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Abstract In this paper, we propose an SEIR epidemic model with Logistic death rate of virus

mutation. By means of the direct Lyapunov method and the LaSalle’s Invariance Principle, the

global stability of the disease-free equilibrium is proved. Using algebraic method to construct

Lyapunov function, the global stability of the endemic equilibrium is proved. In addition, numer-

ical simulations are done and the influence of parameters in the model on disease transmission

is analyzed.
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1. Introduction

People have been using the infectious disease dynamics method to study the spread of infec-

tious diseases and predict the epidemic disease trend of each arrival. There are many research

results on the stability of infectious disease models with bilinear incidence and standard inci-

dence [1–3]. In [4,5], the authors studied the epidemiological models of SI and SVEI with bilinear

incidence and by using algebraic approach, they obtained the global asymptotic stability of the

disease-free equilibrium and the endemic equilibrium. If there is a virus mutation in the trans-

mission process of infectious diseases, it is easy to cause the diseases out of control. Such as

bird flu virus (H7N9), hepatitis B and other diseases. Therefore, the process of studying virus

of genetic variation will help to understand diseases and control diseases spread. For infectious

diseases with virus mutation, their infectivity is different and the cure methods are different.

In [6, 7], the authors studied the global stability of the epidemic model under the conditions

of competition and coexistence. In [8, 9], the authors studied the variant epidemic model and

discussed the branching problem of model. Korobeinikov studied the SEIR epidemic model of a

variety of different virus infections and obtained the global stability of the model [10]. In [11–13],

the authors analyzed the virus mutation model with bilinear incidence and discussed the sta-

bility of equilibrium points. In the process of spread of infectious diseases, the virus mutation

will have a certain impact on the prevention and control of the diseases. Therefore, studying the
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model of virus mutation can better understand transmission rules of the infectious diseases in

order to provide theoretical guidance for making preventive measures. In this paper, we consider

that the virus of entering susceptible individuals will enter latent period, then some of the latent

individuals are transformed into infected individuals. At the same time, the virus is mutated

in this process. The infected individuals are divided into the infected individuals before virus

mutation and the infected individuals after virus mutation. They are all contagious and spread

diseases at standard incidence rate. Based on the previous articles [11–13], we will establish an

SEIR epidemic model with Logistic death rate of virus mutation.

The organization of this paper is as follows: In Section 1, we will establish an SEIR epi-

demic model. In Section 2, we will prove the global stability of the disease-free equilibrium and

endemic equilibrium. In Section 3, we will do numerical simulations and analyze the influence

of parameters in the model on disease transmission. Finally, we will make a summary for this

article.

2. Model description

The virus will mutate during the process of infection and the mutated virus patients are

contagious. In this section, we will establish an SEIR epidemic model with Logistic death rate

of virus mutation as follows:

dS(t)

dt
= µN(t)− β1S(t)I1(t)

N(t) − β2S(t)I2(t)
N(t) − (d+ µN(t)

K )S(t),

dE(t)

dt
= β1S(t)I1(t)

N(t) + β2S(t)I2(t)
N(t) − εE(t)− (d+ µN(t)

K )E(t),

dI1(t)

dt
= εE(t)− (k1 + δ)I1(t)− (d+ µN(t)

K )I1(t),

dI2(t)

dt
= δI1(t)− k2I2(t)− (d+ µN(t)

K )I2(t),

dR(t)

dt
= k1I1(t) + k2I2(t)− (d+ µN(t)

K )R(t).

(2.1)

In model (2.1), the total population N(t) is divided into five compartments S(t), E(t), I1(t),

I2(t) and R(t) with N(t) = S(t)+E(t)+I1(t)+I2(t)+R(t). These variables S(t), E(t), I1(t), I2(t)

and R(t) represent the number of the susceptible, the exposed, the infected individuals before

virus mutation, the infected individuals after virus mutation and the recovered, respectively.

Here parameters µ, d, β1, β2 and K are positive constants, and δ, ε, k1 and k2 are non-negative

constants. µ is the birth rate coefficient of the total population, and d is the natural death

rate. β1 is the infection rate coefficient of infected individuals before virus mutation, β2 is the

infection rate coefficient of infected individuals after virus mutation. K is the carrying capacity.

δ is the rate that infected individuals before virus mutation becomes infected individuals after

virus mutation. ε is the coefficient of the latent individuals becoming infected individuals before

virus mutation. k1 is the rate of recovery infected individuals before virus mutation, k2 is the

rate of recovery infected individuals after virus mutation. In addition, d+
µN(t)

K
is the Logistic
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death rate of the population [14].

In model (2.1), total population N(t) = S(t) + E(t) + I1(t) + I2(t) +R(t) satisfies

N ′(t) = (µ− d− µN(t)

K
)N(t).

Obviously, N(t) is bounded above as µ > d, t → ∞. Otherwise, N(t) → 0 as µ < d, t → ∞, the

result is not in accordance with the actual situation.

Let s(t) = S(t)
N(t) , e(t) =

E(t)
N(t) , i1(t) =

I1(t)
N(t) , i2(t) =

I2(t)
N(t) , r(t) =

R(t)
N(t) and s(t) + e(t) + i1(t) +

i2(t) + r(t) = 1. Then model (2.1) turns out to be

ds(t)

dt
= µ− µs(t)− β1s(t)i1(t)− β2s(t)i2(t),

de(t)

dt
= β1s(t)i1(t) + β2s(t)i2(t)− (ε+ µ)e(t),

di1(t)

dt
= εe(t)− (k1 + δ + µ)i1(t),

di2(t)

dt
= δi1(t)− (k2 + µ)i2(t),

dr(t)

dt
= k1i1(t) + k2i2(t)− µr(t).

(2.2)

Note that the variable r(t) does not appear in the first and fourth equations of system (2.2),

hence we only need to consider the subsystem of system (2.2) as follows:

ds(t)

dt
= µ− µs(t)− β1s(t)i1(t)− β2s(t)i2(t),

de(t)

dt
= β1s(t)i1(t) + β2s(t)i2(t)− (ε+ µ)e(t),

di1(t)

dt
= εe(t)− (k1 + δ + µ)i1(t),

di2(t)

dt
= δi1(t)− (k2 + µ)i2(t).

(2.3)

For system (2.3), we get that n(t) = s(t) + e(t) + i1(t) + i2(t) satisfies

n′(t) = µ− µn(t)− k1i1(t)− k2i2(t),

which implies n′(t) ≤ µ− µn(t), thus lim supt→∞ n(t) ≤ 1 only if n(0) ≤ 1.

It is easy to know that the set

D = {(s(t), e(t), i1(t), i2(t)) ∈ R4
+ : s(t) + e(t) + i1(t) + i2(t) ≤ 1} (2.4)

is a positively invariant set. Therefore, we will consider the global stability of system (2.3) on

the set D .

3. Existence and stability of equilibrium points

3.1. Existence of equilibrium points
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In this subsection, we determine the existence of the equilibrium points of system (2.3). It is

straightforward to obtain disease-free equilibrium p0 = (s0, e0, i01, i
0
2) = (1, 0, 0, 0).

The stability of p0 can be described by using the next generation operator method [15].

According to the notation in [15], the Jacobian matrices F (of new infection terms) and V (of

remaining transition terms) are given, respectively [16]. We have

F =

 0 β1 β1

0 0 0

0 0 0

 , V =

 ε+ µ 0 0

−ε k1 + δ + µ 0

0 −δ k2 + µ

 .

V −1 is given by

V −1 =


1

ε+µ 0 0
ε

(ε+µ)(δ+k1+µ)
1

δ+k1+µ 0
δε

(ε+µ)(k2+µ)(δ+k1+µ)
δ

(k2+µ)(δ+k1+µ)
1

k2+µ

 .

Thus

FV −1 =


β1ε(k2+µ)+β2δε

(ε+µ)(k2+µ)(δ+k1+µ)
β1(k2+µ)+β2+δ
(δ+k1+µ)(k2+µ)

β2

k2+µ

0 0 0

0 0 0

 .

Therefore, the basic reproductive number for system (2.3) is

R0 =
β1ε(k2 + µ) + β2δε

(ε+ µ)(k2 + µ)(δ + k1 + µ)
. (3.1)

Now we turn to discuss a possible endemic equilibrium point p1 = (s∗, e∗, i∗1, i
∗
2) in the interior

of the feasible region D . Here s∗, e∗, i∗1, i
∗
2 > 0 satisfy the following equilibrium equations:

µ− µs∗(t)− β1s
∗(t)i∗1(t)− β2s

∗(t)i∗2(t) = 0, (3.2)

β1s
∗(t)i∗1(t) + β2s

∗(t)i∗2(t)− (ε+ µ)e∗(t) = 0, (3.3)

εe∗(t)− (k1 + δ + µ)i∗1(t) = 0, (3.4)

δi∗1(t)− (k2 + µ)i∗2(t) = 0. (3.5)

From (3.5), endemic equilibrium point (s∗, e∗, i∗1, i
∗
2) must satisfy

i∗2 =
δi∗1

µ+ k2
. (3.6)

According to (3.2), (3.4) and (3.6) we get

s∗ =
µ

µ+ β1i∗1 + β2
δi∗1

µ+k2

, e∗ =
(µ+ k1 + δ)i∗1

ε
. (3.7)

Substituting s∗, e∗, i∗2 into (3.3), we obtain i∗1 .

i∗1 =
εµβ1(µ+ k2) + εδµβ2 − µ(ε+ µ)(µ+ k2)(δ + k1 + µ)

(ε+ µ)(µ+ k2)(δ + k1 + µ)(β1 +
β2δ
µ+k2

)
=

µ(R0 − 1)

β1 +
β2δ
µ+k2

. (3.8)

According to (3.6)–(3.8), we obtain the following Theorem 3.1.
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Theorem 3.1 When R0 ≤ 1, system (2.3) has only a disease-free equilibrium p0. When R0 > 1,

the system (2.3) has endemic equilibrium p1 in addition to the disease-free equilibrium p0.

3.2. Global stability of the disease-free equilibrium point

In this subsection, by means of the direct construction Lyapunov method and the LaSalle’s

Invariance Principle to prove global asymptotical stability of the disease-free equilibrium p0.

Theorem 3.2 If R0 ≤ 1, then the disease-free equilibrium p0 is globally asymptotically stable.

Proof Consider the following Lyapunov function

V (s, e, i1, i2) = s− 1− ln s+ e+
β1(µ+ k2) + β2δ

(µ+ k1 + δ)(µ+ k2)
i1 +

β2

µ+ k2
i2.

The derivative of V along solutions of system (2.3) is

dV

dt

∣∣∣
(2.3)

=− µ(s+
1

s
− 2) + β1i1 − (ε+ µ)e+

β1(µ+ k2) + β2δ

(µ+ k1 + δ)(µ+ k2)
εe−

β1(µ+ k2) + β2δ

µ+ k2
i1 +

β2δ

µ+ k2
i1

=− µ(s+
1

s
− 2)− (ε+ µ)e+

β1(µ+ k2) + β2δ

(µ+ k1 + δ)(µ+ k2)
εe

=− µ(s+
1

s
− 2)− (ε+ µ)

(
1− β1(µ+ k2) + β2δ

(ε+ µ)(µ+ k1 + δ)(µ+ k2)
ε
)
e

=− µ(s+
1

s
− 2)− (ε+ µ)

(
1− β1ε(k2 + µ) + β2δε

(ε+ µ)(k2 + µ)(δ + k1 + µ)

)
e

=− µ(s+
1

s
− 2)− (ε+ µ)(1−R0)e.

Obviously, s+ 1
s ≥ 2. When R0 ≤ 1, we obtain dV

dt |(2.3) ≤ 0. Denote

M ={(s, e, i1, i2)|
dV

dt
|(2.3) = 0}

={(s, e, i1, i2)|s = 1, e = 0, i1 = i1(0) exp(−(µ+ k1 + δ)t), i2 = i2(0) exp(−(µ+ k2)t)}.

Here i1 = i1(0) exp(−(µ + k1 + δ)t) → 0 (t → +∞), i2 = i2(0) exp(−(µ+ k2)t) → 0 (t → +∞).

Thus, p0 is the only largest positive invariant subset ofM . Therefore, by the LaSalle’s Invariance

Principle [17], the disease-free equilibrium p0 is globally asymptotically stable on the set D when

R0 ≤ 1. �

3.3. Global stability of the endemic equilibrium point

In this subsection, we use algebraic method [4] to prove the global asymptotical stability of

the endemic equilibrium p1.

Theorem 3.3 If R0 > 1 , then the endemic equilibrium p1 is globally asymptotically stable.
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Proof We define a Lyapunov function

V (s, e, i1, i2) =(s− s∗ − s∗ ln
s

s∗
) + a1(e− e∗ − e∗ ln

e

e∗
) + a2(i1 − i∗1 − i∗1 ln

i1
i∗1
)+

a3(i2 − i∗2 − i∗2 ln
i2
i∗2
), (3.9)

where aj > 0 (j = 1, 2, 3) are left unspecified. For simplicity, denote

y0 =
s

s∗
, y1 =

e

e∗
, y2 =

i1
i∗1
, y3 =

i2
i∗2

then the derivative of function V (s, e, i1, i2) along solutions of system (2.3) is given by

dV

dt
|(2.3) =(1− 1

y0
)(µ− µy0s

∗ − β1y0y2s
∗i∗1 − β2y0y3s

∗i∗2) + a1(1−
1

y1
)(β1y0y2s

∗i∗1+

β2y0y3s
∗i∗2 − (ε+ µ)y1e

∗) + a2(1−
1

y2
)(εy1e

∗ − (µ+ k1 + δ)y2i
∗
1)+

a3(1−
1

y3
)(δy2i

∗
1 − (µ+ k2)y3i

∗
2)

=C − µs∗y0 − (a1(ε+ µ)e∗ − a2εe
∗)y1 − (a2(µ+ k1 + δ)i∗1 − a3δi

∗
1 − β1s

∗i∗1)y2−

(a3(µ+ k2)i
∗
2 − β2s

∗i∗2)y3 − (β1s
∗i∗1 − a1β1s

∗i∗1)y0y2 − (β2s
∗i∗2 − a1β2s

∗i∗2)y0y3−

µ
1

y0
− a1β1s

∗i∗1
y0y2
y1

− a1β2s
∗i∗2

y0y3
y1

− a2εe
∗ y1
y2

− a3δi
∗
1

y2
y3

∆
=G(y0, y1, y2, y3)

where C = µ + µs∗ + a1(ε + µ)e∗ + a2(µ + k1 + δ)i∗1 + a3(µ + k2)i
∗
2. Next, we construct the

function set

Γ =
{
y0, y1, y2, y3, y0y2, y0y3,

1

y0
,
y0y2
y1

,
y0y3
y1

,
y1
y2

,
y2
y3

}
.

There are at most three groups associated with Γ such that the product of all functions within

each group is unity. The three groups are, respectively,

{y0,
1

y0
}; { 1

y0
,
y0y2
y1

,
y1
y2

}; {y1
y2

,
y0y3
y1

,
y2
y3

,
1

y0
}.

Further, according to the above groups, we define function

H(y0, y1, y2, y3) =− b1(y0 +
1

y0
− 2)− b2(

1

y0
+

y0y2
y1

+
y1
y2

− 3)−

− b3(
y1
y2

+
y0y3
y1

+
y2
y3

+
1

y0
− 4)

with the coefficients bj (j = 1, 2, 3) left unspecified.

We would like to determine suitable parameters aj > 0 (j = 1, 2, 3) and bj ≥ 0 (j = 1, 2, 3)

such that G(y0, y1, y2, y3) = H(y0, y1, y2, y3). Due to the terms y1, y2, y3, y0y2 and y0y3 of

function G do not appear in function H, first the coefficients of the terms y1, y2, y3, y0y2 and
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y0y3 are all equal to zero in function G, then it follows that

a1(ε+ µ)e∗ − a2εe
∗ = 0,

a2(µ+ k1 + δ)i∗1 − a3δi
∗
1 − β1s

∗i∗1 = 0,

a3(µ+ k2)i
∗
2 − β2s

∗i∗2 = 0,

β1s
∗i∗1 − a1β1s

∗i∗1 = 0,

β2s
∗i∗2 − a1β2s

∗i∗2 = 0.

(3.10)

Notice that s∗, e∗, i∗1 and i∗2 satisfy that the functions at the right hand side of system (2.3) equal

to zero, and it follows from (3.10) that a1, a2 and a3 can be uniquely determined as

a1 = 1, a2 =
ε+ µ

ε
, a3 =

β2s
∗

µ+ k2
.

Consequently, the Lyapunov function (3.9) is specified. Function G is in turn given as

G(y0, y1, y2, y3) =C − µs∗y0 − µ
1

y0
− a1β1s

∗i∗1
y0y2
y1

− a1β2s
∗i∗2

y0y3
y1

− a2εe
∗ y1
y2

−

a3δi
∗
1

y2
y3

∆
= G̃(y0, y1, y2, y3).

Further, letting G̃(y0, y1, y2, y3) = H(y0, y1, y2, y3) and comparing the coefficients of the like

terms between them yields

b1 = µs∗, b2 = β1s
∗i∗1, b3 =

β2δs
∗i∗1

µ+ k2
. (3.11)

So function H(y0, y1, y2, y3) is also uniquely determined, the derivative of the Lyapunov function

is given by
dV

dt
|(2.3) = −b1(y0 +

1

y0
− 2)− b2(

1

y0
+

y0y2
y1

+
y1
y2

− 3)−

b3(
y1
y2

+
y0y3
y1

+
y2
y3

+
1

y0
− 4),

where bj > 0 (j = 1, 2, 3) are determined by (3.11). According to the relation between the

arithmetic and the associated geometric means, we have dV/dt|(2.3) ≤ 0 and the equality holds

if and only if y0 = 1 and y1 = y2 = y3, that is s = s∗ and e/e∗ = i1/i
∗
1 = i2/i

∗
2. It can

be easily verified that the largest invariant set of system (2.3) on the set {(s, e, i1, i2) ∈ R4
+ :

s = s∗, e/e∗ = i1/i
∗
1 = i2/i

∗
2} is the singleton {p1}. Therefore, by the LaSalle’s Invariance

Principle [17], it follows that the endemic equilibrium p1 of system (2.3) is globally stable in the

feasible region D when it exists. �
According to Theorem 3.2, the disease-free equilibrium p0 is globally stable. From Theorem

3.3, we can see that when R0 > 1, the endemic equilibrium p1 is globally stable. Therefore,

it can be determined that there is no Hopf-branching in the SEIR epidemic model with virus

mutation.

4. Numerical simulation

In this section, some numerical results of system (2.3) are presented for supporting the

analytic results obtained above. The parameter values in Table 1 are derived from [11–14]. Here
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we choose initial value s(0) = 0.7, e(0) = 0.6, i1(0) = 0.5, i2(0) = 0.4.

β1 β2 ε k1 k2 δ R0 Figure

0.0005 0.0016 0.04 0.0666 0.1428 0.05 0.0011 1

0.0005 0.0016 0.04 [0,1] [0,1] 0.05 Variation 2

0.7 0.6 0.4 0.0666 0.1428 0.05 3.0418 3

0.7 0.6 0.9 0.0666 0.1428 0.05 3.4220 4

0.7 0.6 0.4 0.0666 0.1428 0.9 2.1932 5

0.7 0.6 0.4 0.2 0.1428 0.05 1.8824 6

0.7 0.6 0.4 0.0666 0.5 0.05 2.7701 7

Table 1 Values of parameters

Here we assume µ = 0.1, we can get from the above Table 1 as follows:

(1) µ = 0.1, β1 = 0.0005, β2 = 0.0016, ε = 0.04, k1 = 0.0666, k2 = 0.1428, δ = 0.05 then

R0 = 0.0011 < 1. According to Theorem 3.2, we know that the disease-free equilibrium p0 is

globally asymptotically stable (see Figure 1).
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Figure 1 The disease-free equilibrium Figure 2 The relationship between the

p0 is globally stable parameters and R0
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Figure 3 The endemic equilibrium p1 is globally stable

In the following, we study the relationship between R0 and the rate k1 of the recovery rate

before mutation, the rate k2 of the recovery rate after mutation on system (2.3) by numerical

analysis (see Figure 2).
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(2) µ = 0.1, β1 = 0.7, β2 = 0.6, ε = 0.4, k1 = 0.0666, k2 = 0.1428, δ = 0.05 then R0 =

3.0418 > 1. According to Theorem 3.3, we know that the endemic equilibrium p1 is globally

stable (see Figure 3).

(3) If parameter ε = 0.9 and other parameters are the same as Figure 3, then R0 = 3.4220 > 1

(see Figure 4). If parameter δ = 0.9 and other parameters are the same as Figure 3, then

R0 = 2.1932 > 1 (see Figure 5). If parameter k1 = 0.2 and other parameters are the same as

Figure 3, then R0 = 1.8824 > 1 (see Figure 6). If parameter k2 = 0.5 and other parameters are

the same as Figure 3, then R0 = 2.7701 > 1 (see Figure 7). According to Theorem 3.3, we know

that the endemic equilibrium p1 is globally stable.
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Figure 4 This is the change in ε
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Figure 5 This is the change in δ
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Figure 6 This is the change in k1
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Figure 7 This is the change in k2

From Figures 3 and 4, it can be seen that the rate ε of the latent individuals becoming

infected individuals before virus mutation increases to 2.25 times the original value, then the

infected individuals before virus mutation i1 increases to 1.19 times the original value, the infected

individuals after virus mutation i2 increases to 1.19 times the original value.

From Figures 3 and 5, it can be seen that the rate δ of infected individuals before virus

mutation becoming infected individuals after virus mutation increases to 18 times the original

value, then infected individuals before virus mutation i1 reduces to 6 times the original value,

infected individuals after virus mutation i2 increases to 2.97 times the original value.

From Figures 3 and 6, it can be seen that the rate k1 of recovery before virus mutation

increases to 3 times the original value, then infected individuals before virus mutation i1 reduces

to 2.3 times the original value, infected individuals after virus mutation i2 reduces to 2.32 times

the original value.

From Figures 3 and 7, it can be seen that the rate k2 of recovery after virus mutation increases
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to 3.5 times the original value, then infected individuals before virus mutation i1 reduces to 1.05

times the original value, infected individuals after virus mutation i2 reduces to 2.59 times the

original value.

5. Summary

In this paper, an SEIR epidemic model with Logistic death rate of virus mutation is studied.

By constructing the Lyapunov function using algebraic methods, the global stability of the

endemic equilibrium p1 is presented. Through numerical simulation, it can be found that the

recovery rate k1 before the mutation and the recovery rate k2 after the mutation have the greatest

influence on results of system (2.3) (see Figures 2, 6 and 7). Therefore, by strengthening health,

epidemic prevention and raising medical standards, the value of k1 and k2 can be increased to

control the outbreak of the disease from its root.
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