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Abstract The eigenvalues of the normalized Laplacian of a graph provide information on its

structural properties and also on some relevant dynamical aspects, in particular those related

to random walks. In this paper, we give the spectra of the normalized Laplacian of iterated

pentagonal of a simple connected graph. As an application, we also find the significant formulae

for their multiplicative degree-Kirchhoff index, Kemeny’s constant and number of spanning trees.
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1. Introduction

Spectral analysis of graphs has been the subject of considerable research effort in mathemat-

ics and computer science [1–3], due to its wide applications in this area and in general [4, 5].

The spectra of the adjacency, Laplacian and normalized Laplacian matrices of a graph provide

information on the diameter, degree distribution, paths of a given length, total number of links,

number of spanning trees and many more invariants.

In recent years, there has been an increasing interest in the study of the normalized Laplacian,

as many measures for random walks on a network are linked to the eigenvalues and eigenvectors

of normalized Laplacian of the associated graph. These include the hitting time, mixing time

and Kemeny’s constant which can be used as a measure of efficiency of navigation on the network

[6–9].

Let G be a simple connected graph with vertex set V (G) and edge set E(G). An edge

connecting two vertices i, j ∈ V (G) is denoted by ij. If ij ∈ E(G), we say i is a neighbor of j

and write as i ∼ j or we say i and j are adjacent. The degree of a vertex i is denoted by di. Let

AG be the adjacency matrix of G and DG be the diagonal matrix of vertex degree of G. The

matrix LG = DG −AG called the Laplacian matrix of G.

The random walk is defined as the Markov chain Xn(n ≥ 0), that from its current vertex i

jumps arbitrarily to its neighboring vertex j with probability pij =
1
di
. We denote by M = (pij)
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the transition probabilities matrix for random walks on G. So

pij =

{
1
di
, if i ∼ j,

0, otherwise.

Clearly, M = D−1
G AG is a stochastic matrix.

The normalized Laplacian is defined to be

ℓ = I −D
1
2

GMD
− 1

2

G ,

where I is the identity matrix with the same order as M .

Let δij be the Kronecker delta. From the definition of ℓ, we have the following relationship

easily:

ℓ(i, j) = δij −
A(i, j)√
didj

,

where ℓ(i, j) and A(i, j) denote the (i, j)-entry of ℓ and A, respectively.

Since ℓ is Hermitian and similar to I − M = D−1L, the eigenvalues of ℓ are non-negative.

We label the eigenvalues of ℓ so that 0 = λ1 < λ2 ≤ · · · ≤ λn, where n is the number of

vertices of G. The spectrum on the normalized Laplacian matrix ℓ of the graph G is defined as

σ = {λ1, λ2, . . . , λn}, which also is called the normalized Laplacian spectrum of G.

Lemma 1.1 ([10]) Let G be a simple connected graph with n vertices and ℓ be the normalized

Laplacian of G. The normalized Laplacian spectrum of G is σ = {0 = λ1, λ2, . . . , λn}. We have

(i) For all i ≤ n, we have n
n−1 ≤ λi ≤ 2 with λn = 2 if and only if G is bipartite;

(ii) G is bipartite if and only if λi is an eigenvalue of ℓ, then the value 2 − λi is also an

eigenvalue of ℓ and mℓ(λi) = mℓ(2−λi), where mℓ(λi) denotes the multiplicity of the eigenvalue

λi of ℓ.

In terms of the spectrum on the normalized Laplacian of G, the special calculation formulae

for the multiplicative degree-Kirchhoff index, the Kemeny’s constant and the number of spanning

trees of graph can be expressed as follows.

Lemma 1.2 Let G be a simple connected graph with N0 vertices and E0 edges and σ = {0 =

λ1, λ2, . . . , λN0} be the spectrum on the normalized Laplacian ℓ of G. Then

(i) ([11]) The multiplicative degree-Kirchhoff index of G is

Kf ′(G) = 2E0

N0∑
i=2

1

λi
.

(ii) ([12]) The Kemeny’s constant of G is

K(G) =

N0∑
i=2

1

λi
.

(iii) ([10]) The number Nst(G) of spanning trees of G is

Nst(G) =

∏N0

i=1 di
∏N0

k=2 λk∑N0

i=1 di
.
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Apparently, from Lemma 1.2 (i) and (ii) the relation between the multiplicative degree-

Kirchhoff index and the Kemeny’s constant is

Kf ′(G) = 2E0K(G). (1.1)

Let G be a simple connected graph with N0 vertices and E0 edges. Replacing each edge of

G with two parallel paths of lengths 1 and 4 results in a new graph W (G), which is called the

pentagonal graph of the graph G. Figure 1 gives an example of the pentagonal graph of the cycle

C5.

Figure 1 the pentagonal graph W (C5) of the cycle C5

Let N and E denote the number of vertices and edges of W (G). It is clear that

E = 5E0, N = N0 + 3E0. (1.2)

This work is motivated by [13–15], in which the researchers described the normalized Laplacian

spectra of the quadrilateral graph, iterated triangulation and subdivisions of a graph and their

applications are also described.

In Section 2, we give the spectra of the normalized Laplacian of pentagonal graphs. In

Section 3, we determine the spectrum of the normalized Laplacian for Wn(G) (n > 0). Finally,

the specific formulae to calculate three significant invariants, the multiplicative degree-Kirchhoff

index, the Kemeny’s constant and the number of spanning trees of W (G) and Wn(G) are derived.

2. The normalized Laplacian spectrum of the pentagonal graph W (G)

For the pentagonal graph W (G) of G, the normalized Laplacian of it is written as ℓW .

Let the degree of the vertex i ∈ V (W (G)) be d
′

i. AW is the adjacency matrix of W (G) and

PW = D
− 1

2

W AWD
− 1

2

W , where DW is the degree matrix of W (G). In order to keep accordance, the

normalized Laplacian of G is denoted by ℓG and let PG = D
− 1

2

G AGD
− 1

2

G .

The following lemma expresses the relationship of the normalized Laplacian eigenvalues of

W (G) and G.

Lemma 2.1 Let λ be an eigenvalue of ℓW such that λ ̸= 1, 1
2 . Then

4λ(1−λ)
1−2λ is an eigenvalue of

ℓG with the same multiplicity as the eigenvalue λ of ℓW .
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Proof Let VN be the set of all the newly added vertices in W (G) and VO be the set of the

vertices inherited from G. That is, the vertex set V (W (G)) of W (G) is the union of VN and VO.

Let v = (v1, v2, . . . , vN )T be an eigenvector with respect to the eigenvalue λ of ℓW , i.e.,

ℓW v = (I − PW )v = λv. (2.1)

For any vertex u ∈ V (W (G)), Eq. (2.1) indicates that

(1− λ)vu =
N∑

k=1

PW (u, k)vk =
N∑

k=1

AW (u, k)√
d

′

ud
′
k

vk. (2.2)

For any vertex i ∈ VO, let NN ⊆ VN denote the set of the new neighbors of vertex i in W (G)

and NO ⊆ VO denote the set of the neighbors of vertex i inherited from G. By the construction

of W (G) and Eq. (2.2), we have

(1− λ)vi =
∑

i
′
1∈NN

1√
d

′
id

′

i
′
1

vi′1
+

∑
j∈NO

1√
d

′
id

′
j

vj =
∑

i
′
1∈NN

1

2
√
di
vi′1

+
∑
j∈NO

1

2
√
didj

vj , (2.3)

where i
′

1 ∈ VN and j ∈ VO are neighbor vertices of i in W (G).

Similarly, for any i
′

1 ∈ NN , it follows

(1− λ)vi′1
=

1√
d

′

i
′
1

d
′

i
′
2

vi′2
+

1√
d

′

i
′
1

d
′
i

vi =
1

2
vi′2

+
1

2
√
di
vi, (2.4)

where i
′

2 ∈ VN and i ∈ VO are neighbor vertices of i
′

1 in W (G).

Similarly, for the vertex i
′

3 ∈ VN which is adjacent to i
′

2 ∈ NN and j ∈ NO, we obtain

(1− λ)vi′3
=

1

2
vi′2

+
1

2
√
dj

vj . (2.5)

For the vertex i
′

2 ∈ VN which is adjacent to i
′

1 ∈ NN and i
′

3 ∈ VN , we obtain

(1− λ)vi′2
=

1

2
(vi′1

+ vi′3
). (2.6)

Combining Eqs. (2.4) and (2.6), we have

((1− λ)2 − 1

4
)vi′1

=
1

4
vi′3

+
(1− λ)

2
√
di

vi, for λ ̸= 1. (2.7)

Combining Eqs. (2.5) and (2.6), we have

((1− λ)2 − 1

4
)vi′3

=
1

4
vi′1

+
(1− λ)

2
√

dj
vj , for λ ̸= 1. (2.8)

Combining Eqs. (2.7) and (2.8), we have

((1− λ)2 − 1

2
)(1− λ)vi′1

=
1

8
√
dj

vj +
(1− λ)2 − 1

4

2
√
di

vi, for λ ̸= 1

2
,
3

2
and 1. (2.9)

Again, combining Eqs. (2.3) and (2.9), for λ ̸= 1
2 , 1 and 3

2 , it follows

((1− λ)2 − 1

2
)(1− λ)2vi1 =

(1− λ)2 − 1
4

4
vi +

∑
j∈NO

1 + 8(1− λ)((1− λ)2 − 1
2 )

16
√
didj

vj . (2.10)
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Therefore, the equation

4λ2 − 6λ+ 1

1− 2λ
vi =

∑
j∈NO

1√
didj

vj (2.11)

holds for λ ̸= 1
2 , 1 and 3

2 .

From Eq. (2.11), it is obvious that 4λ2−6λ+1
1−2λ is an eigenvalue of the matrix PG for λ ̸= 1

2 , 1 and
3
2 . So

4λ(1−λ)
1−2λ is an eigenvalue of ℓG and v0 = (vi)

T
i∈VO

is the corresponding eigenvector. Moreover,

the eigenvectors v with respect to the eigenvalue λ (λ ̸= 1
2 , 1,

3
2 ) of ℓW can be completely decided

by v0 and Eqs. (2.4), (2.5) and (2.9).

Since 4λ(1−λ)
1−2λ is the corresponding eigenvalue of ℓG for any eigenvalue λ (λ ̸= 1

2 , 1,
3
2 ) of ℓW ,

we have mℓG

( 4λ(1−λ)
1−2λ

)
≥ mℓW (λ). In fact, mℓG

( 4λ(1−λ)
1−2λ

)
= mℓW (λ). Otherwise there exists at

least an extra eigenvector v
′

0 associated to 4λ(1−λ)
1−2λ without a corresponding eigenvector in ℓW .

But Eq.(2.9) gives v
′

0 an associated eigenvector of ℓW when λ ̸= 1
2 , 1,

3
2 , which is a contradiction

with mℓG

( 4λ(1−λ)
1−2λ

)
> mℓW (λ).

By verifying, λ = 3
2 also satisfies Eq. (2.9).

The proof is completed. �
Now, we give a complete representation about the normalized Laplacian eigenvalues and

corresponding eigenvectors of W (G).

Theorem 2.2 Let G be a simple connected graph with N0 vertices and E0 edges and W (G)

be the pentagonal graph of G. The normalized Laplacian spectrum of W (G) can be obtained as

follows:

(i) 0 is the eigenvalue of ℓW with the multiplicity 1;

(ii) If λ is any eigenvalue of ℓG such that λ ̸= 0, 2, then both 2+λ+
√
4+λ2

4 and 2+λ−
√
4+λ2

4

are eigenvalues of ℓW with mℓW ( 2+λ+
√
4+λ2

4 ) = mℓW ( 2+λ−
√
4+λ2

4 ) = mℓG(λ);

(iii) 5±
√
5

4 is the eigenvalue of ℓW with the multiplicity N0;

(iv) 1 is the eigenvalue of ℓW with the multiplicity E0 −N0 + 1;

(v) 2±
√
2

2 is the eigenvalue of ℓW with the multiplicity E0 −N0 +mℓG(2).

Proof In this proof, we continue to use the representing approach and notations of Lemma 2.1

for convenience.

(i) It is obvious from Lemma 1.1.

(ii) Let x be an eigenvalue of ℓW such that x ̸= 1
2 , 1. By Lemma 2.1, we have λ = 4x(1−x)

1−2x ,

for λ ̸= 0, 2. Thus x = 2+λ±
√
4+λ2

4 .

(iii) Substituting λ = 5+
√
5

4 into Eqs. (2.7) and (2.8), we get

(1 +
√
5)vi′1

= 2vi′3
+

−1−
√
5√

di
vi, (2.12)

(1 +
√
5)vi′3

= 2vi′1
+

−1−
√
5√

dj
vj . (2.13)
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After substituting Eq. (2.13) into Eq. (2.12) and eliminating vi′3
, we get

(1 +
√
5)vi′1

=
−1−

√
5√

dj
vj −

3 +
√
5√

di
vi. (2.14)

After substituting Eq.(2.14) and λ = 5+
√
5

4 into Eq. (2.3) again, we find∑
i
′
1∈NN

1

2
√
di

× 1

1 +
√
5
(
−1−

√
5√

dj
vj −

3 +
√
5√

di
vi) +

∑
j∈NO

1

2
√

didj
vj

=
∑

i
′
1∈NN

1

2
√
di
(
−1

dj
vj −

3 +
√
5

1 +
√
5
× 1√

di
vi) +

∑
j∈NO

1

2
√
didj

vj

=
∑
j∈NO

(
−1

2
√

didj
vj −

1 +
√
5

4
× 1

di
vi) +

∑
j∈NO

1

2
√

didj
vj

=
∑
j∈NO

−1−
√
5

4di
vi =

−1−
√
5

4
vi.

The above equality indicates Eq. (2.3) is an identical equation when λ = 5+
√
5

4 and Eq. (2.14)

hold. Therefore, the eigenvectors associated with λ = 5+
√
5

4 are completely determined by any

vi and vj . We get mℓW ( 5+
√
5

4 ) = N0.

The same theory proves mℓW ( 5−
√
5

4 ) = N0.

(iv) Substituting λ = 1 into Eq.(2.9), we get vi√
di

=
vj√
dj

, for i ∼ j and i, j ∈ VO. Set

vi√
di

= t, i ∈ VO because of the connectivity of G. Substituting into (2.7) and (2.3), we have

vi′1
+ vi′3

= 0, i
′

1 � i
′

3, i
′

1, i
′

3 ∈ VN , (2.15)∑
i
′
1∈NN

vi′1
= −tdi, i ∈ VO. (2.16)

By Eq. (2.15), we have∑
i∈VO

∑
i
′
1∈NN

vi′1
=

1

2

∑
i
′
1�i

′
3

(vi′1
+ vi′3

) = 0, i
′

1, i
′

3 ∈ VN . (2.17)

On the other hand, using Eq. (2.16), we also have∑
i∈VO

∑
i
′
1∈NN

vi′1
= −t

∑
i∈VO

di = −2tm. (2.18)

Thus, t = 0 from Eqs. (2.17) and (2.18), i.e., vi = 0, for any i ∈ VO. Therefore, the eigenvectors

v = (v1, v2, . . . , vN )T with respect to λ = 1 can be completely obtained by equations below

vi = 0, i ∈ VO; (2.19)∑
i
′
1∈NN

vi′1
= 0; (2.20)

and

vi′1
+ vi′3

= 0. (2.21)
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In addition, due to λ ̸= 1, combining Eqs. (2.21) and (2.6), we have vi′2
= 0.

(v) Theorem 2.2 (i)–(iv) show a large fraction of the eigenvalues of ℓW and we conclude that

we have (1+2(N0−mℓG(2)−1)+2N0+E0−N0+1) eigenvalues of ℓW . The rest of the spectrum

consists of 2±
√
2

2 s. According to Eq. (1.2), the number of vertices of W (G) is N = N0 + 3E0.

Because the sum of the number of eigenvalues is equal to the number of vertices, we have

N0 + 3E0 = (1 + 2(N0 −mℓG(2)− 1) + 2N0 + E0 −N0 + 1) + 2mℓW (
2±

√
2

2
).

Simplifying this equation, we have mℓW ( 2±
√
2

2 ) = E0 −N0 +mℓG(2). �

3. Some applications of spectra of W (G)

Let W0(G) = G, W1(G) = W (G), Wn(G) = W (Wn−1(G)). The graph Wn(G) is called nth

pentagonal iterative graph of the initial graph G. Figure 1 also provides an example of the first

two generations of the pentagonal iterative graph whose initial graph is K2.

The number of vertices and edges of Wn(G) (n > 0) are denoted by Nn and En. From the

iterative method of the pentagonal iterative graph, we have En = 5En−1, Nn = Nn−1 + 3En−1

and

En = 5nE0, Nn = N0 +
3(5n − 1)

4
E0. (3.1)

Let f1(x) =
2+x+

√
4+x2

4 , f1(x) =
2+x−

√
4+x2

4 and A be a finite multiset of real number. We

define

f1(A) = {f1(x)|∀x ∈ A} and f2(A) = {f2(x)|∀x ∈ A}. (3.2)

The normalized Laplacian of Wn(G) is denoted by ℓn. The normalized Laplacian spectrum

σn of Wn(G) can be characterized directly by Theorem 2.2.

The largest eigenvalue of ℓn is not equal to 2 if and only if random walks on Wn(G) are

aperiodic. Since each edge of Wn(G),n > 0, belongs to an odd-length cycle(a pentagon), the

graph is aperiodic [16, 17]. Thus mℓn(2) = 0 holds for n > 0. Note, however, that the value of

mℓn(2) = 0 depends on the structure of the initial graph G, since it may be periodic [18].

Theorem 3.1 Let G be a simple connected graph. The normalized Laplacian spectrum σn of

the pentagonal iterative graph Wn(G)(n ≥ 1) is

σn =



f1(σ0 {0, 2}) ∪ f2(σ0 {0, 2}) ∪ 0 ∪ {1, 1, . . . , 1}︸ ︷︷ ︸
E0−N0+1

∪

{5±
√
5

4
,
5±

√
5

4
, . . . ,

5±
√
5

4
}︸ ︷︷ ︸

N0

∪{2±
√
2

2
,
2±

√
2

2
, . . . ,

2±
√
2

2
}︸ ︷︷ ︸

r1+mℓ0
(2)

, n = 1;

f1(σn−1 {0}) ∪ f2(σn−1 {0}) ∪ 0 ∪ {1, 1, . . . , 1}︸ ︷︷ ︸
En−1−Nn−1+1

∪

{5±
√
5

4
,
5±

√
5

4
, . . . ,

5±
√
5

4
}︸ ︷︷ ︸

Nn−1

∪{2±
√
2

2
,
2±

√
2

2
, . . . ,

2±
√
2

2
}︸ ︷︷ ︸

rn

, n > 1,
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where rn = 5n−1+3
4 E0 −N0.

Proof The result holds by Theorem 2.2. By iteration, we concluded (2(Nn−1 − mℓn−1(2) −
mℓn−1(0)) + 1 + En−1 −Nn−1 + 1 + 2Nn−1) eigenvalues of ℓn we knew. According to Eq. (3.1),

the number of vertices of Wn(G) is Nn = N0 +
3(5n−1)

4 E0. Because the sum of the number of

eigenvalues is equal to the number of vertices, the multiplicity of the eigenvalue 2+
√
2

2 of ℓn can

be determined indirectly:

mℓn(
2±

√
2

2
) =

Nr − [2(Nn−1 −mℓn−1(2)−mℓn−1(0)) + 1 + En−1 −Nn−1 + 1 + 2Nn−1]

2

=
5n−1 + 3

4
E0 −N0 +mℓn−1(2).

Since mℓn−1(2) = 0 for n > 1, the theorem is true. �

Theorem 3.2 Let G be a simple connected graph. The multiplicative degree-Kirchhoff index

Wn(G) and Wn−1(G) (n > 1), are related as follows:

Kf∗(Wn(G)) = 20Kf∗(Wn−1(G)) +
17 · 52n−1 + 3 · 5n

2
E2

0 − 2 · 5n(E0 + E0N0). (3.3)

Thus, the general expression for Kf∗(Wn(G)) is

Kf∗(Wn(G)) = 20nKf∗(G) +
17(52n − 20n) + 20n − 5n

2
E2

0 − 2 · 5n(22n − 1)

3
(E0 + E0N0).

In addition,

Kf∗(W (G)) = 20Kf∗(G) + 50E2
0 − 10(E0 + E0N0) + 40E0mℓ0(2), n = 1.

Proof We denote the spectrum of Wn(G) by σn = {λ(n)
1 , λ

(n)
2 , . . . , λ

(n)
Nn

}, where 0 = λ
(n)
1 <

λ
(n)
2 ≤ · · · ≤ λ

(n)
Nn−1 ≤ λ

(n)
Nn

≤ 2. We use Lemma 1.2 (i) and Theorem 3.1:

When n = 1 and mℓn−1
(2) ̸= 0, we obtain:

Kf∗(W (G)) =2E1

[ N0∑
i=2

(
1

f1(λi)
+

1

f2(λi)
) + (E0 −N0 + 1) + (

4

5 +
√
5
+

4

5−
√
5
) ·N0+

(
2

2 +
√
2
+

2

2−
√
2
) · (E0 −N0 +mℓ0(2))

]
=2E1

[ N0∑
i=2

(2 +
4

λi
) + (E0 −N0 + 1) + 2N0 + 4(E0 −N0 +mℓ0(2))

]
=10E0

N0∑
i=2

(2 +
4

λi
) + 10E0(5E0 − 3N0 + 1 +mℓ0(2))

=20Kf∗(G)) + 50E2
0 − 10(E0 + E0N0) + 40E0mℓ0(2).

When n > 1 and mℓn−1(2) = 0, we obtain:

Kf∗(Wn(G)) =2En

[Nn−1∑
i=2

(
1

f1(λ
(n−1)
i )

+
1

f2(λ
(n−1)
i )

) + (En−1 −Nn−1 + 1)+

(
4

5 +
√
5
+

4

5−
√
5
) ·Nn−1 + (

2

2 +
√
2
+

2

2−
√
2
) · (5

n−1 + 3

4
E0 −N0)

]
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=10En−1

[Nn−1∑
i=2

(2 +
4

λ
(n−1)
i

) + (5n−1E0 −N0 −
3(5n−1 − 1)

4
E0 + 1)+

2(N0 +
3(5n−1 − 1)

4
E0) + 4(

(5n−1 + 3)

4
E0 −N0)

]
=20Kf∗(Wn−1(G)) +

17 · 52n−1 + 3 · 5n

2
E2

0 − 2 · 5n(E0 + E0N0).

From Eq. (3.3) and the definition of the pentagonal iterative graph we can get the recursive

relation

Kf∗(Wn(G)) = 20nKf∗(G) +
17(52n − 20n) + 20n − 5n

2
E2

0 − 2 · 5n(22n − 1)

3
(E0 + E0N0). �

Theorem 3.3 The Kemeny’s constant for random walks on Wn(G) can be obtained from

K(Wn−1(G)) (n > 1) through

K(Wn(G)) = 4K(Wn−1(G)) +
17 · 5n−1 + 3

4
E0 −N0 − 1.

The general expression is

K(Wn(G)) = 4nK(G) +
17(5n − 4n) + (4n − 1)

4
E0 −

4n − 1

3
(N0 + 1).

In addition, when n = 1 and mℓn−1(2) ̸= 0, we obtain:

K(W (G)) = 4K(W (G)) + 5E0 −N0 − 1 + 4mℓ0(2).

Proof This result is a direct consequence of Theorem 3.2 and Eq. (1.1). �

Theorem 3.4 The number of spanning trees of W (G) is

Nst(Wn(G)) = 5Nn−1−1 · 2Nn−1−3N0+
8−5n−1

4 E0+2Nst(Wn−1(G)).

In general, Nst(Wn(G)) can be expressed by

Nst(Wn(G)) = 5
∑n−1

i=0 Ni−n · 2
∑n−1

i=0 Ni− 5n−1
16 E0+n(2E0−3N0+2)Nst(G).

Proof From Lemma 1.2 (iii) and the definition of pentagonal of a graph:

Nst(Wn(G))

Nst(Wn−1(G))
=

2Nn

5
·

∏Nn

i=2 λ
(n)
i∏Nn−1

i=2 λ
(n−1)
i

,

where λ
(n)
i are the eigenvalues of ℓn. We obtain, for n > 0:

Nn∏
i=2

λ
(n)
i =(

5 +
√
5

4
· 5−

√
5

4
)Nn−1 · (2 +

√
2

2
· 2−

√
2

2
)

5n−1+3
4 E0−N0 ·

Nn−1∏
i=2

(
f1(λ

(n−1)
i ) · f2(λ(n−1)

i )
)

=
(5
4

)Nn−1 ·
(1
2

) 5n−1+3
4 E0−N0 ·

Nn−1∏
i=2

λ
(n−1)
i

4
.
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Therefore, the following equality

Nst(Wn(G)) =
2Nn

5
·
( 54 )

Nn−1 · ( 12 )
5n−1+3

4 E0 −N0 ·
∏Nn−1

i=2
λ
(n−1)
i

4∏Nn−1

i=2 λ
(n−1)
i

Nst

(
Wn−1(G)

)
=5Nn−1−1 · 2Nn−1−3N0+

8−5n−1

4 E0+2Nst

(
Wn−1(G)

)
holds for any n > 0, and finally we have:

Nst

(
Wn(G)

)
= 5

∑n−1
i=0 Ni−n · 2

∑n−1
i=0 Ni− 5n−1

16 E0+n(2E0−3N0+2)Nst(G). �
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