On the Distance Spectra of Several Double Neighbourhood Corona Graphs

Xiaojing XU, Zhiping WANG*, Jiaxue XU
Department of Mathematics, Dalian Maritime University, Liaoning 116026, P. R. China

Abstract

Let G be a connected graph of order n and $D(G)$ be its distance matrix. The distance eigenvalues of G are the eigenvalues of its distance matrix. Its distance eigenvalues and their multiplicities constitute the distance spectrum of G. In this article, we give a complete description of the eigenvalues and the corresponding eigenvectors of a block matrix $D_{N C}$. Further, we give a complete description of the eigenvalues and the corresponding eigenvectors of distance matrix of double neighbourhood corona graphs $G^{(S)} \bullet\left\{G_{1}, G_{2}\right\}, G^{(Q)} \bullet\left\{G_{1}, G_{2}\right\}, G^{(R)} \bullet\left\{G_{1}, G_{2}\right\}$, $G^{(T)} \bullet\left\{G_{1}, G_{2}\right\}$, where G is a complete graph and G_{1}, G_{2} are regular graphs.

Keywords corona; distance spectrum; double neighbourhood corona graph; block matrix
MR(2010) Subject Classification 15A18; 05C50

1. Introduction

Throughout this article we consider only simple graphs. Let $G=(V, E)$ be a graph with vertex set $V=\{1,2, \ldots, n\}$ and edge set $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $M(G)$ be the vertex-edge incidence matrix of G and $A(G)$ be the adjacency matrix of G. The distance matrix $D(G)=\left[d_{i j}\right]$ of a graph G is the matrix indexed by the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of G, where $d_{i j}=d\left(v_{i}, v_{j}\right)$ is the distance between the vertices v_{i} and v_{j}, i.e., the length of a shortest path between v_{i} and v_{j}. Since $D(G)$ is a real symmetric matrix, its eigenvalues, called distance eigenvalues of G, are all real. The spectrum of $D(G)$ is its set of eigenvalues together with their multiplicities and is called the distance spectrum of the graph G. The spectrum of $A(G)$ is denoted by $\operatorname{spec}_{A}(G)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and is called the adjacency spectrum of the graph G.

We shall use the following notation throughout this paper. The Kronecker product of matrices $A=\left[a_{i j}\right]$ and B is defined to be the partitioned matrix $\left[a_{i j} B\right]$ and is denoted by $A \otimes B$. The $m \times 1$ vector with i-th entry equal to one and all other entries zero is denoted by ϵ_{i}. The $n \times 1$ vector with each entry 1 is denoted by 1_{n}. By J_{n}, we denote the matrix of all ones of order n. By I_{n}, we denote the identity matrix of order $n . K_{n}$ denotes the complete graph of order n.

Let G be a connected graph on n vertices and m edges and H be any graph. Then it is well known that the corona $G \circ H$ of G and H is the graph obtained by taking one copy of G and n copies of H and then by joining the i-th vertex of G to every vertex in the i-th copy of H.

[^0]In [1], Barik, Pati and Sarma have characterized both adjacency and Laplacian eigenvalues and eigenvectors of corona graph of two graphs. The neighbourhood corona graph of G and H has been defined by Gopalapillai in [2], which is based on the idea that the i-th neighbouring vertices of G are connected to every vertex in the i-th copy of H. The edge corona graph of two graphs is defined similarly, see [3] for definition and its spectral characterization. In [4,5], the graphs such as R-vertex corona graph, R-edge corona graph, R-vertex neighbourhood corona graph, R-edge neighbourhood corona graph, subdivision-vertex neighbourhood corona graph and subdivisionedge neighbourhood corona graph are considered and the coronal technique is used to find the spectrum of these graphs. Recently, in [6], Indulal and Stevanović describe the distance spectrum of corona $G \circ H$ and cluster $G\{H\}$ of two graphs, where G is connected distance regular and H is regular.

This work is motivated from [7] in which Sasmita Barik and Gopinath Sahoo describe the distance spectra of coronas $G \circ H$, where G is connected transmission regular and H is regular. In [8], the authors describe the Laplacian spectra of some variants of corona graphs. Motivated by all these we describe the distance eigenvalues and eigenvectors of several double neighbourhood corona graphs.

Definition 1.1 ([8]) Let G be a connected graph on n vertices and m edges. The subdivision graph $S(G)$ of G is the graph obtained by inserting a new vertex into every edge of G. The $Q(G)$-graph of G is the graph obtained from G by inserting a new vertex into every edge of G and by joining by edges those pairs of these new vertices which lie on adjacent edges of G. The $R(G)$-graph of G is defined as the graph obtained from G by adding a new vertex corresponding to each edge of G and by joining each new vertex to the end points of the edge corresponding to it. The total graph of G, denoted by $T(G)$, is the graph whose set of vertices is the union of the set of vertices and set of edges of G, with two vertices of $T(G)$ being adjacent if and only if the corresponding elements of G are adjacent or incident.

Example 1.2 ([8]) Consider the graphs $G=C_{4}$, where C_{n} denotes the cycle of order n. Figure 1 describes the four graphs $S\left(C_{4}\right), Q\left(C_{4}\right), R\left(C_{4}\right)$ and $T\left(C_{4}\right)$.

Figure $1 C_{4}, S\left(C_{4}\right), Q\left(C_{4}\right), R\left(C_{4}\right)$ and $T\left(C_{4}\right)$
Definition 1.3 ([8]) Let G be a connected graph on n vertices and m edges. Let G_{1} and G_{2} be graphs on n_{1} and n_{2} vertices, respectively. The subdivision double neighbourhood corona graph of G, G_{1} and G_{2}, denoted by $G^{(S)} \bullet\left\{G_{1}, G_{2}\right\}$, is the graph obtained by taking one copy of $S(G), n$ copies of G_{1} and m copies of G_{2} and then by joining the neighbourhood vertices of the i-th old-vertex of $S(G)$ to every vertex of the i-th copy of G_{1} and the neighbourhood
vertices of the j-th new-vertex of $S(G)$ to every vertex of the j-th copy of G_{2}. In place of $S(G)$, if we take $Q(G)(R(G), T(G))$, then the resulting graph is called Q-graph (R-graph, total) double neighbourhood corona graph and denoted by $G^{(Q)} \bullet\left\{G_{1}, G_{2}\right\}\left(G^{(R)} \bullet\left\{G_{1}, G_{2}\right\}, G^{(T)} \bullet\left\{G_{1}, G_{2}\right\}\right)$.

Note that all the above four graphs contain $n\left(n_{1}+1\right)+m\left(n_{2}+1\right)$ number of vertices.
Example 1.4 ([8]) Consider the graphs $G=C_{4}, G_{1}=P_{3}$ and $G_{2}=P_{2}$, where C_{n} and P_{n} denote the cycle and the path of order n. Figure 2 describes the four graphs $C_{4}^{(S)} \bullet\left\{P_{3}, P_{2}\right\}$, $C_{4}^{(Q)} \bullet\left\{P_{3}, P_{2}\right\}, C_{4}^{(R)} \bullet\left\{P_{3}, P_{2}\right\}$ and $C_{4}^{(T)} \bullet\left\{P_{3}, P_{2}\right\}$.

Figure 2 Subdivision (Q-graph, R-graph, total) double neighbourhood corona graph
In Section 2, looking at the similarities in the proofs of the results describing the distance spectra of several double neighbourhood corona graphs, we define a block matrix and determine its spectra. Using the spectra of the matrice we obtain the distance eigenvalues and eigenvectors of several double neighbourhood corona graphs in successive sections.

2. Block matrix $D_{N C}$

Let $n, m \in \mathbf{N}, n \leq m, n_{1}, n_{2} \in \mathbf{N} \cup\{0\}$, where \mathbf{N} is the set of positive integers. Let $\mathcal{A}, \mathcal{G}, \mathcal{K}$ be real square matrices of order n, n_{1}, n_{2}, respectively, and \mathcal{B}, \mathcal{C} be an $n \times m$ real matrix. Let $\mathcal{D}, \mathcal{F}, \mathcal{H}$ be real square matrices of order m and \mathcal{E} be an $m \times n$ real matrix. Consider the following one real square matrix of order $n\left(n_{1}+1\right)+m\left(n_{2}+1\right)$:

$$
D_{N C}=\left[\begin{array}{cc|cc}
\mathcal{A} & \mathcal{B} & 1_{n_{1}}^{T} \otimes 2 J_{n} & 1_{n_{2}}^{T} \otimes \mathcal{C} \\
\mathcal{B}^{\mathcal{T}} & \mathcal{D} & 1_{n_{1}}^{T} \otimes \mathcal{E} & 1_{n_{2}}^{T} \otimes \mathcal{F} \\
\hline 1_{n_{1}} \otimes 2 J_{n} & 1_{n_{1}} \otimes \mathcal{E}^{\mathcal{T}} & J_{n_{1}} \otimes 2\left(J_{n}-I\right)+\mathcal{G} \otimes I_{n} & J_{n_{1} \times n_{2}} \otimes 3 J_{n \times m} \\
1_{n_{2}} \otimes \mathcal{C}^{\mathcal{T}} & 1_{n_{2}} \otimes \mathcal{F} & J_{n_{2} \times n_{1}} \otimes 3 J_{m \times n} & J_{n_{2}} \otimes \mathcal{H}+\mathcal{K} \otimes I_{m}
\end{array}\right]
$$

We call block matrix $D_{N C}$ if it satisfies the following conditions:
(i) If X_{i} and Y_{i} are the singular vector pairs corresponding to singular values b_{i} of \mathcal{B} for $i=2,3, \ldots, n$ and $\mathcal{C} Y_{i}=c_{i} X_{i}, \mathcal{C}^{\mathcal{T}} X_{i}=c_{i} Y_{i}, \mathcal{E} X_{i}=e_{i} Y_{i}, \mathcal{E}^{\mathcal{T}} Y_{i}=e_{i} X_{i}$, then X_{i} and Y_{i} are orthogonal eigenvectors of \mathcal{A}, \mathcal{D} and \mathcal{F}, respectively. That is, if $\mathcal{B} Y_{i}=b_{i} X_{i}$ and $\mathcal{B}^{\mathcal{T}} X_{i}=b_{i} Y_{i}$ for
$i=2, \ldots, n$ then $\mathcal{A} X_{i}=a_{i} X_{i}, \mathcal{D} Y_{i}=d_{i} Y_{i}$ and $\mathcal{F} Y_{i}=f_{i} Y_{i}$ where a_{i}, d_{i} and f_{i} are the eigenvalues of \mathcal{A}, \mathcal{D} and \mathcal{F}, respectively.
(ii) If $\mathcal{B} \hat{Y}_{j}=0_{n}, \mathcal{C} \hat{Y}_{j}=0_{n}, \mathcal{E}^{\mathcal{T}} \hat{Y}_{j}=0_{n}$ for $j=1,2, \ldots, m-n$ (This is true as $n \leq m$), then \hat{Y}_{j} are orthogonal eigenvectors of $\mathcal{D}, \mathcal{F}, \mathcal{H}$, that is $\mathcal{D} \hat{Y}_{j}=\hat{d}_{j} \hat{Y}_{j}, \mathcal{F} \hat{Y}_{j}=\hat{f}_{j} \hat{Y}_{j}, \mathcal{H} \hat{Y}_{j}=\hat{h}_{j} \hat{Y}_{j}$ for $j=1, \ldots, m-n$, where $\hat{d}_{j}, \hat{f}_{j}, \hat{h}_{j}$ are eigenvalues of $\mathcal{D}, \mathcal{F}, \mathcal{H}$.
(iii) $1_{n_{1}}$ is an eigenvector of \mathcal{G}.
(iv) $1_{n_{2}}$ is an eigenvector of \mathcal{K}.

Let β_{1} ($=g$ say), $\beta_{2}, \ldots, \beta_{n_{1}}$ be the eigenvalues of \mathcal{G} with the corresponding eigenvectors as $1_{n_{1}}=Z_{1}, Z_{2}, \ldots, Z_{n_{1}}$, respectively. Similarly, let η_{1} ($=k$ say), $\eta_{2}, \ldots, \eta_{n_{2}}$ be the eigenvalues of \mathcal{K} with the corresponding eigenvectors as $1_{n_{2}}=W_{1}, W_{2}, \ldots, W_{n_{2}}$, respectively.

The following result gives all the eigenvalues and the corresponding eigenvectors of the block matrix $D_{N C}$.

Theorem 2.1 Let $D_{N C}$ be a block matrix of order $n\left(n_{1}+1\right)+m\left(n_{2}+1\right)$ as defined above. Then the spectrum of $D_{N C}$ consists of
(i) all the roots of the following equation

$$
\begin{aligned}
\lambda^{4}- & \left(a_{i}+d_{i}+k+g-2 n_{1}+h_{i} n_{2}\right) \lambda^{3}+\left[\left(h_{i} n_{2}+k\right)\left(a_{i}+d_{i}+g-2 n_{1}\right)+\left(d_{i}+g-2 n_{1}\right) a_{i}-\right. \\
& \left.\left(c_{i}^{2}+f_{i}^{2}\right) n_{2}-e_{i}^{2} n_{1}+d_{i}\left(g-2 n_{1}\right)-b_{i}^{2}\right] \lambda^{2}+\left[(h _ { i } n _ { 2 } + k) \left(b_{i}^{2}+e_{i}^{2} n_{1}-a_{i} d_{i}-\right.\right. \\
& \left.\left(a_{i}+d_{i}\right)\left(g-2 n_{1}\right)\right)+\left(e_{i}^{2} n_{1}+f_{i}^{2} n_{2}-d_{i}\left(g-2 n_{1}\right)\right) a_{i}+\left(b_{i}^{2}+f_{i}^{2} n_{2}\right)\left(g-2 n_{1}\right)+ \\
& \left.\left(d_{i}+g-2 n_{1}\right) c_{i}^{2} n_{2}-2 c_{i} n_{2} f_{i} b_{i}\right] \lambda+\left(h_{i} n_{2}+k\right)\left(\left(a_{i} d_{i}-b_{i}^{2}\right)\left(g-2 n_{1}\right)-a_{i} e_{i}^{2} n_{1}\right)+ \\
& \left(e_{i}^{2} n_{1}-d_{i}\left(g-2 n_{1}\right)\right) c_{i}^{2} n_{2}-a_{i} f_{i}^{2}\left(g-2 n_{1}\right) n_{2}+2 c_{i} n_{2} f_{i} b_{i}\left(g-2 n_{1}\right)
\end{aligned}
$$

$$
=0 \text { for } i=2,3, \ldots, n
$$

(ii) $\frac{\left(\hat{h}_{j} n_{2}+k+\hat{d}_{j}\right) \pm \sqrt{\left.\left(\hat{h}_{j} n_{2}+k+\hat{d}_{j}\right)^{2}-4\left[\left(\hat{h}_{j} n_{2}+k\right) \hat{d}_{j}\right)-\hat{f}_{j}^{2} n_{2}\right]}}{2}$, for $j=1, \ldots, m-n$;
(iii) β_{j} repeated n times, for $j=2,3, \ldots, n_{1}$;
(iv) η_{j} repeated m times, for $j=2,3, \ldots, n_{2}$;
(v) all the roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
a_{1} & b_{1} & 2 n n_{1} & c_{1} n_{2} \\
b_{1}^{\prime} & d_{1} & e_{1} n_{1} & f_{1} n_{2} \\
2 n & e_{1}^{\prime} & 2(n-1) n_{1}+g & 3 m n_{2} \\
c_{1}^{\prime} & f_{1} & 3 n n_{1} & h_{1} n_{2}+k
\end{array}\right]
$$

$\mathcal{A} 1_{n}=a_{1} 1_{n}, \mathcal{B} 1_{m}=b_{1} 1_{n}, \mathcal{B}^{\mathcal{T}} 1_{n}=b_{1}^{\prime} 1_{m}, \mathcal{C} 1_{m}=c_{1} 1_{m}, \mathcal{C}^{\mathcal{T}} 1_{n}=c_{1}^{\prime} 1_{m}, \mathcal{D} 1_{m}=d_{1} 1_{m}, \mathcal{E} 1_{n}=e_{1} 1_{m}$, $\mathcal{E}^{\mathcal{T}} 1_{m}=e_{1}^{\prime} 1_{n}, \mathcal{F} 1_{m}=f_{1} 1_{m}, \mathcal{H} 1_{m}=h_{1} 1_{m}$.

Proof (a) To prove (i), we suppose that the vector $\phi=\left[\begin{array}{c}k_{1} X_{i} \\ k_{2} Y_{i} \\ k_{3} 1_{n_{1}} \otimes X_{i} \\ k_{4} 1_{n_{2}} \otimes Y_{i}\end{array}\right]$ is an eigenvector of $D_{N C}$ corresponding to the eigenvalue λ.

Consider the matrix equation

$$
D_{N C}\left[\begin{array}{c}
k_{1} X_{i} \\
k_{2} Y_{i} \\
k_{3} 1_{n_{1}} \otimes X_{i} \\
k_{4} 1_{n_{2}} \otimes Y_{i}
\end{array}\right]=\lambda\left[\begin{array}{c}
k_{1} X_{i} \\
k_{2} Y_{i} \\
k_{3} 1_{n_{1}} \otimes X_{i} \\
k_{4} 1_{n_{2}} \otimes Y_{i}
\end{array}\right]
$$

where $k_{1}, k_{2}, k_{3}, k_{4}$ and λ are the unknown constants to be determined. Comparing both sides, we obtain

$$
\left\{\begin{array}{l}
a_{i} k_{1}+b_{i} k_{2}+c_{i} n_{2} k_{4}=\lambda k_{1} \\
b_{i} k_{1}+d_{i} k_{2}+e_{i} n_{1} k_{3}+f_{i} n_{2} k_{4}=\lambda k_{2} \\
e_{i} k_{2}+\left(g-2 n_{1}\right) k_{3}=\lambda k_{3} \\
c_{i} k_{1}+f_{i} k_{2}+\left(h_{i} n_{2}+k\right) k_{4}=\lambda k_{4}
\end{array}\right.
$$

Let $k_{4}=1$. Eliminating k_{1}, k_{2} and k_{3} from these equations, we get

$$
\begin{aligned}
& \lambda^{4}-\left(a_{i}+d_{i}+k+g-2 n_{1}+h_{i} n_{2}\right) \lambda^{3}+\left[\left(h_{i} n_{2}+k\right)\left(a_{i}+d_{i}+g-2 n_{1}\right)+\left(d_{i}+g-2 n_{1}\right) a_{i}-\right. \\
& \left.\quad\left(c_{i}^{2}+f_{i}^{2}\right) n_{2}-e_{i}^{2} n_{1}+d_{i}\left(g-2 n_{1}\right)-b_{i}^{2}\right] \lambda^{2}+\left[(h _ { i } n _ { 2 } + k) \left(b_{i}^{2}+e_{i}^{2} n_{1}-a_{i} d_{i}-\right.\right. \\
& \left.\quad\left(a_{i}+d_{i}\right)\left(g-2 n_{1}\right)\right)+\left(e_{i}^{2} n_{1}+f_{i}^{2} n_{2}-d_{i}\left(g-2 n_{1}\right)\right) a_{i}+\left(b_{i}^{2}+f_{i}^{2} n_{2}\right)\left(g-2 n_{1}\right)+ \\
& \left.\quad\left(d_{i}+g-2 n_{1}\right) c_{i}^{2} n_{2}-2 c_{i} n_{2} f_{i} b_{i}\right] \lambda+\left(h_{i} n_{2}+k\right)\left(\left(a_{i} d_{i}-b_{i}^{2}\right)\left(g-2 n_{1}\right)-a_{i} e_{i}^{2} n_{1}\right)+ \\
& \quad\left(e_{i}^{2} n_{1}-d_{i}\left(g-2 n_{1}\right)\right) c_{i}^{2} n_{2}-a_{i} f_{i}^{2}\left(g-2 n_{1}\right) n_{2}+2 c_{i} n_{2} f_{i} b_{i}\left(g-2 n_{1}\right) \\
& \quad=0 \text { for } i=2,3, \ldots, n .
\end{aligned}
$$

Hence the proof of (i) follows.
(b) As $n \leq m$, there exists $m-n$ orthogonal vectors \hat{Y}_{j} for $j=1,2, \ldots, m-n$ such that $\mathcal{B} \hat{Y}_{j}=0_{n}, \mathcal{C} \hat{Y}_{j}=0_{n}, \mathcal{E}^{\mathcal{T}} \hat{Y}_{j}=0_{n}$ and we have $\mathcal{D} \hat{Y}_{j}=\hat{d}_{j} \hat{Y}_{j}, \mathcal{F} \hat{Y}_{j}=\hat{f}_{j} \hat{Y}_{j}, \mathcal{H} \hat{Y}_{j}=\hat{h}_{j} \hat{Y}_{j}$ for $j=1,2, \ldots, m-n$.

To prove (ii), we suppose that the vector $\phi=\left(\begin{array}{c}0_{n} \\ k_{1} \hat{Y}_{j} \\ 0_{n_{1} n} \\ k_{2} 1_{n_{2}} \otimes \hat{Y}_{j}\end{array}\right)$ is an eigenvector of $D_{N C}$ corresponding to the eigenvalue λ.

Consider the matrix equation

$$
D_{N C}\left(\begin{array}{c}
0_{n} \\
k_{1} \hat{Y}_{j} \\
0_{n_{1} n} \\
k_{2} 1_{n_{2}} \otimes \hat{Y}_{j}
\end{array}\right)=\lambda\left(\begin{array}{c}
0_{n} \\
k_{1} \hat{Y}_{j} \\
0_{n_{1} n} \\
k_{2} 1_{n_{2}} \otimes \hat{Y}_{j}
\end{array}\right)
$$

where k_{1}, k_{2} and λ are the unknown constants to be determined. Comparing both sides, we get

$$
\left\{\begin{array}{l}
\hat{d}_{j} k_{1}+\hat{f}_{j} n_{2} k_{2}=\lambda k_{1}, \\
\hat{f}_{j} k_{1}+\left(\hat{h}_{j} n_{2}+k\right) k_{2}=\lambda k_{2}
\end{array}\right.
$$

Eliminating k_{1} and k_{2} from these equations, we get

$$
\lambda^{2}-\left(\hat{h}_{j} n_{2}+k+\hat{d}_{j}\right) \lambda+\left[\left(\hat{h}_{j} n_{2}+k\right) \hat{d}_{j}-\hat{f}_{j}^{2} n_{2}\right]=0
$$

Hence the proof of (ii) follows.
(c) To prove (iii), observe that

$$
D_{N C}\left(\begin{array}{c}
0_{n} \\
0_{m} \\
Z_{j} \otimes \epsilon_{i} \\
0_{n_{2} m}
\end{array}\right)=\lambda\left(\begin{array}{c}
0_{n} \\
0_{m} \\
Z_{j} \otimes \epsilon_{i} \\
0_{n_{2} m}
\end{array}\right)
$$

for $j=2, \ldots, n_{1}$ and $i=1,2, \ldots, n$, where ϵ_{i} is a vector of length n whose all components are zero except the i-th component which is 1 . We obtain $\lambda=\beta_{j}$.
(d) Similarly it can be observed that

$$
D_{N C}\left(\begin{array}{c}
0_{n} \\
0_{m} \\
0_{n_{1} n} \\
W_{j} \otimes \epsilon_{i}
\end{array}\right)=\lambda\left(\begin{array}{c}
0_{n} \\
0_{m} \\
0_{n_{1} n} \\
W_{j} \otimes \epsilon_{i}
\end{array}\right)
$$

for $j=2, \ldots, n_{2}$ and $i=1,2, \ldots, n$, where ϵ_{i} is a vector of length n whose all components are zero except the i-th component which is 1 . We obtain $\lambda=\eta_{j}$.
(e) To prove (iv), we suppose that the vector $\phi=\left(\begin{array}{c}k_{1} 1_{n} \\ k_{2} 1_{m} \\ k_{3} 1_{n_{1}} \otimes 1_{n} \\ k_{4} 1_{n_{2}} \otimes 1_{m}\end{array}\right)$ is an eigenvector of $D_{N C}$ corresponding to the eigenvalue λ.

Suppose that

$$
\begin{aligned}
& \mathcal{A} 1_{n}=a_{1} 1_{n}, \mathcal{B} 1_{m}=b_{1} 1_{n}, \mathcal{B}^{\mathcal{T}} 1_{n}=b_{1}^{\prime} 1_{m}, \mathcal{C} 1_{m}=c_{1} 1_{m}, \mathcal{C}^{\mathcal{T}} 1_{n}=c_{1}^{\prime} 1_{m}, \mathcal{D} 1_{m}=d_{1} 1_{m} \\
& \mathcal{E} 1_{n}=e_{1} 1_{m}, \mathcal{E}^{\mathcal{T}} 1_{m}=e_{1}^{\prime} 1_{n}, \mathcal{F} 1_{m}=f_{1} 1_{m}, \mathcal{H} 1_{m}=h_{1} 1_{m}
\end{aligned}
$$

Consider the matrix equation

$$
D_{N C}\left(\begin{array}{c}
k_{1} 1_{n} \\
k_{2} 1_{m} \\
k_{3} 1_{n_{1}} \otimes 1_{n} \\
k_{4} 1_{n_{2}} \otimes 1_{m}
\end{array}\right)=\lambda\left(\begin{array}{c}
k_{1} 1_{n} \\
k_{2} 1_{m} \\
k_{3} 1_{n_{1}} \otimes 1_{n} \\
k_{4} 1_{n_{2}} \otimes 1_{m}
\end{array}\right)
$$

where $k_{1}, k_{2}, k_{3}, k_{4}$ and λ are the unknown constants to be determined. Comparing both sides, we obtain

$$
\left\{\begin{array}{l}
a_{1} k_{1}+b_{1} k_{2}+2 n n_{1} k_{3}+c_{1} n_{2} k_{4}=\lambda k_{1} \\
b_{1}^{\prime} k_{1}+d_{1} k_{2}+e_{1} n_{1} k_{3}+f_{1} n_{2} k_{4}=\lambda k_{2} \\
2 n k_{1}+e_{1}^{\prime} k_{2}+\left[g+2(n-1) n_{1}\right] k_{3}+3 m n_{2} k_{4}=\lambda k_{3} \\
c_{1}^{\prime} k_{1}+f_{1} k_{2}+3 n n_{1} k_{3}+\left(h_{1} n_{2}+k\right) k_{4}=\lambda k_{4}
\end{array}\right.
$$

as $k_{1}, k_{2}, k_{3}, k_{4}$ are not all 0 , by Cramers rule, the determinant of coefficient of the homogeneous
linear equations satisfy $\operatorname{det}(\lambda I-\mathbf{D})=0$, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
a_{1} & b_{1} & 2 n n_{1} & c_{1} n_{2} \\
b_{1}^{\prime} & d_{1} & e_{1} n_{1} & f_{1} n_{2} \\
2 n & e_{1}^{\prime} & 2(n-1) n_{1}+g & 3 m n_{2} \\
c_{1}^{\prime} & f_{1} & 3 n n_{1} & h_{1} n_{2}+k
\end{array}\right]
$$

This finishes (v).
Thus we have listed all the $n\left(n_{1}+1\right)+m\left(n_{2}+1\right)$ eigenvalues of $D_{N C}$ which completes the proof.

3. Distance spectra of several double neighbourhood corona graphs

In this section, we describe the distance spectra of the four double neighbourhood corona graphs defined earlier by using Theorem 2.1. The following result describes all the distance eigenvalues of subdivision double neighbourhood corona graph.

Proposition 3.1 Let G be a complete graph on n vertices and m edges. Let G_{1} be a r_{1}-regular graph on n_{1} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{1}\right)=\left\{r_{1}=\right.$ $\left.\lambda_{1}\left(G_{1}\right), \lambda_{2}\left(G_{1}\right), \ldots, \lambda_{n_{1}}\left(G_{1}\right)\right\}$. Let G_{2} be a r_{2}-regular graph on n_{2} vertices with an adjacency matrix $A\left(G_{2}\right)$ and $\operatorname{spec}_{A}\left(G_{2}\right)=\left\{r_{2}=\lambda_{1}\left(G_{2}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{n_{2}}\left(G_{2}\right)\right\}$. Then the distance spectrum of $G^{(S)} \bullet\left\{G_{1}, G_{2}\right\}$ consists of
(i) all the roots of the equation

$$
\begin{aligned}
& \lambda^{4}+\left(2 n+r_{1}+r_{2}+(2 n-6) n_{2}\right) \lambda^{3}+\left[2 r_{1}+(2 n-4)\left(r_{1}+2\right)-n_{2}\left(4 n+(2 n-6)^{2}-8\right)+\right. \\
&\left.\left(2 n+r_{1}\right)\left(r_{2}-2 n_{2}+n_{2}(2 n-4)+2\right)-n_{1}(4 n-8)+4\right] \lambda^{2}-\left[2 n_{2}(2 n-6)^{2}-\right. \\
& 2(2 n-4)\left(r_{1}+2\right)-\left((2 n-2)\left(r_{1}+2\right)-n_{1}(4 n-8)\right)\left(r_{2}-2 n_{2}+n_{2}(2 n-4)+2\right)+ \\
& \quad\left(r_{1}+2\right)\left(4 n+n_{2}(2 n-6)^{2}-8\right)+2 n_{1}(4 n-8)+n_{2}(4 n-8)\left(2 n+r_{1}-2\right)- \\
&\left.2 n_{2}(2 n-6)\left((4 n-8)^{2}\right)^{1 / 2}\right] \lambda+2 n_{2}(2 n-6)\left((4 n-8)^{2}\right)^{1 / 2}\left(r_{1}+2\right)- \\
& n_{2}(4 n-8)\left((2 n-4)\left(r_{1}+2\right)-n_{1}(4 n-8)\right)-n_{1}(8 n-16)\left(r_{2}-2 n_{2}+n_{2}(2 n-4)+2\right)- \\
& n_{2}(2 n-6)(4 n-12)\left(r_{1}+2\right) \\
&=0, \text { for } i=2,3, \ldots, n
\end{aligned}
$$

(ii) $\frac{2\left(n_{2}-1\right)-r_{2} \pm \sqrt{\left(2\left(n_{2}-1\right)-r_{2}\right)^{2}+16 n_{2}}}{2}$, for $j=1, \ldots, m-n$;
(iii) $-\lambda_{i}\left(G_{1}\right)-2$ repeated n times, for $i=2,3, \ldots, n_{1}$;
(iv) $-\lambda_{i}\left(G_{2}\right)-2$ repeated m times, for $i=2,3, \ldots, n_{2}$;
(v) all the roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
2(n-1) & 3 m-2(n-1) & 2 n n_{1} & (3 m-2(n-1)) n_{2} \\
3 n-4 & 4 m-4(n-1) & (3 n-4) n_{1} & (4 m-4 n+6) n_{2} \\
2 n & 3 m-2(n-1) & 2 n n_{1}-r_{1}-2 & 3 m n_{2} \\
3 n-4 & 4 m-4 n+6 & 3 n n_{1} & (4 m-4 n+6) n_{2}-r_{2}-2
\end{array}\right] .
$$

Proof By a harmonious labelings of vertex set, the distance matrix of $G^{(S)} \bullet\left\{G_{1}, G_{2}\right\}$ can be expressed in the form

$$
\begin{aligned}
& D_{N C}\left(G^{(S)} \bullet\left\{G_{1}, G_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
2\left(J_{n}-I_{n}\right) & 3 J-2 M & 1_{n_{1}}^{T} \otimes 2 J_{n} & 1_{n_{2}}^{T} \otimes(3 J-2 M) \\
3 J_{m \times n}-2 M^{T} & 4 J-2 M^{T} M & 1_{n_{1}}^{T} \otimes\left(3 J_{m \times n}-2 M^{T}\right) & 1_{n_{2}}^{T} \otimes(4 J \\
\left.-2 M^{T} M+2 I\right) \\
\hline 1_{n_{1}} \otimes 2 J_{n} & \left.1_{n_{1}} \otimes(3 J-2 M)\right) & A^{*} & J_{n_{1} \times n_{2}} \otimes 3 J \\
1_{n_{2}} \otimes\left(3 J-2 M^{T}\right) & 1_{n_{2}} \otimes(4 J & \left.-2 M^{T} M+2 I\right) & J_{n_{2} \times n_{1}} \otimes 3 J
\end{array}\right]}
\end{aligned}
$$

where M is incidence matrix of G and

$$
\begin{aligned}
& A^{*}=J_{n_{1}} \otimes 2(J-I)+\left(2(J-I)-A\left(G_{1}\right)\right) \otimes I_{n} \\
& B^{*}=J_{n_{2}} \otimes\left[4 J-2 M^{T} M\right]+\left(2(J-I)-A\left(G_{2}\right)\right) \otimes I_{m}
\end{aligned}
$$

Comparing with the super neighbourhood corona distance matrix $D_{N C}$, we have

$$
\begin{aligned}
& \mathcal{A}=2\left(J_{n}-I_{n}\right), \mathcal{B}=3 J-2 M, \mathcal{C}=3 J-2 M, \mathcal{D}=4 J-2 M^{T} M, \mathcal{E}=3 J-2 M^{T}, \\
& \mathcal{F}=4 J-2 M^{T} M+2 I, \mathcal{G}=2(J-I)-A\left(G_{1}\right), \mathcal{H}=4 J-2 M^{T} M, \mathcal{K}=2(J-I)-A\left(G_{2}\right) .
\end{aligned}
$$

Since $M M^{T}=2(n-1) I_{n}-\left(n I_{n}-J_{n}\right)$, we have

$$
\begin{aligned}
& a_{i}=-2, b_{i}^{2}=4 n-8, c_{i}^{2}=4 n-8, d_{i}=4-2 n, \text { for } i=2, \ldots, n ; \\
& e_{i}^{2}=4 n-8, f_{i}=6-2 n, h_{i}=4-2 n, \text { for } i=2, \ldots, n \\
& \hat{d}_{j}=\hat{h}_{j}=0, \hat{f}_{j}=2, \text { for } j=1,2, \ldots, m-n ; \\
& \beta_{i}=-\lambda_{i}\left(G_{1}\right)-2, \text { for } i=2,3, \ldots, n_{1} ; g=2\left(n_{1}-1\right)-r_{1} ; \\
& \eta_{i}=-\lambda_{i}\left(G_{2}\right)-2, \text { for } i=2,3, \ldots, n_{2} ; k=2\left(n_{2}-1\right)-r_{2} ; \\
& a_{1}=2(n-1), b_{1}=3 m-2(n-1), b_{1}^{\prime}=3 n-4, c_{1}=3 m-2(n-1), c_{1}^{\prime}=3 n-4, \\
& d_{1}=4 m-4(n-1), e_{1}=3 n-4, e_{1}^{\prime}=3 m-2(n-1), \\
& f_{1}=4 m-4 n+6, h_{1}=4 m-4(n-1) .
\end{aligned}
$$

Hence, the result follows from substituting these values into Theorem 2.1.
Example 3.1.1 Consider the subdivision double neighbourhood corona graph $K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}$.
Then the distance matrix of $K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& D_{C}\left(K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
2\left(J_{4}-I_{4}\right) & 3 J_{4 \times 6}-2 M\left(K_{4}\right) & 1_{3}^{T} \otimes 2 J_{4} & 1_{2}^{T} \otimes(3 J-2 M) \\
3 J_{6 \times 4}-2 M^{T} & 4 J_{6 \times 6}-2 M^{T} M & 1_{3}^{T} \otimes\left(3 J_{6 \times 4}-2 M^{T}\right) & 1_{2}^{T} \otimes\left(4 J-2 M^{T} M+2 I\right) \\
\hline 1_{3} \otimes 2 J_{4} & 1_{3} \otimes(3 J-2 M) & A^{*} & J_{3 \times 2} \otimes 3 J \\
1_{2} \otimes\left(3 J-2 M^{T}\right) & 1_{2} \otimes\left(4 J-2 M^{T} M+2 I\right) & J_{2 \times 3} \otimes\left(3 J_{6 \times 4}\right) & B^{*}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{gathered}
A^{*}=J_{3} \otimes\left[2\left(J_{4}-I_{4}\right)\right]+\left[2(J-I)-A\left(K_{3}\right)\right] \otimes I_{4}, \\
B^{*}=J_{2} \otimes\left(4 J-2 M^{T} M\right)+\left[2(J-I)-A\left(P_{2}\right)\right] \otimes I_{6} .
\end{gathered}
$$

Solution 1. Through a matlab program, the distance spectrum of $K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& \left\{-13.7140,-12.1286^{(3)},-6.7740,-2.3723^{(2)},-1.1454,-1^{(14)},-0.0974^{(3)}, 0.8733,2^{(3)}\right. \\
& \left.3.3723^{(2)}, 76.9861\right\}
\end{aligned}
$$

Solution 2. Applying Theorem 2.1, the distance spectrum of $K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}$ contains:
(i) All the roots of equation $\lambda^{4}+17 \lambda^{3}+46 \lambda^{2}-160 \lambda-16=0$, for $i=2,3,4$. With matlab, the roots of the equation are $2,-0.09737,-6.7740,-12.1286(i=2,3,4)$;
(ii) 3.3723 and $-2.3723(j=1,2)$;
(iii) -1 repeated 4 times $(i=2,3)$;
(iv) -1 repeated 6 times $(i=2)$;
(v) The roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$ are 76.9861, 0.8733, -1.1454, -13.7140, where

$$
\mathbf{D}=\left[\begin{array}{llll}
6 & 12 & 24 & 24 \\
8 & 12 & 24 & 28 \\
8 & 12 & 20 & 36 \\
8 & 14 & 36 & 25
\end{array}\right]
$$

We solved the distance spectrum of $K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}$ by two different methods and the result is the same. Then Theorem 2.1 and Proposition 3.1 are accurate.

The distance eigenvalues of Q-graph double neighbourhood coronae graph are shown in the following result.

Proposition 3.2 Let G be a complete graph on n vertices and m edges. Let G_{1} be a r_{1}-regular graph on n_{1} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{1}\right)=\left\{r_{1}=\right.$ $\left.\lambda_{1}\left(G_{1}\right), \lambda_{2}\left(G_{1}\right), \ldots, \lambda_{n_{1}}\left(G_{1}\right)\right\}$. Let G_{2} be a r_{2}-regular graph on n_{2} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{2}\right)=\left\{r_{2}=\lambda_{1}\left(G_{2}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{n_{2}}\left(G_{2}\right)\right\}$. Then the distance spectrum of $G^{(Q)} \bullet\left\{G_{1}, G_{2}\right\}$ consists of
(i) All the roots of the equation

$$
\begin{aligned}
& \lambda^{4}+\left(2 n+r_{1}+r_{2}+(2 n-6) n_{2}+4\right) \lambda^{3}+\left[n+2 r_{1}-n_{2}\left(4 n+(n-3)^{2}-8\right)+\right. \\
&\left.\left(n+r_{1}+2\right)\left(r_{2}-2 n_{2}+n_{2}(2 n-4)+2\right)-n_{1}(n-2)+(n-2)\left(r_{1}+2\right)+2\right] \lambda^{2}- \\
& {\left[2 n_{1}(n-2)-\left(n-n_{1}(n-2)+n\left(r_{1}+2\right)-2\right)\left(r_{2}-2 n_{2}+n_{2}(2 n-4)+2\right)+\right.} \\
& \quad\left(r_{1}+2\right)\left(n+n_{2}(n-3)^{2}-2\right)+2 n_{2}(n-3)^{2}-2(n-2)\left(r_{1}+2\right)+n_{2}(4 n-8)\left(n+r_{1}\right)- \\
&\left.2 n_{2}((4 n-8)(n-2))^{1 / 2}(n-3)\right] \lambda+n_{2}(4 n-8)\left(n_{1}(n-2)-(n-2)\left(r_{1}+2\right)\right)- \\
&\left(n_{1}(2 n-4)-(n-2)\left(r_{1}+2\right)\right)\left(r_{2}-2 n_{2}+n_{2}(2 n-4)+2\right)+ \\
& 2 n_{2}((4 n-8)(n-2))^{1 / 2}(n-3)\left(r_{1}+2\right)-n_{2}(2 n-6)(n-3)\left(r_{1}+2\right) \\
&=0, \text { for } i=2,3, \ldots, n ;
\end{aligned}
$$

(ii) $\frac{2\left(n_{2}-1\right)-r_{2} \pm \sqrt{\left(2\left(n_{2}-1\right)-r_{2}\right)^{2}+4 n_{2}}}{2}$, for $j=1, \ldots, m-n$;
(iii) $-\lambda_{i}\left(G_{1}\right)-2$ repeated n times, for $i=2,3, \ldots, n_{1}$;
(iv) $-\lambda_{i}\left(G_{2}\right)-2$ repeated m times, for $i=2,3, \ldots, n_{2}$;
(v) All the roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
2(n-1) & 2 m-(n-1) & 2 n n_{1} & (3 m-2(n-1)) n_{2} \\
2 n-2 & 2 m-2(n-1) & (2 n-2) n_{1} & (3 m-2 n+3) n_{2} \\
2 n & 2 m-(n-1) & 2 n n_{1}-r_{1}-2 & 3 m n_{2} \\
3 n-4 & 3 m-2 n+6 & 3 n n_{1} & (4 m-4 n+6) n_{2}-r_{2}-2
\end{array}\right] .
$$

Proof By a harmonious labelings of vertex set, the distance matrix of $G^{(Q)} \bullet\left\{G_{1}, G_{2}\right\}$ can be expressed in the form

$$
\begin{aligned}
& D_{N C}\left(G^{(Q)} \bullet\left\{G_{1}, G_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
2\left(J_{n}-I_{n}\right) & 2 J-M & 1_{n_{1}}^{T} \otimes 2 J_{n} & 1_{n_{2}}^{T} \otimes(3 J-2 M) \\
2 J_{m \times n}-M^{T} & 2 J-M^{T} M & 1_{n_{1}}^{T} \otimes\left(2 J_{m \times n}-M^{T}\right) & \begin{array}{c}
1_{n_{2}}^{T} \otimes(3 J \\
\left.-M^{T} M+I\right)
\end{array} \\
\hline 1_{n_{1}} \otimes 2 J_{n} & \left.1_{n_{1}} \otimes(2 J-M)\right) & A^{*} & J_{n_{1} \times n_{2}} \otimes 3 J \\
1_{n_{2}} \otimes\left(3 J-2 M^{T}\right) & \begin{array}{c}
1_{n_{2}} \otimes(3 J \\
\left.-M^{T} M+I\right)
\end{array} & J_{n_{1} \times n_{2}} \otimes 3 J & B^{*}
\end{array}\right]}
\end{aligned}
$$

where M is incidence matrix of G and

$$
\begin{gathered}
A^{*}=J_{n_{1}} \otimes 2(J-I)+\left(2(J-I)-A\left(G_{1}\right)\right) \otimes I_{n}, \\
B^{*}=J_{n_{2}} \otimes\left(4 J-2 M^{T} M\right)+\left(2(J-I)-A\left(G_{2}\right)\right) \otimes I_{m} .
\end{gathered}
$$

Comparing with the super neighbourhood corona distance matrix $D_{N C}$, we have

$$
\begin{aligned}
& \mathcal{A}=2\left(J_{n}-I_{n}\right), \mathcal{B}=2 J-M, \mathcal{C}=3 J-2 M, \mathcal{D}=2 J-M^{T} M, \mathcal{E}=2 J-2 M^{T} \\
& \mathcal{F}=3 J-M^{T} M+I, \mathcal{G}=2(J-I)-A\left(G_{1}\right), \mathcal{H}=4 J-2 M^{T} M, \mathcal{K}=2(J-I)-A\left(G_{2}\right)
\end{aligned}
$$

Since $M M^{T}=2(n-1) I_{n}-\left(n I_{n}-J_{n}\right)$, we have

$$
\begin{aligned}
& a_{i}=-2, b_{i}^{2}=n-2, c_{i}^{2}=4 n-8, d_{i}=2-n, \text { for } i=2, \ldots, n \\
& e_{i}^{2}=n-2, f_{i}=3-n, h_{i}=4-2 n, \text { for } i=2, \ldots, n \\
& \hat{d}_{j}=\hat{h}_{j}=0, \hat{f}_{j}=1, \text { for } j=1,2, \ldots, m-n \\
& \beta_{i}=-\lambda_{i}\left(G_{1}\right)-2, \text { for } i=2,3, \ldots, n_{1} ; g=2\left(n_{1}-1\right)-r_{1} \\
& \eta_{i}=-\lambda_{i}\left(G_{2}\right)-2, \text { for } i=2,3, \ldots, n_{2} ; k=2\left(n_{2}-1\right)-r_{2} \\
& a_{1}=2(n-1), b_{1}=2 m-(n-1), b_{1}^{\prime}=2 n-2, c_{1}=3 m-2(n-1), c_{1}^{\prime}=3 n-4, \\
& d_{1}=2 m-2(n-1), e_{1}=2 n-2, e_{1}^{\prime}=2 m-(n-1) \\
& f_{1}=3 m-2 n+3, h_{1}=4 m-4(n-1) .
\end{aligned}
$$

Hence, the result follows from substituting these values into Theorem 2.1.

Example 3.2.1 Consider the subdivision double neighbourhood corona graph $K_{4}^{(Q)} \bullet\left\{K_{3}, P_{2}\right\}$. Then the distance matrix of $K_{4}^{(Q)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& D_{C}\left(K_{4}^{(Q)} \bullet\left\{K_{3}, P_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
2\left(J_{4}-I_{4}\right) & 2 J_{4 \times 6}-M\left(K_{4}\right) & 1_{3}^{T} \otimes 2 J_{4} & 1_{2}^{T} \otimes(3 J-2 M) \\
2 J_{6 \times 4}-M^{T} & 2 J_{6 \times 6}-M^{T} M & 1_{3}^{T} \otimes\left(2 J_{6 \times 4}-M^{T}\right) & 1_{2}^{T} \otimes\left(3 J-M^{T} M+I\right) \\
\hline 1_{3} \otimes 2 J_{4} & 1_{3} \otimes(2 J-M) & A^{*} & J_{3 \times 2} \otimes 3 J \\
1_{2} \otimes\left(3 J-2 M^{T}\right) & 1_{2} \otimes\left(3 J-M^{T} M+I\right) & J_{2 \times 3} \otimes 3 J_{6 \times 4} & B^{*} \\
A^{*}=J_{3} \otimes\left[2\left(J_{4}-I_{4}\right)\right]+\left[2(J-I)-A\left(K_{3}\right)\right] \otimes I_{4}, \\
B^{*}=J_{2} \otimes\left(4 J-2 M^{T} M\right)+\left[2(J-I)-A\left(P_{2}\right)\right] \otimes I_{6} .
\end{array}\right.}
\end{aligned}
$$

Solution 1. Through a matlab program, the distance spectrum of $K_{4}^{(Q)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& \left\{-14.4182,-9.7688^{(3)},-5.3934^{(3)},-1.3222,-1^{(16)},-0.4387,-0.4030^{(3)}, 0.5652^{(3)},\right. \\
& \left.2^{(2)}, 73.1791\right\}
\end{aligned}
$$

Solution 2. Applying Theorem 2.1, the distance spectrum of $K_{4}^{(Q)} \bullet\left\{K_{3}, P_{2}\right\}$ contains:
(i) All the roots of equation $\lambda^{4}+15 \lambda^{3}+50 \lambda^{2}-12 \lambda-12=0$, for $i=2,3,4$. With matlab, the roots of the equation are $0.5652,-0.4030,-5.3934,-9.7688(i=2,3,4)$;
(ii) 2 and $-1(j=1,2)$;
(iii) -1 repeated 4 times $(i=2,3)$;
(iv) -1 repeated 6 times $(i=2)$;
(v) The roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$ are 73.1791, -14.4182, - 0.4387 , -1.3222, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
6 & 9 & 24 & 24 \\
6 & 6 & 18 & 26 \\
8 & 9 & 20 & 36 \\
8 & 13 & 36 & 25
\end{array}\right]
$$

We solved the distance spectrum of $K_{4}^{(Q)} \bullet\left\{K_{3}, P_{2}\right\}$ by two different methods and the result is the same. Then Theorem 2.1 and Proposition 3.2 are accurate.

The distance eigenvalues of R-graph double neighbourhood coronae graph are shown in the following result.

Proposition 3.3 Let G be a complete graph on n vertices and m edges. Let G_{1} be a r_{1}-regular graph on n_{1} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{1}\right)=\left\{r_{1}=\right.$ $\left.\lambda_{1}\left(G_{1}\right), \lambda_{2}\left(G_{1}\right), \ldots, \lambda_{n_{1}}\left(G_{1}\right)\right\}$. Let G_{2} be a r_{2}-regular graph on n_{2} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{2}\right)=\left\{r_{2}=\lambda_{1}\left(G_{2}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{n_{2}}\left(G_{2}\right)\right\}$. Then the distance spectrum of $G^{(R)} \bullet\left\{G_{1}, G_{2}\right\}$ consists of
(i) All the roots of the equation

$$
\lambda^{4}+\left(n+r_{1}+r_{2}+(n-3) n_{2}+4\right) \lambda^{3}+\left[r_{1}-n_{2}\left(n+(n-3)^{2}-2\right)+\right.
$$

$$
\begin{aligned}
& \left.\left(n+r_{1}+2\right)\left(r_{2}-2 n_{2}+n_{2}(n-1)+2\right)-n_{1}(4 n-8)+(n-1)\left(r_{1}+2\right)+3\right] \lambda^{2}- \\
& {\left[\left(r_{1}+2\right)\left(n+n_{2}(n-3)^{2}-2\right)-\left(n\left(r_{1}+2\right)-n_{1}(4 n-8)+1\right)\left(r_{2}-2 n_{2}+n_{2}(n-1)+2\right)+\right.} \\
& n_{1}(4 n-8)+n_{2}(n-3)^{2}-(n-1)\left(r_{1}+2\right)-2 n_{2}\left((n-2)^{2}\right)^{1 / 2}(n-3)+ \\
& \left.n_{2}(n-2)\left(n+r_{1}+1\right)\right] \lambda+\left(r_{1}-n_{1}(4 n-8)+2\right)\left(r_{2}-2 n_{2}+n_{2}(n-1)+2\right)- \\
& n_{2}(n-3)^{2}\left(r_{1}+2\right)+n_{2}\left(n_{1}(4 n-8)-(n-1)\left(r_{1}+2\right)\right)(n-2)+ \\
& 2 n_{2}\left((n-2)^{2}\right)^{1 / 2}(n-3)\left(r_{1}+2\right)=0, \text { for } i=2,3, \ldots, n
\end{aligned}
$$

(ii) $\frac{n_{2}-r_{2}-3 \pm \sqrt{\left(n_{2}-r_{2}-3\right)^{2}+4\left(2 n_{2}-r_{2}-2\right)}}{2}$, for $j=1, \ldots, m-n$;
(iii) $-\lambda_{i}\left(G_{1}\right)-2$ repeated n times, for $i=2,3, \ldots, n_{1}$;
(iv) $-\lambda_{i}\left(G_{2}\right)-2$ repeated m times, for $i=2,3, \ldots, n_{2}$;
(v) All the roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
n-1 & 2 m-(n-1) & 2 n n_{1} & (2 m-(n-1)) n_{2} \\
2 n-2 & 2 m-2 n+1 & (3 n-4) n_{1} & (3 m-2 n+3) n_{2} \\
2 n & 3 m-2(n-1)-1 & 2 n n_{1}-r_{1}-2 & 3 m n_{2} \\
2 n-2 & 3 m-2 n+3 & 3 n n_{1} & (3 m-2 n+3) n_{2}-r_{2}-2
\end{array}\right]
$$

Proof By a harmonious labelings of vertex set, the distance matrix of $G^{(R)} \bullet\left\{G_{1}, G_{2}\right\}$ can be expressed in the form

$$
\begin{aligned}
& D_{N C}\left(G^{(R)} \bullet\left\{G_{1}, G_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
J_{n}-I_{n} & 2 J-M & 1_{n_{1}}^{T} \otimes 2 J_{n} & 1_{n_{2}}^{T} \otimes(2 J-M) \\
2 J_{m \times n}-M^{T} & 3 J-M^{T} M-I & 1_{n_{1}}^{T} \otimes\left(3 J_{m \times n}-2 M^{T}\right) & 1_{n_{2}}^{T} \otimes(3 J \\
\left.-M^{T} M+I\right) \\
\hline 1_{n_{1}} \otimes 2 J_{n} & \left.1_{n_{1}} \otimes(3 J-2 M)\right) & A^{*} & J_{n_{1} \times n_{2}} \otimes 3 J \\
1_{n_{2}} \otimes\left(2 J-M^{T}\right) & 1_{n_{2}} \otimes(3 J \\
\left.-M^{T} M+I\right) & J_{n_{1} \times n_{2}} \otimes 3 J & B^{*}
\end{array}\right]}
\end{aligned}
$$

where M is incidence matrix of G and

$$
\begin{aligned}
& A^{*}=J_{n_{1}} \otimes 2(J-I)+\left(2(J-I)-A\left(G_{1}\right)\right) \otimes I_{n} \\
& B^{*}=J_{n_{2}} \otimes\left[3 J-M^{T} M-I\right]+\left(2(J-I)-A\left(G_{2}\right)\right) \otimes I_{m}
\end{aligned}
$$

Comparing with the super neighbourhood corona distance matrix $D_{N C}$, we have

$$
\begin{aligned}
\mathcal{A} & =J_{n}-I_{n}, \mathcal{B}=2 J-M, \mathcal{C}=2 J-M, \mathcal{D}=3 J-M^{T} M+I, \mathcal{E}=3 J-2 M^{T} \\
\mathcal{F} & =3 J-M^{T} M+I, \mathcal{G}=2(J-I)-A\left(G_{1}\right), \mathcal{H}=3 J-M^{T} M, \mathcal{K}=2(J-I)-A\left(G_{2}\right)
\end{aligned}
$$

Since $M M^{T}=2(n-1) I_{n}-\left(n I_{n}-J_{n}\right)$, we have

$$
\begin{aligned}
& a_{i}=-1, b_{i}^{2}=n-2, c_{i}^{2}=n-2, d_{i}=1-n, e_{i}^{2}=4 n-8 \\
& f_{i}=3-n, h_{i}=1-n, \text { for } i=2, \ldots, n \\
& \hat{d}_{j}=\hat{h}_{j}=-1, \hat{f}_{j}=1, \text { for } j=1,2, \ldots, m-n
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{i}=-\lambda_{i}\left(G_{1}\right)-2, \text { for } i=2,3, \ldots, n_{1} ; g=2\left(n_{1}-1\right)-r_{1} \\
& \eta_{i}=-\lambda_{i}\left(G_{2}\right)-2, \text { for } i=2,3, \ldots, n_{2} ; k=2\left(n_{2}-1\right)-r_{2} \\
& a_{1}=n-1, b_{1}=2 m-(n-1), b_{1}^{\prime}=2 n-2, c_{1}=2 m-(n-1), c_{1}^{\prime}=2 n-2, \\
& d_{1}=3 m-2(n-1)-1, e_{1}=3 n-4, e_{1}^{\prime}=3 m-2(n-1) \\
& f_{1}=3 m-2 n+3, h_{1}=3 m-2 n+1
\end{aligned}
$$

Hence, the result follows from substituting these values into Theorem 2.1.
Example 3.3.1 Consider the subdivision double neighbourhood corona graph $K_{4}^{(R)} \bullet\left\{K_{3}, P_{2}\right\}$. Then the distance matrix of $K_{4}^{(R)} \circ\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& D_{C}\left(K_{4}^{(R)} \circ\left\{K_{3}, P_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
J_{4}-I_{4} & 2 J_{4 \times 6}-M\left(K_{4}\right) & 1_{3}^{T} \otimes 2 J_{4} & 1_{2}^{T} \otimes(2 J-M) \\
2 J_{6 \times 4}-M^{T} & 3 J_{6 \times 6}-M^{T} M-I & 1_{3}^{T} \otimes\left(3 J_{6 \times 4}-2 M^{T}\right) & 1_{2}^{T} \otimes\left(3 J-M^{T} M+I\right) \\
\hline 1_{3} \otimes 2 J_{4} & 1_{3} \otimes(3 J-2 M) & A^{*} & J_{3 \times 2} \otimes 3 J \\
1_{2} \otimes\left(2 J-M^{T}\right) & 1_{2} \otimes\left(3 J-M^{T} M+I\right) & J_{2 \times 3} \otimes\left(3 J_{6 \times 4}\right) & B^{*} \\
A^{*}=J_{3} \otimes\left[2\left(J_{4}-I_{4}\right)\right]+\left[2(J-I)-A\left(K_{3}\right)\right] \otimes I_{4}, \\
B^{*}=J_{2} \otimes\left(3 J-M^{T} M-I\right)+\left[2(J-I)-A\left(P_{2}\right)\right] \otimes I_{6} .
\end{array}\right.}
\end{aligned}
$$

Solution 1. Through a matlab program, the distance spectrum of $K_{4}^{(R)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& \left\{-15.1237,-8.9753^{(3)},-5.5636^{(3)},-2.4142^{(2)},-1.3625,-1^{(14)},-0.3042^{(3)}\right. \\
& \left.0.1350,0.4142^{(2)}, 1.8432^{(3)}, 73.3512\right\}
\end{aligned}
$$

Solution 2. Applying Theorem 2.1, the distance spectrum of $K_{4}^{(S)} \bullet\left\{K_{3}, P_{2}\right\}$ contains:
(i) All the roots of equation $\lambda^{4}+13 \lambda^{3}+27 \lambda^{2}-85 \lambda-28=0$, for $i=2,3,4$. With matlab, the roots of the equation are 1.8432, $-0.3042,-5.5636,-8.9753(i=2,3,4)$;
(ii) 0.4142 and $-2.4142(j=1,2)$;
(iii) -1 repeated 4 times $(i=2,3)$;
(iv) -1 repeated 6 times $(i=2)$;
(v) The roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$ are 73.3512, -15.1237, -1.3625, 0.1350 , where

$$
\mathbf{D}=\left[\begin{array}{cccc}
3 & 9 & 24 & 18 \\
6 & 11 & 24 & 26 \\
8 & 12 & 20 & 36 \\
6 & 13 & 36 & 23
\end{array}\right]
$$

We solved the distance spectrum of $K_{4}^{(R)} \bullet\left\{K_{3}, P_{2}\right\}$ by two different methods and the result is the same. Then Theorem 2.1 and Proposition 3.3 are accurate.

The distance eigenvalues of T-graph double neighbourhood coronae graph are shown in the following result.

Proposition 3.4 Let G be a complete graph on n vertices and m edges. Let G_{1} be a r_{1}-regular graph on n_{1} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{1}\right)=\left\{r_{1}=\right.$ $\left.\lambda_{1}\left(G_{1}\right), \lambda_{2}\left(G_{1}\right), \ldots, \lambda_{n_{1}}\left(G_{1}\right)\right\}$. Let G_{2} be a r_{2}-regular graph on n_{2} vertices with an adjacency matrix $A\left(G_{1}\right)$ and $\operatorname{spec}_{A}\left(G_{2}\right)=\left\{r_{2}=\lambda_{1}\left(G_{2}\right), \lambda_{2}\left(G_{2}\right), \ldots, \lambda_{n_{2}}\left(G_{2}\right)\right\}$. Then the distance spectrum of $G^{(T)} \bullet\left\{G_{1}, G_{2}\right\}$ consists of
(i) All the roots of the equation

$$
\begin{aligned}
& \lambda^{4}+\left(n+r_{1}+r_{2}+(n-3) n_{2}+3\right) \lambda^{3}+\left[r_{1}-n_{1}(n-2)-n_{2}\left(n+(n-3)^{2}-2\right)+\right. \\
& \left.\quad\left(n+r_{1}+1\right)\left(r_{2}-2 n_{2}+n_{2}(n-1)+2\right)+(n-2)\left(r_{1}+2\right)+2\right] \lambda^{2}- \\
& \quad\left[\left(n_{1}(n-2)-(n-1)\left(r_{1}+2\right)\right)\left(r_{2}-2 * n_{2}+n_{2}(n-1)+2\right)+n_{1}(n-2)+\right. \\
& \quad\left(r_{1}+2\right)\left(n+n_{2}(n-3)^{2}-2\right)+n_{2}(n-3)^{2}-(n-2)\left(r_{1}+2\right)- \\
& \left.\quad 2 n_{2}\left((n-2)^{2}\right)^{1 / 2}(n-3)+n_{2}\left(n+r_{1}\right)(n-2)\right] \lambda+ \\
& \quad n_{2}(n-2)\left(n_{1}(n-2)-(n-2)\left(r_{1}+2\right)\right)-n_{2}(n-3)^{2}\left(r_{1}+2\right)- \\
& \left.\quad n_{1}(n-2)\left(r_{2}-2 n_{2}+n_{2}(n-1)+2\right)+2 n_{2}\left((n-2)^{2}\right)^{(} 1 / 2\right)(n-3)\left(r_{1}+2\right) \\
& \quad=0, \text { for } i=2,3, \ldots, n
\end{aligned}
$$

(ii) $\frac{n_{2}-r_{2}-2 \pm \sqrt{\left(n_{2}-r_{2}-2\right)^{2}+4 n_{2}}}{2}$, for $j=1, \ldots, m-n$;
(iii) $-\lambda_{i}\left(G_{1}\right)-2$ repeated n times, for $i=2,3, \ldots, n_{1}$;
(iv) $-\lambda_{i}\left(G_{2}\right)-2$ repeated m times, for $i=2,3, \ldots, n_{2}$;
(v) All the roots of the following equation $\operatorname{det}(\lambda I-D \mathbf{D})=0$, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
n-1 & 2 m-(n-1) & 2 n n_{1} & (2 m-(n-1)) n_{2} \\
2 n-2 & 2 m-2 n+2 & (2 n-2) n_{1} & (3 m-2 n+3) n_{2} \\
2 n & 2 m-(n-1) & 2 n n_{1}-r_{1}-2 & 3 m n_{2} \\
2 n-2 & 3 m-2 n+3 & 3 n n_{1} & (3 m-2 n+3) n_{2}-r_{2}-2
\end{array}\right]
$$

Proof By a harmonious labelings of vertex set, the distance matrix of $G^{(T)} \bullet\left\{G_{1}, G_{2}\right\}$ can be expressed in the form

$$
\begin{aligned}
& D_{N C}\left(G^{(T)} \bullet\left\{G_{1}, G_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
J_{n}-I_{n} & 2 J-M & 1_{n_{1}}^{T} \otimes 2 J_{n} & 1_{n_{2}}^{T} \otimes(2 J-M) \\
2 J_{m \times n}-M^{T} & 2 J-M^{T} M & 1_{n_{1}}^{T} \otimes\left(2 J_{m \times n}-M^{T}\right) & 1_{n_{2}}^{T} \otimes(3 J \\
\left.-M^{T} M+I\right) \\
\hline 1_{n_{1}} \otimes 2 J_{n} & \left.1_{n_{1}} \otimes(2 J-M)\right) & A^{*} & J_{n_{1} \times n_{2}} \otimes 3 J \\
1_{n_{2}} \otimes\left(2 J-M^{T}\right) & 1_{n_{2}} \otimes(3 J \\
\left.-M^{T} M+I\right) & J_{n_{1} \times n_{2}} \otimes 3 J & B^{*}
\end{array}\right]}
\end{aligned}
$$

where, M is incidence matrix of G, and

$$
\begin{aligned}
& A^{*}=J_{n_{1}} \otimes 2(J-I)+\left(2(J-I)-A\left(G_{1}\right)\right) \otimes I_{n} \\
& B^{*}=J_{n_{2}} \otimes\left[3 J-M^{T} M-I\right]+\left(2(J-I)-A\left(G_{2}\right)\right) \otimes I_{m}
\end{aligned}
$$

Comparing with the super neighbourhood corona distance matrix $D_{N C}$, we have
$\mathcal{A}=J_{n}-I_{n}, \mathcal{B}=2 J-M, \mathcal{C}=2 J-M, \mathcal{D}=2 J-M^{T} M, \mathcal{E}=2 J-M^{T}$,
$\mathcal{F}=3 J-M^{T} M+I, \mathcal{G}=2(J-I)-A\left(G_{1}\right), \mathcal{H}=3 J-M^{T} M-I, \mathcal{K}=2(J-I)-A\left(G_{2}\right)$.
Since $M M^{T}=2(n-1) I_{n}-\left(n I_{n}-J_{n}\right)$, we have

$$
\begin{aligned}
& a_{i}=-1, b_{i}^{2}=n-2, c_{i}^{2}=n-2, d_{i}=2-n, e_{i}^{2}=n-2 \\
& f_{i}=3-n, h_{i}=1-n, \text { for } i=2, \ldots, n \\
& \hat{d}_{j}=0, \hat{h}_{j}=-1, \hat{f}_{j}=1, \text { for } j=1,2, \ldots, m-n \\
& \beta_{i}=-\lambda_{i}\left(G_{1}\right)-2, \text { for } i=2,3, \ldots, n_{1} ; g=2\left(n_{1}-1\right)-r_{1} \\
& \eta_{i}=-\lambda_{i}\left(G_{2}\right)-2, \text { for } i=2,3, \ldots, n_{2} ; k=2\left(n_{2}-1\right)-r_{2} \\
& a_{1}=n-1, b_{1}=2 m-(n-1), b_{1}^{\prime}=2 n-2, c_{1}=2 m-(n-1), c_{1}^{\prime}=2 n-2, \\
& d_{1}=2 m-2(n-1), e_{1}=2 n-2, e_{1}^{\prime}=2 m-(n-1) \\
& f_{1}=3 m-2 n+3, h_{1}=3 m-2 n+1
\end{aligned}
$$

Hence, the result follows from substituting these values into Theorem 2.1.
Example 3.4.1 Consider the subdivision double neighbourhood corona graph $K_{4}^{(T)} \bullet\left\{K_{3}, P_{2}\right\}$. Then the distance matrix of $K_{4}^{(T)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& D_{C}\left(K_{4}^{(T)} \bullet\left\{K_{3}, P_{2}\right\}\right)= \\
& {\left[\begin{array}{cc|cc}
J_{4}-I_{4} & 2 J_{4 \times 6}-M\left(K_{4}\right) & 1_{3}^{T} \otimes 2 J_{4} & 1_{2}^{T} \otimes(2 J-M) \\
2 J_{6 \times 4}-M^{T} & 2 J_{6 \times 6}-M^{T} M & 1_{3}^{T} \otimes\left(2 J_{6 \times 4}-M^{T}\right) & 1_{2}^{T} \otimes\left(J-M^{T} M+I\right) \\
\hline 1_{3} \otimes 2 J_{4} & 1_{3} \otimes(2 J-M) & A^{*} & J_{3 \times 2} \otimes 3 J \\
1_{2} \otimes\left(2 J-M^{T}\right) & 1_{2} \otimes\left(3 J-M^{T} M+I\right) & J_{2 \times 3} \otimes 3 J_{6 \times 4} & B^{*} \\
A^{*}=J_{3} \otimes\left[2\left(J_{4}-I_{4}\right)\right]+\left[2(J-I)-A\left(K_{3}\right)\right] \otimes I_{4}, \\
B^{*}=J_{2} \otimes\left(3 J-M^{T} M-I\right)+\left[2(J-I)-A\left(P_{2}\right)\right] \otimes I_{6} .
\end{array}\right.}
\end{aligned}
$$

Solution 1. Through a matlab program, the distance spectrum of $K_{4}^{(T)} \bullet\left\{K_{3}, P_{2}\right\}$ is

$$
\begin{aligned}
& \left\{-16.0848,-7^{(3)},-4.9173^{(3)},-2^{(2)},-1.5143,-1.1943,-1^{(14)},-0.6804^{(3)}\right. \\
& \left.0.5977^{(3)}, 1^{(2)}, 70.7924\right\}
\end{aligned}
$$

Solution 2. Applying Theorem 2.1, the distance spectrum of $K_{4}^{(T)} \bullet\left\{K_{3}, P_{2}\right\}$ contains:
(i) All the roots of equation $\lambda^{4}+12 \lambda^{3}+35 \lambda^{2}-2 \lambda-14=0$, for $i=2,3,4$. With matlab, the roots of the equation are $-7,0.5977,-0.6804,-4.9173(i=2,3,4)$;
(ii) 1 and $-2(j=1,2)$;
(iii) - 1 repeated 4 times $(i=2,3)$;
(iv) -1 repeated 6 times $(i=2)$;
(v) The roots of the following equation $\operatorname{det}(\lambda I-\mathbf{D})=0$ are 70.7924, -16.0848, -1.5143, -1.1943, where

$$
\mathbf{D}=\left[\begin{array}{cccc}
3 & 9 & 24 & 18 \\
6 & 6 & 18 & 26 \\
8 & 9 & 20 & 36 \\
6 & 13 & 36 & 23
\end{array}\right]
$$

We solved the distance spectrum of $K_{4}^{(T)} \bullet\left\{K_{3}, P_{2}\right\}$ by two different methods and the result is the same. Then Theorem 2.1 and Proposition 3.4 are accurate.

References

[1] S. BARIK, S. PATI, B. K. SARMA. The spectrum of the corona of two graphs. SIAM J. Discrete Math., 2007, 21(1): 47-56.
[2] I. GOPALAPILLAI. The spectrum of neighbourhood corona of graphs. Kragujevac J. Math., 2011, 35(3): 493-500.
[3] Yaoping HOU, W. C. SHIU. The spectrum of the edge corona of two graphs. Electron. J. Linear Algebra, 2010, 20(1): 586-594.
[4] Jie LAN, Bo ZHOU. Spectra of graph operations based on R-graph. Linear Multilinear Algebra, 2015, 63(7): 1401-1422.
[5] Xiaogang LIU, Pengli LU. Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae. Linear Algebra Appl., 2013, 438(8): 3547-3559.
[6] G. INDULAL, D. STEVANOVIĆ. The distance spectrum of corona and cluster of two graphs. AKCE Int. J. Graphs Comb., 2015, 12(2-3): 186-192.
[7] S. BARIK, G. SAHOO. On the distance spectra of coronas. Linear Multilinear Algebra, 2016, 65(8): 16171628.
[8] S. BARIK, G. SAHOO. On the Laplacian spectra of some variants of corona. Linear Algebra Appl., 2017, 521: 32-47.

[^0]: Received May 15, 2018; Accepted December 12, 2018
 Supported by the Dalian Science and Technology Project (Grant No. 2015A11GX016).

 * Corresponding author

 E-mail address: wzp@dlmu.edu.cn (Zhiping WANG)

