1)λ−

(n3 + 2))((r1 + n2)(r2 + 1)λ− (r1 + n2)) = 0,

where each eigenvalue ηi of L(G1), i = 1, 2, . . . , n1.

Proof According to Theorem 3.1, the normalized Laplacian characteristic polynomial of GS
1 ◦

(GV
2 ∪GE

3 ) is

ΦL(G)(λ) = det(λIn − L(G)) = det(B0),

where

B0 =

 (λ−1)In1 aR(G1) In1⊗bTn2
O

aR(G1)
T (λ−1)Im1 O Im1⊗cTn3

In1
⊗bn2

O In1
⊗(λIn2

−L(G2)•B(G2)) O

O Im1⊗cn3 O Im1⊗(λIn3−L(G3)•B(G3))

 .

Denote by X the elementary block matrices below,

X =

 In1 O −In1⊗(bTn2
(λIn2−L(G2)•B(G2))

−1) O

O Im1 O −Im1⊗(cTn3
(λIn3−L(G3)•B(G3))

−1)

O O In1⊗In2 O

O O O Im1
⊗In3

 .

Let B = XB0. Then

B =

 (λ−1−χ2)In1 aR(G1) O O

aR(G1)
T (λ−1−χ3)Im1 O O

In1⊗bn2 O In1⊗(λIn2−L(G2)•B(G2)) O

O Im1⊗cn3 O Im1⊗(λIn3−L(G3)•B(G3))

 ,

where χ2 and χ3 refer to χG2(B(G2), bn2 , λ) and χG3(B(G3), cn3 , λ), respectively.

Set

S1 =

(
(λ− 1− χ2)In1 aR(G1)

aR(G1)
T (λ− 1− χ3)Im1

)
.

By applying Lemma 2.2, the result follows from

det(S1) =

∣∣∣∣∣ (λ− 1− χ2)In1
aR(G1)

aR(G1)
T (λ− 1− χ3)Im1

∣∣∣∣∣
= det((λ− 1− χ3)Im1) · det((λ− 1− χ2)In1 −

a2

λ− 1− χ3
R(G1)R(G1)

T )

= (λ− 1− χ3)
m1 · det((λ− 1− χ2)In1 −

a2

λ− 1− χ3
R(G1)R(G1)

T )

= (λ− 1− χ3)
m1−n1 · det((λ− 1− χ3)(λ− 1− χ2)In1 − a2r1(2In1 − L(G1)))

= (λ− 1− χ3)
m1−n1 ·

n1∏
i=1

((λ− 1− χ3)(λ− 1− χ2)−
r1(2− ηi)

(r1 + n2)(n3 + 2)
).

From Lemma 2.1, we can obtain that R(G1)R(G1)
T = A(G1) + r1In1 . Combining the equation

A(G1) = r1(In1 − L(G1)), we get

R(G1)R(G1)
T = r1(2In1 − L(G1)).



The normalized Laplacian spectrum of subdivision vertex-edge corona for graphs 227

As L(G2) •B(G2) = In2 − 1
r2+1A(G2), we get

L(G2) •B(G2) =
1

r2 + 1
(In2 + r2L(G2)).

Obviously, we have L(G3) •B(G3) =
1

r3+1 (In3 + r3L(G3)).

Since (L(G2) • B(G2))bn2
= (In2

− 1
r2+1A(G2))bn2

= (1 − r2
r2+1 )bn2

= 1
r2+1bn2

, we have

(λIn2 − (L(G2) • B(G2)))bn2 = (λ− 1
r2+1 )bn2 . Also, bTn2

bn2 = n2

(r1+n2)(r2+1) . Moreover, the sum

of all entries on every row of matrix L(G2) •B(G2) is
1

r2+1 , so

χ2 = bTn2
(λIn2 − L(G2) •B(G2))

−1bn2 =
bTn2

bn2

λ− 1
r2+1

=
n2

(r1 + n2)(r2 + 1)(λ− 1
r2+1 )

.

The value of χ3 is similar to that of χ2, so

χ3 = cTn3
(λIn3 − L(G3) •B(G3))

−1cn3 =
cTn3

cn3

λ− 1
r3+1

=
n3

(n3 + 2)(r3 + 1)(λ− 1
r3+1 )

.

Note that det(X) = 1. Then

ΦL(G)(λ) = det(B0) = det(X−1) det(B) = det(B),

where

det(B) = det(In1 ⊗ (λIn2 − L(G2) •B(G2))) · det(Im1 ⊗ (λIn3 − L(G3) •B(G3))) · det(S1).

In summary, the normalized Laplacian characteristic polynomial of GS
1 ◦ (GV

2 ∪GE
3 ) is

ΦL(G)(λ) =

n2∏
j=1

(λ− 1 + r2µj

r2 + 1
)n1 ·

n3∏
k=1

(λ− 1 + r3θk
r3 + 1

)m1 · det(S1)

=(λ− 1− n3

(n3 + 2)(r3 + 1)(λ− 1
r3+1 )

)m1−n1 ·
n2∏
j=1

(λ− 1 + r2µj

r2 + 1
)n1 ·

n3∏
k=1

(λ− 1 + r3θk
r3 + 1

)m1 ·
n1∏
i=1

((λ− 1− n3

(n3 + 2)(r3 + 1)(λ− 1
r3+1 )

)·

(λ− 1− n2

(r1 + n2)(r2 + 1)(λ− 1
r2+1 )

)− r1(2− ηi)

(r1 + n2)(n3 + 2)
).

(1) From the above we see that (a) and (b) are obtained, for 1
r2+1 and 1

r3+1 are extreme

point of χ2 and χ3, respectively.

(2) Besides, the 2 eigenvalues are obtained from the equation

λ− 1− n3

(n3 + 2)(r3 + 1)(λ− 1
r3+1 )

= 0,

and the eigenvalues repeat m1 − n1 in (c).

(3) The remaining 4n1 eigenvalues of GS
1 ◦ (GV

2 ∪GE
3 ) are obtained by solving

((λ− 1)(λ− 1

r3 + 1
)− n3

(n3 + 2)(r3 + 1)
)((λ− 1)(λ− 1

r2 + 1
)− n2

(r1 + n2)(r2 + 1)
)−

(λ− 1
r3+1 )(λ− 1

r2+1 )r1(2− ηi)

(r1 + n2)(n3 + 2)
= 0
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for each i = 1, 2, . . . , n1, and this yields the eigenvalues in (d). �

Remark 3.3 By Theorem 3.2, we observe that the normalized Laplacian spectrum of GS
1 ◦(GV

2 ∪
GE

3 ) depends on the degrees of regularities, number of vertices, number of edges and normalized

Laplacian eigenvalues of regular graph Gi (i = 1, 2, 3).

Example 3.4 One can easily see that the normalized Laplacian eigenvalues of K4 are 0 and 4
3

(multiplicity 3). The normalized Laplacian eigenvalues of K3 are 0 and 3
2 (multiplicity 2). The

normalized Laplacian eigenvalues of K2 are 0 and 2. Let G1 = K4, G2 = K3 and G3 = K2.

Then we consider the normalized Laplacian spectrum of KS
4 ◦ (KV

3 ∪KE
2 ) (see Figure 2).

From Theorem 3.2, the normalized Laplacian spectrum of KS
4 ◦ (KV

3 ∪ KE
2 ) consists of: 4

3

(multiplicity 8), 3
2 (multiplicity 6), each root of the equation 4λ2−6λ+1 = 0 with multiplicity 2

(that is 3+
√
5

4 (multiplicity 2), 3−
√
5

4 (multiplicity 2)), each root of the equation 144λ4 − 408λ3 +

336λ2−74λ+4 = 0 with multiplicity 3, four roots of the equation 144λ4−408λ3+312λ2−54λ = 0

(including 0 eigenvalue).

K4 K3

K2
K

S
4
◦ (KV

3
∪K

E
2
)

Figure 2 KS
4 ◦ (KV

3 ∪KE
2 )

G1 H1

Figure 3 G1 and H1

Theorem 3.5 If Gi and Hi (not necessarily distinct) (i = 1, 2, 3) are cospectral regular graphs,

then GS
1 ◦ (GV

2 ∪GE
3 ) and HS

1 ◦ (HV
2 ∪HE

3 ) are L-cospectral graphs.

Proof For an r-regular graph G, we have L(G) = In − 1
rA(G). In other words, the normal-

ized Laplacian spectrum of regular graph is determined by their adjacency spectrum. Since Gi

and Hi (i = 1, 2, 3) are cospectral regular graphs, Gi and Hi are L-cospectral graphs. From

Remark 3.3, the subdivision vertex-edge corona graphs in the theorem statement must then be

L-cospectral. �

Example 3.6 Using MATLAB 7.0 software we obtain the two cospectral graphs G1 and H1



The normalized Laplacian spectrum of subdivision vertex-edge corona for graphs 229

(see Figure 3) on 14 vertices. The L-characteristic polynomial of G1 and H1 is

ΦG1(λ) =ΦH1(λ) = λ14 − 14λ13 +
266

3
λ12 − 9068

27
λ11 +

26270

31
λ10 − 49541

33
λ9+

155276

81
λ8 − 30299

17
λ7 +

15644

13
λ6 − 24988

43
λ5+

11474

59
λ4 − 7534

177
λ3 +

1643

302
λ2 − 233

763
λ.

From Theorem 3.5, no regular graphs GS
1 ◦ (KV

3 ∪KE
2 ) and HS

1 ◦ (KV
3 ∪KE

2 ) (show in Figure 4)

are L-cospectral graphs.

GS
1
◦ (KV

3
∪KE

2
) H

S
1
◦ (KV

3
∪K

E
2
)

Figure 4 GS
1 ◦ (KV

3 ∪KE
2 ) and HS

1 ◦ (KV
3 ∪KE

2 )

Theorem 3.7 Let Gi be an ri-regular graph with ni vertices and mi edges, i = 1, 2, 3. The

multiplicative degree-Kirchhoff index of G = GS
1 ◦ (GV

2 ∪GE
3 ) is related as follows:

Kf∗(G) = 2(2m1 + n1n2 +m1n3 + n1m2 +m1m3)
( n2∑

j=2

n1(r2 + 1)

1 + r2µj
+

n3∑
k=2

m1(r3 + 1)

1 + r3θk
+

n1∑
i=2

2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− r1(2− ηi)(r2 + r3 + 2)

r1ηi
+

(n3r3 + 2n3 + 2r3 + 4)(m1 − n1)

2
+

2(r2 + 1)(n2 − r1r3) + (n3 + 2)(r1(r3 + 1) + (r1 + n2)(r2 + 2)(r3 + 2))

2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− 2r1(r2 + r3 + 2)

)
.

Proof By Definition 2.6, Kf∗(G) = 2m
∑n

k=2
1
λk

, then the multiplicative degree-Kirchhoff index

Kf∗(G) can be computed in the following way:

From Theorem 3.2(c), let α1 and α2 be the eigenvalues of equation

(n3r3 + n3 + 2r3 + 2)λ2 − (n3r3 + 2n3 + 2r3 + 4)λ+ 2 = 0. (3.1)

By Vieta Theorem, we have

1

α1
+

1

α2
=

α1 + α2

α1α2
=

n3r3 + 2n3 + 2r3 + 4

2
.

In light of Theorem 3.2(d), for i = 2, 3, . . . , n1, let β1, β2, β3 and β4 be the eigenvalues of equation

(r1 + n2)(n3 + 2)((n3 + 2)(r3 + 1)λ2 − (n3 + 2)(r3 + 2)λ+ 2)((r1 + n2)(r2 + 1)λ2−

(r1 + n2)(r2 + 2)λ+ r1)− r1(2− ηi)((n3 + 2)(r3 + 1)λ− (n3 + 2))·
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((r1 + n2)(r2 + 1)λ− (r1 + n2)) = 0. (3.2)

By Vieta Theorem, we have

1

β1
+

1

β2
+

1

β3
+

1

β4
=

β2β3β4 + β1β3β4 + β1β2β4 + β1β2β3

β1β2β3β4

=
2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− r1(2− ηi)(r2 + r3 + 2)

r1ηi
.

Note that η1 = 0. Let γ1, γ2, γ3 and 0 be the eigenvalues of equation

(r1 + n2)(n3 + 2)((n3 + 2)(r3 + 1)λ2 − (n3 + 2)(r3 + 2)λ+ 2)((r1 + n2)(r2 + 1)λ2−

(r1 + n2)(r2 + 2)λ+ r1)− 2r1((n3 + 2)(r3 + 1)λ− (n3 + 2))·

((r1 + n2)(r2 + 1)λ− (r1 + n2)) = 0. (3.3)

By Vieta Theorem, we have

1

γ1
+

1

γ2
+

1

γ3
=

γ2γ3 + γ1γ3 + γ1γ2
γ1γ2γ3

=
2(r2 + 1)(n2 − r1r3) + (n3 + 2)

(
r1(r3 + 1) + (r1 + n2)(r2 + 2)(r3 + 2)

)
2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− 2r1(r2 + r3 + 2)

.

In summary, the multiplicative degree-Kirchhoff index of G = GS
1 ◦ (GV

2 ∪GE
3 ) is related as

Kf∗(G)=2(2m1 + n1n2 +m1n3 + n1m2 +m1m3)
( n2∑
j=2

n1(r2 + 1)

1 + r2µj
+

n3∑
k=2

m1(r3 + 1)

1 + r3θk
+

n1∑
i=2

2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− r1(2− ηi)(r2 + r3 + 2)

r1ηi
+

(n3r3 + 2n3 + 2r3 + 4)(m1 − n1)

2
+

2(r2 + 1)(n2 − r1r3) + (n3 + 2)(r1(r3 + 1) + (r1 + n2)(r2 + 2)(r3 + 2))

2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− 2r1(r2 + r3 + 2)
). �

Note that by Definition 2.6, we have Kf∗(G) = 2E ·K(G), so the result given in Corollary

below is immediate.

Corollary 3.8 Let Gi be an ri-regular graph with ni vertices and mi edges, i = 1, 2, 3. The

Kemeny’s constant of G = GS
1 ◦ (GV

2 ∪GE
3 ) is related as follows:

K(G) =

n1∑
i=2

2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− r1(2− ηi)(r2 + r3 + 2)

r1ηi
+

(n3r3 + 2n3 + 2r3 + 4)(m1 − n1)

2
+

n2∑
j=2

n1(r2 + 1)

1 + r2µj
+

n3∑
k=2

m1(r3 + 1)

1 + r3θk
+

2(r2 + 1)(n2 − r1r3) + (n3 + 2)
(
r1(r3 + 1) + (r1 + n2)(r2 + 2)(r3 + 2)

)
2(r1 + n2)(r2 + 2) + r1(n3 + 2)(r3 + 2)− 2r1(r2 + r3 + 2)

.

A known result from Chung [1] allows the calculation of spanning trees from the normalized
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Laplacian spectrum and the degrees of all the vertices, that is

t(G) =

∏n
i=1 di

∏n
i=2 λi∑n

i=1 di
.

Thus, we give closed formulas for the spanning trees below:

Corollary 3.9 Let G = GS
1 ◦ (GV

2 ∪GE
3 ). If Gi is an ri-regular graph with ni vertices and mi

edges (i = 1, 2, 3), then

t(G) =

n1∏
i=2

(r1ηi) ·
n2∏
j=2

(1 + r2µj)
n1 ·

n3∏
k=2

(1 + r3θk)
m1 · 2m1−n1−1 · (r1r3n3 + 2r1n3 + 2r2n2 + 4n2 + 4r1)

2m1 + n1n2 +m1n3 + n1m2 +m1m3
.

Proof In order to get the result, we consider the normalized Laplacian eigenvalues of G in the

following way:

From Theorem 3.7(3.1), we have

α1α2 =
2

n3r3 + n3 + 2r3 + 2
.

By Theorem 3.7(3.2), we have

β1β2β3β4 =
r1ηi

(r1 + n2)(r2 + 1)(n3 + 2)(r3 + 1)
.

By means of Theorem 3.7(3.3), we obtain that

γ1γ2γ3 =
r1r3n3 + 2r1n3 + 2r2n2 + 4n2 + 4r1
(r1 + n2)(r2 + 1)(n3 + 2)(r3 + 1)

.

From the above we see that

t(G) =

∏n
i=1 di

∏n
i=2 λi∑n

i=1 di

=
(r1 + n2)

n1(n3 + 2)m1(r2 + 1)n1n2(r3 + 1)m1n3

2(2m1 + n1n2 +m1n3 + n1m2 +m1m3)

(
(

n3∏
k=2

1 + r3θk
r3 + 1

)m1 · ( 2

n3r3 + n3 + 2r3 + 2
)m1−n1×

(

n2∏
j=2

1 + r2µj

r2 + 1
)n1· (

n1∏
i=2

r1ηi
(r1+n2)(r2+1)(n3+2)(r3+1)

)· r1r3n3+2r1n3+2r2n2+4n2+4r1
(r1+n2)(r2+1)(n3+2)(r3+1)

)

=

n1∏
i=2

(r1ηi) ·
n2∏
j=2

(1 + r2µj)
n1 ·

n3∏
k=2

(1 + r3θk)
m1 · 2m1−n1−1 · (r1r3n3 + 2r1n3 + 2r2n2 + 4n2 + 4r1)

2m1 + n1n2 +m1n3 + n1m2 +m1m3
. �

Example 3.10 From Example 3.4, for a graph KS
4 ◦ (KV

3 ∪KE
2 ) (see Figure 2) we know that

n1∏
i=2

(r1ηi) = 64,

n2∏
j=2

(1 + r2µj)
n1 = 48,

n3∏
k=2

(1 + r3θk)
m1 = 36, 2m1−n1−1 = 2.

Also, r1r3n3 + 2r1n3 + 2r2n2 + 4n2 + 4r1 = 54. The number of edges of graph KS
4 ◦ (KV

3 ∪KE
2 )

is 2m1 + n1n2 +m1n3 + n1m2 +m1m3 = 54. Hence,

t(G) =
64× 48 × 36 × 2× 54

54
= 1458× 411.
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According to Song [11], we know that

t(G) = t(K4) · 2m1−n1+1 ·
n2∏
i=2

(1 + νi(K3))
n1 ·

n3∏
i=2

(1 + νi(K2))
m1 ,

where νi(G) is non-zero Laplacian eigenvalue of G. So

t(G) = 42 × 23 × (1 + 3)8 × (1 + 2)6 = 1458× 411.
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