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Abstract Let G be a connected graph of order n and D(G) be its distance matrix. The distance

eigenvalues of G are the eigenvalues of its distance matrix. Its distance eigenvalues and their

multiplicities constitute the distance spectrum ofG. In this article, we give a complete description

of the eigenvalues and the corresponding eigenvectors of a block matrix DNC . Further, we give

a complete description of the eigenvalues and the corresponding eigenvectors of distance matrix

of double neighbourhood corona graphs G(S) • {G1, G2}, G(Q) • {G1, G2}, G(R) • {G1, G2},
G(T ) • {G1, G2}, where G is a complete graph and G1, G2 are regular graphs.
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1. Introduction

Throughout this article we consider only simple graphs. Let G = (V,E) be a graph with

vertex set V = {1, 2, . . . , n} and edge set E = {e1, e2, . . . , em}. Let M(G) be the vertex-edge

incidence matrix of G and A(G) be the adjacency matrix of G. The distance matrix D(G) = [dij ]

of a graph G is the matrix indexed by the vertices {v1, v2, . . . , vn} of G, where dij = d(vi, vj) is

the distance between the vertices vi and vj , i.e., the length of a shortest path between vi and

vj . Since D(G) is a real symmetric matrix, its eigenvalues, called distance eigenvalues of G,

are all real. The spectrum of D(G) is its set of eigenvalues together with their multiplicities

and is called the distance spectrum of the graph G. The spectrum of A(G) is denoted by

specA(G) = {λ1, λ2, . . . , λn} and is called the adjacency spectrum of the graph G.

We shall use the following notation throughout this paper. The Kronecker product of matrices

A = [aij ] and B is defined to be the partitioned matrix [aijB] and is denoted by A ⊗ B. The

m× 1 vector with i-th entry equal to one and all other entries zero is denoted by ϵi. The n× 1

vector with each entry 1 is denoted by 1n. By Jn, we denote the matrix of all ones of order n.

By In, we denote the identity matrix of order n. Kn denotes the complete graph of order n.

Let G be a connected graph on n vertices and m edges and H be any graph. Then it is well

known that the corona G ◦ H of G and H is the graph obtained by taking one copy of G and

n copies of H and then by joining the i-th vertex of G to every vertex in the i-th copy of H.
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In [1], Barik, Pati and Sarma have characterized both adjacency and Laplacian eigenvalues and

eigenvectors of corona graph of two graphs. The neighbourhood corona graph of G and H has

been defined by Gopalapillai in [2], which is based on the idea that the i-th neighbouring vertices

of G are connected to every vertex in the i-th copy of H. The edge corona graph of two graphs is

defined similarly, see [3] for definition and its spectral characterization. In [4,5], the graphs such

as R-vertex corona graph, R-edge corona graph, R-vertex neighbourhood corona graph, R-edge

neighbourhood corona graph, subdivision-vertex neighbourhood corona graph and subdivision-

edge neighbourhood corona graph are considered and the coronal technique is used to find the

spectrum of these graphs. Recently, in [6], Indulal and Stevanović describe the distance spectrum

of corona G ◦H and cluster G{H} of two graphs, where G is connected distance regular and H

is regular.

This work is motivated from [7] in which Sasmita Barik and Gopinath Sahoo describe the

distance spectra of coronas G ◦H, where G is connected transmission regular and H is regular.

In [8], the authors describe the Laplacian spectra of some variants of corona graphs. Motivated by

all these we describe the distance eigenvalues and eigenvectors of several double neighbourhood

corona graphs.

Definition 1.1 ([8]) Let G be a connected graph on n vertices and m edges. The subdivision

graph S(G) of G is the graph obtained by inserting a new vertex into every edge of G. The

Q(G)-graph of G is the graph obtained from G by inserting a new vertex into every edge of G

and by joining by edges those pairs of these new vertices which lie on adjacent edges of G. The

R(G)-graph of G is defined as the graph obtained from G by adding a new vertex corresponding

to each edge of G and by joining each new vertex to the end points of the edge corresponding to

it. The total graph of G, denoted by T (G), is the graph whose set of vertices is the union of the

set of vertices and set of edges of G, with two vertices of T (G) being adjacent if and only if the

corresponding elements of G are adjacent or incident.

Example 1.2 ([8]) Consider the graphs G = C4, where Cn denotes the cycle of order n. Figure

1 describes the four graphs S(C4), Q(C4), R(C4) and T (C4).

C4 S(C4) Q(C4) R(C4) T (C4)

Figure 1 C4, S(C4), Q(C4), R(C4) and T (C4)

Definition 1.3 ([8]) Let G be a connected graph on n vertices and m edges. Let G1 and G2

be graphs on n1 and n2 vertices, respectively. The subdivision double neighbourhood corona

graph of G,G1 and G2, denoted by G(S) • {G1, G2}, is the graph obtained by taking one copy

of S(G), n copies of G1 and m copies of G2 and then by joining the neighbourhood vertices

of the i-th old-vertex of S(G) to every vertex of the i-th copy of G1 and the neighbourhood
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vertices of the j-th new-vertex of S(G) to every vertex of the j-th copy of G2. In place of S(G),

if we take Q(G)(R(G), T (G)), then the resulting graph is called Q-graph (R-graph, total) double

neighbourhood corona graph and denoted by G(Q) • {G1, G2}(G(R) • {G1, G2}, G(T ) • {G1, G2}).
Note that all the above four graphs contain n(n1 + 1) +m(n2 + 1) number of vertices.

Example 1.4 ([8]) Consider the graphs G = C4, G1 = P3 and G2 = P2, where Cn and Pn

denote the cycle and the path of order n. Figure 2 describes the four graphs C
(S)
4 • {P3, P2},

C
(Q)
4 • {P3, P2}, C(R)

4 • {P3, P2} and C
(T )
4 • {P3, P2}.

C4 P3 P2

C
(S)
4 • {P3, P2} C

(Q)
4 • {P3, P2} C

(R)
4 • {P3, P2} C

(T )
4 • {P3, P2}

Figure 2 Subdivision (Q-graph, R-graph, total) double neighbourhood corona graph

In Section 2, looking at the similarities in the proofs of the results describing the distance

spectra of several double neighbourhood corona graphs, we define a block matrix and determine

its spectra. Using the spectra of the matrice we obtain the distance eigenvalues and eigenvectors

of several double neighbourhood corona graphs in successive sections.

2. Block matrix DNC

Let n,m ∈ N, n ≤ m, n1, n2 ∈ N ∪ {0}, where N is the set of positive integers. Let A,G,K
be real square matrices of order n, n1, n2, respectively, and B, C be an n × m real matrix. Let

D,F ,H be real square matrices of order m and E be an m×n real matrix. Consider the following

one real square matrix of order n(n1 + 1) +m(n2 + 1):

DNC =



A B 1Tn1
⊗ 2Jn 1Tn2

⊗ C

BT D 1Tn1
⊗ E 1Tn2

⊗F

1n1 ⊗ 2Jn 1n1 ⊗ ET Jn1 ⊗ 2(Jn − I) + G ⊗ In Jn1×n2 ⊗ 3Jn×m

1n2
⊗ CT 1n2

⊗F Jn2×n1
⊗ 3Jm×n Jn2

⊗H+K ⊗ Im


.

We call block matrix DNC if it satisfies the following conditions:

(i) If Xi and Yi are the singular vector pairs corresponding to singular values bi of B for

i = 2, 3, . . . , n and CYi = ciXi, CT Xi = ciYi, EXi = eiYi, ET Yi = eiXi, then Xi and Yi are

orthogonal eigenvectors of A,D and F , respectively. That is, if BYi = biXi and BT Xi = biYi for
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i = 2, . . . , n then AXi = aiXi,DYi = diYi and FYi = fiYi where ai, di and fi are the eigenvalues

of A,D and F , respectively.

(ii) If BŶj = 0n, CŶj = 0n, ET Ŷj = 0n for j = 1, 2, . . . ,m − n (This is true as n ≤ m),

then Ŷj are orthogonal eigenvectors of D,F ,H, that is DŶj = d̂j Ŷj ,F Ŷj = f̂j Ŷj ,HŶj = ĥj Ŷj for

j = 1, . . . ,m− n, where d̂j , f̂j , ĥj are eigenvalues of D,F ,H.

(iii) 1n1 is an eigenvector of G.
(iv) 1n2 is an eigenvector of K.

Let β1 (= g say), β2, . . . , βn1
be the eigenvalues of G with the corresponding eigenvectors as

1n1 = Z1, Z2, . . . , Zn1 , respectively. Similarly, let η1 (= k say), η2, . . . , ηn2 be the eigenvalues of

K with the corresponding eigenvectors as 1n2 = W1,W2, . . . ,Wn2 , respectively.

The following result gives all the eigenvalues and the corresponding eigenvectors of the block

matrix DNC .

Theorem 2.1 Let DNC be a block matrix of order n(n1 + 1) + m(n2 + 1) as defined above.

Then the spectrum of DNC consists of

(i) all the roots of the following equation

λ4 − (ai + di + k + g − 2n1 + hin2)λ
3 + [(hin2 + k)(ai + di + g − 2n1) + (di + g − 2n1)ai−

(c2i + f2
i )n2 − e2in1 + di(g − 2n1)− b2i ]λ

2 + [(hin2 + k)(b2i + e2in1 − aidi−

(ai + di)(g − 2n1)) + (e2in1 + f2
i n2 − di(g − 2n1))ai + (b2i + f2

i n2)(g − 2n1)+

(di + g − 2n1)c
2
in2 − 2cin2fibi]λ+ (hin2 + k)((aidi − b2i )(g − 2n1)− aie

2
in1)+

(e2in1 − di(g − 2n1))c
2
in2 − aif

2
i (g − 2n1)n2 + 2cin2fibi(g − 2n1)

= 0 for i = 2, 3, . . . , n;

(ii)
(ĥjn2+k+d̂j)±

√
(ĥjn2+k+d̂j)2−4[(ĥjn2+k)d̂j)−f̂2

j n2]

2 , for j = 1, . . . ,m− n;

(iii) βj repeated n times, for j = 2, 3, . . . , n1;

(iv) ηj repeated m times, for j = 2, 3, . . . , n2;

(v) all the roots of the following equation det(λI −D) = 0, where

D =


a1 b1 2nn1 c1n2

b′1 d1 e1n1 f1n2

2n e′1 2(n− 1)n1 + g 3mn2

c′1 f1 3nn1 h1n2 + k


A1n = a11n, B1m = b11n, BT 1n = b′11m, C1m = c11m, CT 1n = c′11m, D1m = d11m, E1n = e11m,

ET 1m = e′11n, F1m = f11m, H1m = h11m.

Proof (a) To prove (i), we suppose that the vector ϕ =


k1Xi

k2Yi

k31n1 ⊗Xi

k41n2 ⊗ Yi

 is an eigenvector of DNC

corresponding to the eigenvalue λ.
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Consider the matrix equation

DNC


k1Xi

k2Yi

k31n1 ⊗Xi

k41n2 ⊗ Yi

 = λ


k1Xi

k2Yi

k31n1 ⊗Xi

k41n2 ⊗ Yi


where k1, k2, k3, k4 and λ are the unknown constants to be determined. Comparing both sides,

we obtain 
aik1 + bik2 + cin2k4 = λk1,

bik1 + dik2 + ein1k3 + fin2k4 = λk2,

eik2 + (g − 2n1)k3 = λk3,

cik1 + fik2 + (hin2 + k)k4 = λk4.

Let k4 = 1. Eliminating k1, k2 and k3 from these equations, we get

λ4 − (ai + di + k + g − 2n1 + hin2)λ
3 + [(hin2 + k)(ai + di + g − 2n1) + (di + g − 2n1)ai−

(c2i + f2
i )n2 − e2in1 + di(g − 2n1)− b2i ]λ

2 + [(hin2 + k)(b2i + e2in1 − aidi−

(ai + di)(g − 2n1)) + (e2in1 + f2
i n2 − di(g − 2n1))ai + (b2i + f2

i n2)(g − 2n1)+

(di + g − 2n1)c
2
in2 − 2cin2fibi]λ+ (hin2 + k)((aidi − b2i )(g − 2n1)− aie

2
in1)+

(e2in1 − di(g − 2n1))c
2
in2 − aif

2
i (g − 2n1)n2 + 2cin2fibi(g − 2n1)

= 0 for i = 2, 3, . . . , n.

Hence the proof of (i) follows.

(b) As n ≤ m, there exists m − n orthogonal vectors Ŷj for j = 1, 2, . . . ,m − n such that

BŶj = 0n, CŶj = 0n, ET Ŷj = 0n and we have DŶj = d̂j Ŷj , F Ŷj = f̂j Ŷj , HŶj = ĥj Ŷj for

j = 1, 2, . . . ,m− n.

To prove (ii), we suppose that the vector ϕ =


0n

k1Ŷj

0n1n

k21n2 ⊗ Ŷj

 is an eigenvector of DNC

corresponding to the eigenvalue λ.

Consider the matrix equation

DNC


0n

k1Ŷj

0n1n

k21n2 ⊗ Ŷj

 = λ


0n

k1Ŷj

0n1n

k21n2 ⊗ Ŷj


where k1, k2 and λ are the unknown constants to be determined. Comparing both sides, we get{

d̂jk1 + f̂jn2k2 = λk1,

f̂jk1 + (ĥjn2 + k)k2 = λk2.

Eliminating k1 and k2 from these equations, we get

λ2 − (ĥjn2 + k + d̂j)λ+ [(ĥjn2 + k)d̂j − f̂2
j n2] = 0.
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Hence the proof of (ii) follows.

(c) To prove (iii), observe that

DNC


0n

0m

Zj ⊗ ϵi

0n2m

 = λ


0n

0m

Zj ⊗ ϵi

0n2m


for j = 2, . . . , n1 and i = 1, 2, . . . , n, where ϵi is a vector of length n whose all components are

zero except the i-th component which is 1. We obtain λ = βj .

(d) Similarly it can be observed that

DNC


0n

0m

0n1n

Wj ⊗ ϵi

 = λ


0n

0m

0n1n

Wj ⊗ ϵi


for j = 2, . . . , n2 and i = 1, 2, . . . , n, where ϵi is a vector of length n whose all components are

zero except the i-th component which is 1. We obtain λ = ηj .

(e) To prove (iv), we suppose that the vector ϕ =


k11n

k21m

k31n1 ⊗ 1n

k41n2 ⊗ 1m

 is an eigenvector of

DNC corresponding to the eigenvalue λ.

Suppose that

A1n = a11n, B1m = b11n, BT 1n = b′11m, C1m = c11m, CT 1n = c′11m, D1m = d11m,

E1n = e11m, ET 1m = e′11n, F1m = f11m, H1m = h11m.

Consider the matrix equation

DNC


k11n

k21m

k31n1 ⊗ 1n

k41n2 ⊗ 1m

 = λ


k11n

k21m

k31n1 ⊗ 1n

k41n2 ⊗ 1m


where k1, k2, k3, k4 and λ are the unknown constants to be determined. Comparing both sides,

we obtain 
a1k1 + b1k2 + 2nn1k3 + c1n2k4 = λk1,

b′1k1 + d1k2 + e1n1k3 + f1n2k4 = λk2,

2nk1 + e′1k2 + [g + 2(n− 1)n1]k3 + 3mn2k4 = λk3,

c′1k1 + f1k2 + 3nn1k3 + (h1n2 + k)k4 = λk4.

as k1, k2, k3, k4 are not all 0, by Cramers rule, the determinant of coefficient of the homogeneous
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linear equations satisfy det(λI −D) = 0, where

D =


a1 b1 2nn1 c1n2

b′1 d1 e1n1 f1n2

2n e′1 2(n− 1)n1 + g 3mn2

c′1 f1 3nn1 h1n2 + k

 .

This finishes (v).

Thus we have listed all the n(n1 + 1) +m(n2 + 1) eigenvalues of DNC which completes the

proof. �

3. Distance spectra of several double neighbourhood corona graphs

In this section, we describe the distance spectra of the four double neighbourhood corona

graphs defined earlier by using Theorem 2.1. The following result describes all the distance

eigenvalues of subdivision double neighbourhood corona graph.

Proposition 3.1 Let G be a complete graph on n vertices and m edges. Let G1 be a

r1-regular graph on n1 vertices with an adjacency matrix A(G1) and specA(G1) = {r1 =

λ1(G1), λ2(G1), . . . , λn1(G1)}. Let G2 be a r2-regular graph on n2 vertices with an adjacen-

cy matrix A(G2) and specA(G2) = {r2 = λ1(G2), λ2(G2), . . . , λn2(G2)}. Then the distance

spectrum of G(S) • {G1, G2} consists of

(i) all the roots of the equation

λ4 + (2n+ r1 + r2 + (2n− 6)n2)λ
3 + [2r1 + (2n− 4)(r1 + 2)− n2(4n+ (2n− 6)2 − 8)+

(2n+ r1)(r2 − 2n2 + n2(2n− 4) + 2)− n1(4n− 8) + 4]λ2 − [2n2(2n− 6)2−

2(2n− 4)(r1 + 2)− ((2n− 2)(r1 + 2)− n1(4n− 8))(r2 − 2n2 + n2(2n− 4) + 2)+

(r1 + 2)(4n+ n2(2n− 6)2 − 8) + 2n1(4n− 8) + n2(4n− 8)(2n+ r1 − 2)−

2n2(2n− 6)((4n− 8)2)1/2]λ+ 2n2(2n− 6)((4n− 8)2)1/2(r1 + 2)−

n2(4n− 8)((2n− 4)(r1 + 2)− n1(4n− 8))− n1(8n− 16)(r2 − 2n2 + n2(2n− 4) + 2)−

n2(2n− 6)(4n− 12)(r1 + 2)

= 0, for i = 2, 3, . . . , n;

(ii)
2(n2−1)−r2±

√
(2(n2−1)−r2)2+16n2

2 , for j = 1, . . . ,m− n;

(iii) −λi(G1)− 2 repeated n times, for i = 2, 3, . . . , n1;

(iv) −λi(G2)− 2 repeated m times, for i = 2, 3, . . . , n2;

(v) all the roots of the following equation det(λI −D) = 0, where

D =


2(n− 1) 3m− 2(n− 1) 2nn1 (3m− 2(n− 1))n2

3n− 4 4m− 4(n− 1) (3n− 4)n1 (4m− 4n+ 6)n2

2n 3m− 2(n− 1) 2nn1 − r1 − 2 3mn2

3n− 4 4m− 4n+ 6 3nn1 (4m− 4n+ 6)n2 − r2 − 2

 .
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Proof By a harmonious labelings of vertex set, the distance matrix of G(S) • {G1, G2} can be

expressed in the form

DNC(G
(S) • {G1, G2}) =

2(Jn − In) 3J − 2M 1Tn1
⊗ 2Jn 1Tn2

⊗ (3J − 2M)

3Jm×n − 2MT 4J − 2MTM 1Tn1
⊗ (3Jm×n − 2MT )

1Tn2
⊗ (4J

−2MTM + 2I)

1n1
⊗ 2Jn 1n1

⊗ (3J − 2M)) A∗ Jn1×n2
⊗ 3J

1n2 ⊗ (3J − 2MT )
1n2 ⊗ (4J

−2MTM + 2I)
Jn2×n1 ⊗ 3J B∗


where M is incidence matrix of G and

A∗ = Jn1 ⊗ 2(J − I) + (2(J − I)−A(G1))⊗ In,

B∗ = Jn2 ⊗ [4J − 2MTM ] + (2(J − I)−A(G2))⊗ Im.

Comparing with the super neighbourhood corona distance matrix DNC , we have

A = 2(Jn − In),B = 3J − 2M, C = 3J − 2M,D = 4J − 2MTM, E = 3J − 2MT ,

F = 4J − 2MTM + 2I,G = 2(J − I)−A(G1),H = 4J − 2MTM,K = 2(J − I)−A(G2).

Since MMT = 2(n− 1)In − (nIn − Jn), we have

ai = −2, b2i = 4n− 8, c2i = 4n− 8, di = 4− 2n, for i = 2, . . . , n;

e2i = 4n− 8, fi = 6− 2n, hi = 4− 2n, for i = 2, . . . , n;

d̂j = ĥj = 0, f̂j = 2, for j = 1, 2, . . . ,m− n;

βi = −λi(G1)− 2, for i = 2, 3, . . . , n1; g = 2(n1 − 1)− r1;

ηi = −λi(G2)− 2, for i = 2, 3, . . . , n2; k = 2(n2 − 1)− r2;

a1 = 2(n− 1), b1 = 3m− 2(n− 1), b′1 = 3n− 4, c1 = 3m− 2(n− 1), c′1 = 3n− 4,

d1 = 4m− 4(n− 1), e1 = 3n− 4, e′1 = 3m− 2(n− 1),

f1 = 4m− 4n+ 6, h1 = 4m− 4(n− 1).

Hence, the result follows from substituting these values into Theorem 2.1. �

Example 3.1.1 Consider the subdivision double neighbourhood corona graph K
(S)
4 • {K3, P2}.

Then the distance matrix of K
(S)
4 • {K3, P2} is

DC(K
(S)
4 • {K3, P2}) =
2(J4 − I4) 3J4×6 − 2M(K4) 1T3 ⊗ 2J4 1T2 ⊗ (3J − 2M)

3J6×4 − 2MT 4J6×6 − 2MTM 1T3 ⊗ (3J6×4 − 2MT ) 1T2 ⊗ (4J − 2MTM + 2I)

13 ⊗ 2J4 13 ⊗ (3J − 2M) A∗ J3×2 ⊗ 3J

12 ⊗ (3J − 2MT ) 12 ⊗ (4J − 2MTM + 2I) J2×3 ⊗ (3J6×4) B∗
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A∗ = J3 ⊗ [2(J4 − I4)] + [2(J − I)−A(K3)]⊗ I4,

B∗ = J2 ⊗ (4J − 2MTM) + [2(J − I)−A(P2)]⊗ I6.

Solution 1. Through a matlab program, the distance spectrum of K
(S)
4 • {K3, P2} is

{−13.7140,−12.1286(3),−6.7740,−2.3723(2),−1.1454,−1(14),−0.0974(3), 0.8733, 2(3),

3.3723(2), 76.9861}.

Solution 2. Applying Theorem 2.1, the distance spectrum of K
(S)
4 • {K3, P2} contains:

(i) All the roots of equation λ4 + 17λ3 + 46λ2 − 160λ− 16 = 0, for i = 2, 3, 4. With matlab,

the roots of the equation are 2, -0.09737, -6.7740, -12.1286 (i = 2, 3, 4);

(ii) 3.3723 and -2.3723 (j = 1, 2);

(iii) -1 repeated 4 times (i = 2, 3);

(iv) -1 repeated 6 times (i = 2);

(v) The roots of the following equation det(λI−D) = 0 are 76.9861, 0.8733, -1.1454, -13.7140,

where

D =


6 12 24 24

8 12 24 28

8 12 20 36

8 14 36 25


We solved the distance spectrum of K

(S)
4 • {K3, P2} by two different methods and the result

is the same. Then Theorem 2.1 and Proposition 3.1 are accurate.

The distance eigenvalues of Q-graph double neighbourhood coronae graph are shown in the

following result.

Proposition 3.2 Let G be a complete graph on n vertices and m edges. Let G1 be a

r1-regular graph on n1 vertices with an adjacency matrix A(G1) and specA(G1) = {r1 =

λ1(G1), λ2(G1), . . . , λn1(G1)}. Let G2 be a r2-regular graph on n2 vertices with an adjacen-

cy matrix A(G1) and specA(G2) = {r2 = λ1(G2), λ2(G2), . . . , λn2(G2)}. Then the distance

spectrum of G(Q) • {G1, G2} consists of

(i) All the roots of the equation

λ4 + (2n+ r1 + r2 + (2n− 6)n2 + 4)λ3 + [n+ 2r1 − n2(4n+ (n− 3)2 − 8)+

(n+ r1 + 2)(r2 − 2n2 + n2(2n− 4) + 2)− n1(n− 2) + (n− 2)(r1 + 2) + 2]λ2−

[2n1(n− 2)− (n− n1(n− 2) + n(r1 + 2)− 2)(r2 − 2n2 + n2(2n− 4) + 2)+

(r1 + 2)(n+ n2(n− 3)2 − 2) + 2n2(n− 3)2 − 2(n− 2)(r1 + 2) + n2(4n− 8)(n+ r1)−

2n2((4n− 8)(n− 2))1/2(n− 3)]λ+ n2(4n− 8)(n1(n− 2)− (n− 2)(r1 + 2))−

(n1(2n− 4)− (n− 2)(r1 + 2))(r2 − 2n2 + n2(2n− 4) + 2)+

2n2((4n− 8)(n− 2))1/2(n− 3)(r1 + 2)− n2(2n− 6)(n− 3)(r1 + 2)

= 0, for i = 2, 3, . . . , n;



242 Xiaojing XU, Zhiping WANG and Jiaxue XU

(ii)
2(n2−1)−r2±

√
(2(n2−1)−r2)2+4n2

2 , for j = 1, . . . ,m− n;

(iii) −λi(G1)− 2 repeated n times, for i = 2, 3, . . . , n1;

(iv) −λi(G2)− 2 repeated m times, for i = 2, 3, . . . , n2;

(v) All the roots of the following equation det(λI −D) = 0, where

D =


2(n− 1) 2m− (n− 1) 2nn1 (3m− 2(n− 1))n2

2n− 2 2m− 2(n− 1) (2n− 2)n1 (3m− 2n+ 3)n2

2n 2m− (n− 1) 2nn1 − r1 − 2 3mn2

3n− 4 3m− 2n+ 6 3nn1 (4m− 4n+ 6)n2 − r2 − 2

 .

Proof By a harmonious labelings of vertex set, the distance matrix of G(Q) • {G1, G2} can be

expressed in the form

DNC(G
(Q) • {G1, G2}) =

2(Jn − In) 2J −M 1Tn1
⊗ 2Jn 1Tn2

⊗ (3J − 2M)

2Jm×n −MT 2J −MTM 1Tn1
⊗ (2Jm×n −MT )

1Tn2
⊗ (3J

−MTM + I)

1n1 ⊗ 2Jn 1n1 ⊗ (2J −M)) A∗ Jn1×n2 ⊗ 3J

1n2
⊗ (3J − 2MT )

1n2 ⊗ (3J

−MTM + I)
Jn1×n2

⊗ 3J B∗


where M is incidence matrix of G and

A∗ = Jn1 ⊗ 2(J − I) + (2(J − I)−A(G1))⊗ In,

B∗ = Jn2 ⊗ (4J − 2MTM) + (2(J − I)−A(G2))⊗ Im.

Comparing with the super neighbourhood corona distance matrix DNC , we have

A = 2(Jn − In),B = 2J −M, C = 3J − 2M,D = 2J −MTM, E = 2J − 2MT ,

F = 3J −MTM + I,G = 2(J − I)−A(G1),H = 4J − 2MTM,K = 2(J − I)−A(G2).

Since MMT = 2(n− 1)In − (nIn − Jn), we have

ai = −2, b2i = n− 2, c2i = 4n− 8, di = 2− n, for i = 2, . . . , n;

e2i = n− 2, fi = 3− n, hi = 4− 2n, for i = 2, . . . , n;

d̂j = ĥj = 0, f̂j = 1, for j = 1, 2, . . . ,m− n;

βi = −λi(G1)− 2, for i = 2, 3, . . . , n1; g = 2(n1 − 1)− r1;

ηi = −λi(G2)− 2, for i = 2, 3, . . . , n2; k = 2(n2 − 1)− r2;

a1 = 2(n− 1), b1 = 2m− (n− 1), b′1 = 2n− 2, c1 = 3m− 2(n− 1), c′1 = 3n− 4,

d1 = 2m− 2(n− 1), e1 = 2n− 2, e′1 = 2m− (n− 1),

f1 = 3m− 2n+ 3, h1 = 4m− 4(n− 1).

Hence, the result follows from substituting these values into Theorem 2.1. �
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Example 3.2.1 Consider the subdivision double neighbourhood corona graph K
(Q)
4 • {K3, P2}.

Then the distance matrix of K
(Q)
4 • {K3, P2} is

DC(K
(Q)
4 • {K3, P2}) =
2(J4 − I4) 2J4×6 −M(K4) 1T3 ⊗ 2J4 1T2 ⊗ (3J − 2M)

2J6×4 −MT 2J6×6 −MTM 1T3 ⊗ (2J6×4 −MT ) 1T2 ⊗ (3J −MTM + I)

13 ⊗ 2J4 13 ⊗ (2J −M) A∗ J3×2 ⊗ 3J

12 ⊗ (3J − 2MT ) 12 ⊗ (3J −MTM + I) J2×3 ⊗ 3J6×4 B∗


A∗ = J3 ⊗ [2(J4 − I4)] + [2(J − I)−A(K3)]⊗ I4,

B∗ = J2 ⊗ (4J − 2MTM) + [2(J − I)−A(P2)]⊗ I6.

Solution 1. Through a matlab program, the distance spectrum of K
(Q)
4 • {K3, P2} is

{−14.4182,−9.7688(3),−5.3934(3),−1.3222,−1(16),−0.4387,−0.4030(3), 0.5652(3),

2(2), 73.1791}.

Solution 2. Applying Theorem 2.1, the distance spectrum of K
(Q)
4 • {K3, P2} contains:

(i) All the roots of equation λ4 + 15λ3 + 50λ2 − 12λ− 12 = 0, for i = 2, 3, 4. With matlab,

the roots of the equation are 0.5652, -0.4030, -5.3934, -9.7688 (i=2, 3, 4);

(ii) 2 and -1 (j = 1, 2);

(iii) -1 repeated 4 times (i = 2, 3);

(iv) -1 repeated 6 times (i = 2);

(v) The roots of the following equation det(λI − D) = 0 are 73.1791, -14.4182, -0.4387,

-1.3222, where

D =


6 9 24 24

6 6 18 26

8 9 20 36

8 13 36 25


We solved the distance spectrum of K

(Q)
4 • {K3, P2} by two different methods and the result

is the same. Then Theorem 2.1 and Proposition 3.2 are accurate.

The distance eigenvalues of R-graph double neighbourhood coronae graph are shown in the

following result.

Proposition 3.3 Let G be a complete graph on n vertices and m edges. Let G1 be a

r1-regular graph on n1 vertices with an adjacency matrix A(G1) and specA(G1) = {r1 =

λ1(G1), λ2(G1), . . . , λn1(G1)}. Let G2 be a r2-regular graph on n2 vertices with an adjacen-

cy matrix A(G1) and specA(G2) = {r2 = λ1(G2), λ2(G2), . . . , λn2(G2)}. Then the distance

spectrum of G(R) • {G1, G2} consists of

(i) All the roots of the equation

λ4 + (n+ r1 + r2 + (n− 3)n2 + 4)λ3 + [r1 − n2(n+ (n− 3)2 − 2)+
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(n+ r1 + 2)(r2 − 2n2 + n2(n− 1) + 2)− n1(4n− 8) + (n− 1)(r1 + 2) + 3]λ2−

[(r1 + 2)(n+ n2(n− 3)2 − 2)− (n(r1 + 2)− n1(4n− 8) + 1)(r2 − 2n2 + n2(n− 1) + 2)+

n1(4n− 8) + n2(n− 3)2 − (n− 1)(r1 + 2)− 2n2((n− 2)2)1/2(n− 3)+

n2(n− 2)(n+ r1 + 1)]λ+ (r1 − n1(4n− 8) + 2)(r2 − 2n2 + n2(n− 1) + 2)−

n2(n− 3)2(r1 + 2) + n2(n1(4n− 8)− (n− 1)(r1 + 2))(n− 2)+

2n2((n− 2)2)1/2(n− 3)(r1 + 2) = 0, for i = 2, 3, . . . , n;

(ii)
n2−r2−3±

√
(n2−r2−3)2+4(2n2−r2−2)

2 , for j = 1, . . . ,m− n;

(iii) −λi(G1)− 2 repeated n times, for i = 2, 3, . . . , n1;

(iv) −λi(G2)− 2 repeated m times, for i = 2, 3, . . . , n2;

(v) All the roots of the following equation det(λI −D) = 0, where

D =


n− 1 2m− (n− 1) 2nn1 (2m− (n− 1))n2

2n− 2 2m− 2n+ 1 (3n− 4)n1 (3m− 2n+ 3)n2

2n 3m− 2(n− 1)− 1 2nn1 − r1 − 2 3mn2

2n− 2 3m− 2n+ 3 3nn1 (3m− 2n+ 3)n2 − r2 − 2

 .

Proof By a harmonious labelings of vertex set, the distance matrix of G(R) • {G1, G2} can be

expressed in the form

DNC(G
(R) • {G1, G2}) =

Jn − In 2J −M 1Tn1
⊗ 2Jn 1Tn2

⊗ (2J −M)

2Jm×n −MT 3J −MTM − I 1Tn1
⊗ (3Jm×n − 2MT )

1Tn2
⊗ (3J

−MTM + I)

1n1 ⊗ 2Jn 1n1 ⊗ (3J − 2M)) A∗ Jn1×n2 ⊗ 3J

1n2 ⊗ (2J −MT )
1n2 ⊗ (3J

−MTM + I)
Jn1×n2 ⊗ 3J B∗


where M is incidence matrix of G and

A∗ = Jn1 ⊗ 2(J − I) + (2(J − I)−A(G1))⊗ In,

B∗ = Jn2 ⊗ [3J −MTM − I] + (2(J − I)−A(G2))⊗ Im.

Comparing with the super neighbourhood corona distance matrix DNC , we have

A = Jn − In,B = 2J −M, C = 2J −M,D = 3J −MTM + I, E = 3J − 2MT ,

F = 3J −MTM + I,G = 2(J − I)−A(G1),H = 3J −MTM,K = 2(J − I)−A(G2).

Since MMT = 2(n− 1)In − (nIn − Jn), we have

ai = −1, b2i = n− 2, c2i = n− 2, di = 1− n, e2i = 4n− 8,

fi = 3− n, hi = 1− n, for i = 2, . . . , n;

d̂j = ĥj = −1, f̂j = 1, for j = 1, 2, . . . ,m− n;
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βi = −λi(G1)− 2, for i = 2, 3, . . . , n1; g = 2(n1 − 1)− r1;

ηi = −λi(G2)− 2, for i = 2, 3, . . . , n2; k = 2(n2 − 1)− r2;

a1 = n− 1, b1 = 2m− (n− 1), b′1 = 2n− 2, c1 = 2m− (n− 1), c′1 = 2n− 2,

d1 = 3m− 2(n− 1)− 1, e1 = 3n− 4, e′1 = 3m− 2(n− 1),

f1 = 3m− 2n+ 3, h1 = 3m− 2n+ 1.

Hence, the result follows from substituting these values into Theorem 2.1. �

Example 3.3.1 Consider the subdivision double neighbourhood corona graph K
(R)
4 • {K3, P2}.

Then the distance matrix of K
(R)
4 ◦ {K3, P2} is

DC(K
(R)
4 ◦ {K3, P2}) =
J4 − I4 2J4×6 −M(K4) 1T3 ⊗ 2J4 1T2 ⊗ (2J −M)

2J6×4 −MT 3J6×6 −MTM − I 1T3 ⊗ (3J6×4 − 2MT ) 1T2 ⊗ (3J −MTM + I)

13 ⊗ 2J4 13 ⊗ (3J − 2M) A∗ J3×2 ⊗ 3J

12 ⊗ (2J −MT ) 12 ⊗ (3J −MTM + I) J2×3 ⊗ (3J6×4) B∗


A∗ = J3 ⊗ [2(J4 − I4)] + [2(J − I)−A(K3)]⊗ I4,

B∗ = J2 ⊗ (3J −MTM − I) + [2(J − I)−A(P2)]⊗ I6.

Solution 1. Through a matlab program, the distance spectrum of K
(R)
4 • {K3, P2} is

{−15.1237,−8.9753(3),−5.5636(3),−2.4142(2),−1.3625,−1(14),−0.3042(3),

0.1350, 0.4142(2), 1.8432(3), 73.3512}.

Solution 2. Applying Theorem 2.1, the distance spectrum of K
(S)
4 • {K3, P2} contains:

(i) All the roots of equation λ4 + 13λ3 + 27λ2 − 85λ− 28 = 0, for i = 2, 3, 4 . With matlab,

the roots of the equation are 1.8432, -0.3042, -5.5636, -8.9753 (i=2, 3, 4);

(ii) 0.4142 and -2.4142 (j = 1, 2);

(iii) -1 repeated 4 times (i = 2, 3);

(iv) -1 repeated 6 times (i = 2);

(v) The roots of the following equation det(λI − D) = 0 are 73.3512, -15.1237, -1.3625,

0.1350, where

D =


3 9 24 18

6 11 24 26

8 12 20 36

6 13 36 23


We solved the distance spectrum of K

(R)
4 • {K3, P2} by two different methods and the result

is the same. Then Theorem 2.1 and Proposition 3.3 are accurate.

The distance eigenvalues of T -graph double neighbourhood coronae graph are shown in the

following result.
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Proposition 3.4 Let G be a complete graph on n vertices and m edges. Let G1 be a

r1-regular graph on n1 vertices with an adjacency matrix A(G1) and specA(G1) = {r1 =

λ1(G1), λ2(G1), . . . , λn1(G1)}. Let G2 be a r2-regular graph on n2 vertices with an adjacen-

cy matrix A(G1) and specA(G2) = {r2 = λ1(G2), λ2(G2), . . . , λn2(G2)}. Then the distance

spectrum of G(T ) • {G1, G2} consists of

(i) All the roots of the equation

λ4 + (n+ r1 + r2 + (n− 3)n2 + 3)λ3 + [r1 − n1(n− 2)− n2(n+ (n− 3)2 − 2)+

(n+ r1 + 1)(r2 − 2n2 + n2(n− 1) + 2) + (n− 2)(r1 + 2) + 2]λ2−

[(n1(n− 2)− (n− 1)(r1 + 2))(r2 − 2 ∗ n2 + n2(n− 1) + 2) + n1(n− 2)+

(r1 + 2)(n+ n2(n− 3)2 − 2) + n2(n− 3)2 − (n− 2)(r1 + 2)−

2n2((n− 2)2)1/2(n− 3) + n2(n+ r1)(n− 2)]λ+

n2(n− 2)(n1(n− 2)− (n− 2)(r1 + 2))− n2(n− 3)2(r1 + 2)−

n1(n− 2)(r2 − 2n2 + n2(n− 1) + 2) + 2n2((n− 2)2)(1/2)(n− 3)(r1 + 2)

= 0, for i = 2, 3, . . . , n;

(ii)
n2−r2−2±

√
(n2−r2−2)2+4n2

2 , for j = 1, . . . ,m− n;

(iii) −λi(G1)− 2 repeated n times, for i = 2, 3, . . . , n1;

(iv) −λi(G2)− 2 repeated m times, for i = 2, 3, . . . , n2;

(v) All the roots of the following equation det(λI −DD) = 0, where

D =


n− 1 2m− (n− 1) 2nn1 (2m− (n− 1))n2

2n− 2 2m− 2n+ 2 (2n− 2)n1 (3m− 2n+ 3)n2

2n 2m− (n− 1) 2nn1 − r1 − 2 3mn2

2n− 2 3m− 2n+ 3 3nn1 (3m− 2n+ 3)n2 − r2 − 2

 .

Proof By a harmonious labelings of vertex set, the distance matrix of G(T ) • {G1, G2} can be

expressed in the form

DNC(G
(T ) • {G1, G2}) =

Jn − In 2J −M 1Tn1
⊗ 2Jn 1Tn2

⊗ (2J −M)

2Jm×n −MT 2J −MTM 1Tn1
⊗ (2Jm×n −MT )

1Tn2
⊗ (3J

−MTM + I)

1n1 ⊗ 2Jn 1n1 ⊗ (2J −M)) A∗ Jn1×n2 ⊗ 3J

1n2 ⊗ (2J −MT )
1n2 ⊗ (3J

−MTM + I)
Jn1×n2 ⊗ 3J B∗


where, M is incidence matrix of G, and

A∗ = Jn1
⊗ 2(J − I) + (2(J − I)−A(G1))⊗ In,

B∗ = Jn2 ⊗ [3J −MTM − I] + (2(J − I)−A(G2))⊗ Im.
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Comparing with the super neighbourhood corona distance matrix DNC , we have

A = Jn − In,B = 2J −M, C = 2J −M,D = 2J −MTM, E = 2J −MT ,

F = 3J −MTM + I,G = 2(J − I)−A(G1),H = 3J −MTM − I,K = 2(J − I)−A(G2).

Since MMT = 2(n− 1)In − (nIn − Jn), we have

ai = −1, b2i = n− 2, c2i = n− 2, di = 2− n, e2i = n− 2,

fi = 3− n, hi = 1− n, for i = 2, . . . , n;

d̂j = 0, ĥj = −1, f̂j = 1, for j = 1, 2, . . . ,m− n;

βi = −λi(G1)− 2, for i = 2, 3, . . . , n1; g = 2(n1 − 1)− r1;

ηi = −λi(G2)− 2, for i = 2, 3, . . . , n2; k = 2(n2 − 1)− r2;

a1 = n− 1, b1 = 2m− (n− 1), b′1 = 2n− 2, c1 = 2m− (n− 1), c′1 = 2n− 2,

d1 = 2m− 2(n− 1), e1 = 2n− 2, e′1 = 2m− (n− 1),

f1 = 3m− 2n+ 3, h1 = 3m− 2n+ 1.

Hence, the result follows from substituting these values into Theorem 2.1. �

Example 3.4.1 Consider the subdivision double neighbourhood corona graph K
(T )
4 • {K3, P2}.

Then the distance matrix of K
(T )
4 • {K3, P2} is

DC(K
(T )
4 • {K3, P2}) =
J4 − I4 2J4×6 −M(K4) 1T3 ⊗ 2J4 1T2 ⊗ (2J −M)

2J6×4 −MT 2J6×6 −MTM 1T3 ⊗ (2J6×4 −MT ) 1T2 ⊗ (J −MTM + I)

13 ⊗ 2J4 13 ⊗ (2J −M) A∗ J3×2 ⊗ 3J

12 ⊗ (2J −MT ) 12 ⊗ (3J −MTM + I) J2×3 ⊗ 3J6×4 B∗


A∗ = J3 ⊗ [2(J4 − I4)] + [2(J − I)−A(K3)]⊗ I4,

B∗ = J2 ⊗ (3J −MTM − I) + [2(J − I)−A(P2)]⊗ I6.

Solution 1. Through a matlab program, the distance spectrum of K
(T )
4 • {K3, P2} is

{−16.0848,−7(3),−4.9173(3),−2(2),−1.5143,−1.1943,−1(14),−0.6804(3),

0.5977(3), 1(2), 70.7924}.

Solution 2. Applying Theorem 2.1, the distance spectrum of K
(T )
4 • {K3, P2} contains:

(i) All the roots of equation λ4 + 12λ3 + 35λ2 − 2λ − 14 = 0, for i = 2, 3, 4. With matlab,

the roots of the equation are -7, 0.5977, -0.6804, -4.9173 (i=2, 3, 4);

(ii) 1 and -2 (j = 1, 2);

(iii) -1 repeated 4 times (i = 2, 3);

(iv) -1 repeated 6 times (i = 2);
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(v) The roots of the following equation det(λI − D) = 0 are 70.7924, -16.0848, -1.5143,

-1.1943, where

D =


3 9 24 18

6 6 18 26

8 9 20 36

6 13 36 23

 .

We solved the distance spectrum of K
(T )
4 • {K3, P2} by two different methods and the result

is the same. Then Theorem 2.1 and Proposition 3.4 are accurate.
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