Common Best Proximity Points Theorems

Lijun CHEN
Jin Shan College, Fujian Agriculture and Forestry University, Fujian 350002, P. R. China

Abstract

In this paper, an existence and uniqueness common best proximity point theorem for a pair of non-self mappings was proved. Moreover, an example is given to support our main result, which generalized some well-known results of Sadiq Basha, A.Amini-Harandi and Geraghty and so on.

Keywords common best proximity point; generally proximally dominating mappings; common fixed points

MR(2010) Subject Classification 47H10

1. Introduction and preliminaries

Fixed point theory is an important tool for solving equations $T x=x$ for self-mappings T defined on subsets of metric spaces. Because T is not a self-mapping, the equation $T x=x$ is unlikely to have a solution. Therefore, it is of primary importance to seek an element x which is in some sense closest to $T x$. Best approximation theorems and best proximity point theorems are relevant in this perspective. A noteworthy best approximation theorem, due to [1], contends that if A is a non-void compact convex subset of a Hausdorff locally convex topological vector space X, and $T: A \rightarrow X$ is a continuous single-valued function, then there exists an element x in A such that $d(x, T x)=d(T x, A)$. There have been many subsequent extensions and variants of Fan's Theorem, see [2-4] and references therein.

A best proximity point theorem for non-self proximal contractions has been investigated in [5]. Analysis of several variants of contractions for the existence of a best proximity point can be found in [6-8], and research of mutually nearest and mutually furthest points problems in Banach spaces can be found in [9-13]. Best proximity point theorems for set-valued mappings have been elicited in [14-20].

Given nonempty subsets A and B of a metric space, we recall the following notations and notions, which will be used in the sequel.

$$
\begin{aligned}
& d(A, B)=\inf \{d(x, y): x \in A, y \in B\}, \\
& A_{0}=\{x \in A: d(x, y)=d(A, B) \text { for some } y \in B\}, \\
& B_{0}=\{y \in B: d(x, y)=d(A, B) \text { for some } x \in A\} .
\end{aligned}
$$

[^0]The main objective of this paper is to discuss a common best proximity point theorem. The common best proximity point theorem presented in this paper assures a common optimal solution at which both the real valued multiobjective functions $x \rightarrow d(x, S x)$ and $x \rightarrow d(x, T x)$ attains the global minimal value $d(A, B)$, thereby giving rise to a common optimal approximate solution to the fixed point equations $S x=x$ and $T x=x$ where the mappings $S: A \rightarrow B$ are generally proximally dominated by $T: A \rightarrow B$. Our best proximity point theorem generalizes a result due to [20,21]. Moreover, a common fixed point theorem, due to [22], for commuting self-mappings is a special case of our common best proximity point theorem.

Now, we recall some definitions which we will use throughout the paper.
Definition 1.1 A mapping $T: A \rightarrow B$ is said to be a proximal contraction if there exists a non-negative number $\alpha<1$ such that, for all $u_{1}, u_{2}, x_{1}, x_{2}$ in A,

$$
d\left(u_{1}, T x_{1}\right)=d(A, B)=d\left(u_{2}, T x_{2}\right) \Rightarrow d\left(u_{1}, u_{2}\right) \leq \alpha d\left(x_{1}, x_{2}\right)
$$

Definition 1.2 Given non-self mappings $T: A \rightarrow B$ and $S: A \rightarrow B$ are said to be commute proximally if they satisfy the condition that $d(u, S x)=d(v, T x)=d(A, B) \Rightarrow S v=T u$.

Definition 1.3 ([20]) A mapping $T: A \rightarrow B$ is said to dominate a mapping $S: A \rightarrow B$ proximally if there exists a non-negative number $\alpha<1$ such that, for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A,

$$
d\left(u_{1}, S x_{1}\right)=d\left(u_{2}, S x_{2}\right)=d(A, B)=d\left(v_{1}, T x_{1}\right)=d\left(v_{2}, T x_{2}\right) \Rightarrow d\left(u_{1}, u_{2}\right) \leq \alpha d\left(v_{1}, v_{2}\right)
$$

Inspired by the above definition, we give the following definition.
Definition 1.4 A mapping $T: A \rightarrow B$ is said to generally dominate a mapping $S: A \rightarrow B$ proximally if for all $u_{1}, u_{2}, v_{1}, v_{2}, x_{1}, x_{2}$ in A,

$$
\begin{aligned}
d\left(u_{1}, S x_{1}\right) & =d\left(u_{2}, S x_{2}\right)=d(A, B)=d\left(v_{1}, T x_{1}\right)=d\left(v_{2}, T x_{2}\right) \\
& \Rightarrow \Psi\left(d\left(u_{1}, u_{2}\right)\right) \leq \alpha\left(d\left(v_{1}, v_{2}\right)\right) \Psi\left(d\left(v_{1}, v_{2}\right)\right)
\end{aligned}
$$

where α is a nondecreasing function from $[0, \infty)$ to $[0,1)$ such that $\alpha\left(t_{n}\right) \rightarrow 1 \Rightarrow t_{n} \rightarrow 0$, and $\Psi:[0, \infty) \rightarrow[0, \infty)$ is an increasing continuous function such that $t \leq \Psi(t)$ and $\Psi(0)=0$.

Definition 1.5 ([20]) Given non-self mappings $T: A \rightarrow B$ and $S: A \rightarrow B$, an element $x \in A$ is called a common best proximity point of the mappings if they satisfy the condition that

$$
d(x, S x)=d(x, T x)=d(A, B)
$$

2. Main results

The following result is a best proximity point theorem for a pair of non-self mappings.
Theorem 2.1 Let A and B be nonempty subsets of a complete metric space X. Moreover, assume that A_{0} and B_{0} are nonempty and A_{0} is closed. Let the non-self mappings $T: A \rightarrow B$ and $S: A \rightarrow B$ satisfy the following conditions:
(a) T generally dominates S proximally;
(b) S and T commute proximally;
(c) S and T are continuous;
(d) $S\left(A_{0}\right) \subseteq B_{0}$;
(e) $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$.

Then, there exists a unique element $x \in A$ such that $d(x, S x)=d(x, T x)=d(A, B)$.
Proof For convenience, use N to represent natural numbers. Let x_{0} be a fixed element in A_{0}. Since $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$, there exists an element $x_{1} \in A_{0}$ such that $S x_{0}=T x_{1}$. This process can be carried on. Having chosen $x_{n} \in A_{0}$, we can find an element $x_{n+1} \in A_{0}$ satisfying

$$
\begin{equation*}
S x_{n}=T x_{n+1}, \quad \forall n \in N, \tag{2.1}
\end{equation*}
$$

because of the fact $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$. Since $S\left(A_{0}\right) \subseteq B_{0}$, there exists an element $u_{n} \in A_{0}$ such that

$$
\begin{equation*}
d\left(S x_{n}, u_{n}\right)=d(A, B), \quad \forall n \in N \tag{2.2}
\end{equation*}
$$

Further, it follows from the choice x_{n} and u_{n} that

$$
\begin{equation*}
d\left(S x_{n+1}, u_{n+1}\right)=d(A, B), \quad d\left(T x_{n+1}, u_{n}\right)=d(A, B) \tag{2.3}
\end{equation*}
$$

Since T generally dominates a mapping S proximally, from (2.1)-(2.3), we have

$$
\begin{equation*}
\Psi\left(d\left(u_{n+1}, u_{n}\right)\right) \leq \alpha\left(d\left(u_{n}, u_{n-1}\right)\right) \Psi\left(d\left(u_{n}, u_{n-1}\right)\right) \leq \Psi\left(d\left(u_{n}, u_{n-1}\right)\right) \tag{2.4}
\end{equation*}
$$

Since Ψ is increasing, $\left\{d\left(u_{n}, u_{n-1}\right)\right\}$ is a non-increasing and bounded. So $\lim _{n \rightarrow \infty} d\left(u_{n}, u_{n-1}\right)$ exists. Let $\lim _{n \rightarrow \infty} d\left(u_{n}, u_{n-1}\right)=\eta \geq 0$. Assume that $\eta>0$. Then from (2.4) we obtain

$$
\begin{equation*}
\frac{\Psi\left(d\left(u_{n+1}, u_{n}\right)\right)}{\Psi\left(d\left(u_{n}, u_{n-1}\right)\right)} \leq \alpha\left(d\left(u_{n}, u_{n-1}\right)\right) \tag{2.5}
\end{equation*}
$$

Since Ψ is continuous, the above inequality yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha\left(d\left(u_{n}, u_{n-1}\right)\right)=1 \tag{2.6}
\end{equation*}
$$

and from condition (a), we have $\eta=0$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(u_{n}, u_{n-1}\right)=0 \tag{2.7}
\end{equation*}
$$

At the same time, from condition (a), we have

$$
\begin{equation*}
\alpha\left(d\left(u_{0}, u_{1}\right)\right) \geq \alpha\left(d\left(u_{1}, u_{2}\right)\right) \geq \cdots \geq \alpha\left(d\left(u_{n}, u_{n-1}\right)\right) \tag{2.8}
\end{equation*}
$$

Now we show that $\left\{u_{n}\right\}$ is a Cauchy sequence. In fact, by (2.4) and (2.8) we have

$$
\Psi\left(d\left(u_{n+1}, u_{n}\right)\right) \leq \delta^{n} \Psi\left(d\left(u_{1}, u_{0}\right)\right)
$$

where $\delta=\alpha\left(\left(d\left(u_{0}, u_{1}\right)\right)\right) \in[0,1)$. Then, we get

$$
\begin{aligned}
0 & \leq \Psi\left(d\left(u_{0}, u_{1}\right)\right)+\Psi\left(d\left(u_{1}, u_{2}\right)\right)+\cdots+\Psi\left(d\left(u_{n-1}, u_{n}\right)\right) \\
& \leq \Psi\left(d\left(u_{0}, u_{1}\right)\right)+\delta \Psi\left(d\left(u_{0}, u_{1}\right)\right)+\cdots+\delta^{n-1} \Psi\left(d\left(u_{0}, u_{1}\right)\right)
\end{aligned}
$$

$$
\leq \frac{1}{1-\delta} \Psi\left(d\left(u_{0}, u_{1}\right)\right)
$$

which means that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \Psi\left(d\left(u_{n-1}, u_{n}\right)\right)<\infty \tag{2.9}
\end{equation*}
$$

From condition (a), we have $t \leq \Psi(t)$ and then

$$
\begin{equation*}
\sum_{n=1}^{\infty} d\left(u_{n-1}, u_{n}\right)<\infty \tag{2.10}
\end{equation*}
$$

Therefore, for all $\epsilon>0$,

$$
\begin{equation*}
d\left(u_{n}, u_{m}\right) \leq \sum_{i=n+1}^{m} d\left(u_{i-1}, u_{i}\right)<\epsilon \tag{2.11}
\end{equation*}
$$

for sufficiently large $m>n \in N$. Then $\left\{u_{n}\right\}$ is a Cauchy sequence. Since (X, d) is a complete metric space and A_{0} is closed, there exists $u \in A_{0}$ such that $\lim _{n \rightarrow \infty} u_{n}=u$. Because of the fact the mappings S and T are commuting proximally and from (2.3), we get

$$
T u_{n}=S u_{n-1}, \quad \forall n \in N
$$

Therefore, the continuity of the mappings S and T ensures that

$$
T u=\lim _{n \rightarrow \infty} T u_{n}=\lim _{n \rightarrow \infty} S u_{n-1}=S u .
$$

Since $S\left(A_{0}\right) \subseteq B_{0}$, there exists an $x \in A$ such that

$$
\begin{equation*}
d(x, S u)=d(A, B)=d(x, T u) \tag{2.12}
\end{equation*}
$$

As S and T commute proximally, $S x=T x$. Then, since $S\left(A_{0}\right) \subseteq B_{0}$, there exists a $z \in A$ such that

$$
\begin{equation*}
d(z, S x)=d(A, B)=d(z, T x) \tag{2.13}
\end{equation*}
$$

By condition (a), (2.12) and (2.13), we have $\Psi(d(x, z)) \leq \alpha(d(x, z)) \Psi(d(x, z))$, which implies that $x=z$. Thus, it follows that

$$
\begin{equation*}
d(x, S x)=d(z, S x)=d(A, B)=d(x, T x)=d(z, T x) . \tag{2.14}
\end{equation*}
$$

Therefore, x is a common best proximity point of the mappings S and T. Suppose that \hat{x} is another common best proximity point of the mappings S and T, so that

$$
\begin{equation*}
d(\hat{x}, S \hat{x})=d(A, B)=d(\hat{x}, T \hat{x}) \tag{2.15}
\end{equation*}
$$

Then from condition (a), (2.14) and (2.15), we get $\Psi(d(x, \hat{x})) \leq \alpha(d(x, \hat{x})) \Psi(d(x, \hat{x}))$, which implies that $x=\hat{x}$. Therefore, we obtain the desired result.

As a corollary, we get the following main result of [20].
Corollary 2.2 Let A and B be nonempty subsets of a complete metric space X. Moreover, assume that A_{0} and B_{0} are nonempty and A_{0} is closed. Let the non-self mappings $T: A \rightarrow B$ and $S: A \rightarrow B$ satisfy the following conditions:
(a) T dominates S proximally;
(b) S and T commute proximally;
(c) S and T are continuous;
(d) $S\left(A_{0}\right) \subseteq B_{0}$;
(e) $S\left(A_{0}\right) \subseteq T\left(A_{0}\right)$.

Then, there exists a unique element $x \in A$ such that $d(x, S x)=d(x, T x)=d(A, B)$.
The following results in [23] and [24] are immediate consequences of Theorem 2.1, respectively.
Corollary 2.3 Let A and B be nonempty subsets of a complete metric space X such that B is compact. Moreover, assume that A_{0} and B_{0} are nonempty. Let the non-self mapping $T: A_{0} \rightarrow B_{0}$ be a proximal contraction. Then, there exists a unique element $x \in A_{0}$ such that $d(x, T x)=d(A, B)$.

Corollary 2.4 Let X be a complete metric space and let $T: X \rightarrow X$ satisfy

$$
\Psi(d(T x, T y)) \leq \beta(d(x, y)) \Psi(d(x, y)), \quad \forall x, y \in X,
$$

where β is an increasing function from $[0, \infty)$ to $[0,1)$ such that $\beta\left(t_{n}\right) \rightarrow 1 \Rightarrow t_{n} \rightarrow 0$, and $\Psi:[0, \infty) \rightarrow[0, \infty)$ is an increasing continuous function such that $t \leq \Psi(t)$ for each $t \geq 0$ and $\Psi(0)=0$.

3. Illustration

Now we illustrate our common best proximity point theorem by the following example.
Example 3.1 Consider the complete metric space $X=[0,1] \times[0,1]$ with Euclidean metric. Let $A=\{(0, x): 0 \leq x \leq 1\}$ and $B=\{(1, y): 0 \leq y \leq 1\}$. Then $d(A, B)=1, A_{0}=A$ and $B_{0}=B$. Let $T, S: A \rightarrow B$ be defined as $T(0, x)=(1, x)$, and $S(0, x)=(1, \ln (1+x))$. Now we show that T generally dominates S proximally, where $\alpha(t)=1-\frac{\ln ^{2}(1+t)}{2 t}$ and $\Psi(t)=t$ for each $t>0$. Let $\mathbf{u}_{\mathbf{1}}=\left(0, u_{1}\right), \mathbf{u}_{\mathbf{2}}=\left(0, u_{2}\right), \mathbf{v}_{\mathbf{1}}=\left(0, v_{1}\right), \mathbf{v}_{\mathbf{2}}=\left(0, v_{2}\right), \mathbf{x}_{\mathbf{1}}=\left(0, x_{1}\right), \mathbf{x}_{\mathbf{2}}=\left(0, x_{2}\right)$ be elements in A satisfying

$$
d\left(\mathbf{u}_{\mathbf{1}}, S \mathbf{x}_{\mathbf{1}}\right)=d\left(\mathbf{u}_{\mathbf{2}}, S \mathbf{x}_{\mathbf{2}}\right)=d\left(\mathbf{v}_{\mathbf{1}}, T \mathbf{x}_{\mathbf{1}}\right)=d\left(\mathbf{v}_{\mathbf{2}}, T \mathbf{x}_{\mathbf{2}}\right)=1 .
$$

Then we have $x_{i}=v_{i}$ and $u_{i}=\ln \left(1+x_{i}\right)$ for $i=1,2$. Hence

$$
\begin{aligned}
d\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) & =\left|u_{1}-u_{2}\right|=\left|\ln \left(1+v_{1}\right)-\ln \left(1+v_{2}\right)\right| \\
& \leq \ln \left(1+\left|v_{1}-v_{2}\right|\right) \leq\left[1-\frac{\ln ^{2}\left(1+\left|v_{1}-v_{2}\right|\right)}{2\left|v_{1}-v_{2}\right|}\right]\left|v_{1}-v_{2}\right| \\
& =\alpha\left(d\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)\right) d\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right) .
\end{aligned}
$$

Next we show that T does not dominate S proximally. On the contrary, assume that there exists $0 \leq \beta<1$ such that

$$
d\left(\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}\right)=\left|u_{1}-u_{2}\right|=\left|\ln \left(1+v_{1}\right)-\ln \left(1+v_{2}\right)\right|<\beta d\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)=\beta\left|v_{1}-v_{2}\right|, \quad \forall v_{1}, v_{2} \in[0,1] .
$$

Let $v_{2}=0$. We get

$$
\frac{\ln \left(1+v_{1}\right)}{v_{1}} \leq \beta<1, \quad \forall v_{1} \in(0,1)
$$

a contradiction (note that $\lim _{v_{1} \rightarrow 0^{+}} \frac{\ln \left(1+v_{1}\right)}{v_{1}}=1$).
Acknowledgements The author would like to thank the referees for useful comments and suggestions.

References

[1] K. FAN. Extensions of two fixed point theorems of F. E. Browder. Math. Z., 1969, 112: 234-240.
[2] S. REICH. Approximate slections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl., 1978, 62: 104-113.
[3] A. AMINI-HARANDI, A. P. FARAJZADEH. A best approximation theorem in hyperconvex metric spaces. Nonlinear Anal., 2009, 70(6): 2453-2456.
[4] V. VETRIVEL, P. VEERAMANI, P. BHATTACHARYYA. Some extensions of Fans best approximation theorem. Numer. Funct. Anal. Optim., 1992, 13(3-4): 397-402.
[5] S. SADIQ BASHA. Best proximity points: optimal solutions. J. Optim. Theory Appl., 2011, 151(1): 210216.
[6] M. A. Al-THAGAFI, N. SHAHZAD. Convergence and existence results for best proximity points. Nonlinear Anal., 2009, 70(10): 3665-3671.
[7] A. A. ELDRED, P. VEERAMANI. Existence and convergence of best proximity points. J. Math. Anal. Appl., 2006, 323(2): 1001-1006.
[8] C. DI BARI, T. SUZUKI, C. VETRO. Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal., 2008, 69(11): 3790-3794.
[9] Chong LI, Renxing NI. On well-posed mutually nearest and mutually furthest point problems in Banach spaces. Acta Math. Sin. (Engl. Ser.), 2004, 20(1): 147-156.
[10] Chong LI, Hongkun XU. Porosity of mutually nearest and mutually furthest points in Banach spaces. J. Approx. Theory, 2003, 125(1): 10-25.
[11] Chong LI, Hongkun XU. On almost well-posed mutually nearest and mutually furthest point problems. Numer. Funct. Anal. Optim., 2002, 23(3-4): 323-331.
[12] Chong LI. On mutually nearest and mutually furthest points in reflexive Banach spaces. J. Approx. Theory, 2000, 103(1): 1-17.
[13] Xianfa LUO. Characterizations and uniqueness of mutually nearest points for two sets in normed spaces. Numer. Funct. Anal. Optim., 2014, 35(5): 611-622.
[14] M. A. Al-THAGATI, N. SHAHZAD. Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Anal., 2009, 70(3): 1209-1216.
[15] M. A. Al-THAGATI, N. SHAHZAD. Best proximity sets and equilibrium pairs for a finite family of multimaps. Fixed Point Theory Appl., 2008, Art. ID 457069, 10 pp.
[16] W. K. KIM, S. KUM, K. H. LEE. On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal., 2008, 68(8): 2216-2227.
[17] S. SADIQ BASHA, P. VEERAMANI. Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory, 2000, 103(1): 119-129.
[18] P. S. SRINIVASAN. Best proximity pair theorems. Acta Sci. Math., 2011, 67: 421-429.
[19] K. WLODARCZYK, R. PLEBANIAK, A. BANACH. Best proximity points for cyclic and noncyclic setvalued relatively quasi-asymptotic contractions in uniform spaces. Nonlinear Anal., 2009, 70(9): 3332-3341.
[20] S. SADIQ BASHA. Common best proximity points: global minimal solutions. TOP, 2013, 21(1): 182-188.
[21] A. AMINI-HARANDI. Common best proximity points theorems in metric spaces. Optim. Lett., 2014, 8(2): 581-589.
[22] K. M. DAS, K. V. NAIK. Common fixed-point theorems for commuting maps on a metric space. Proc. Amer. Math. Soc., 1979, $\mathbf{7 7}(3)$: 369-373.
[23] A. AMINI-HARANDI. Best proximity points for proximal generalized contractions in metric spaces. Optim. Lett., 2013, 7(5): 913-921.
[24] G. GERAGHTY. On contractive mappings. Proc. Amer. Math. Soc., 1973, 40: 604-608.

[^0]: Received January 11, 2018; Accepted February 23, 2019
 Supported by the Science and Technology Project of Education Department of Fujian Province (Grant No. JT180838).
 E-mail address: chenlijun101086@163.com

