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Abstract An operator F ∈ B(X) is called power finite rank if Fn is of finite rank for some n ∈ N.
In this note, we provide several interesting characterizations of power finite rank operators. In

particular, we show that the class of power finite rank operators is the intersection of the class

of Riesz operators and the class of operators with eventual topological uniform descent.
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1. Introduction

Power finite rank operators F (that is, Fn is of finite rank for some n ∈ N) were first in-

vestigated by Kaashoek and Lay [1]: they showed that the descent spectrum (resp., the ascent

spectrum) is invariant under any commuting power finite rank perturbation F , and they conjec-

tured that this perturbation property characterizes such operators F . In 2006, Burgos, Kaidi,

Mbekhta and Oudghiri [2] confirmed this conjecture for the descent spectrum. Later, several

authors [3, 4] extended this result to the essential descent spectrum, the left Drazin spectrum

and the left essentially Drazin spectrum. In [5], using the theory of operators with eventual

topological uniform descent and the technique used by Burgos et al., the authors generalized

these results to various spectra originating from semi-B-Fredholm theory. But we remark here

that the conjecture of Kaashoek and Lay for the ascent spectrum (or the topological uniform

descent spectrum) is still unsolved. In this note, we give several interesting characterizations of

power finite rank operators from another perspective. In particular, we prove that the class of

power finite rank operators is the intersection of the class of Riesz operators and the class of

operators with eventual topological uniform descent.

We first fix some notations in spectral theory. Throughout this note, let B(X) denote the

Banach algebra of all bounded linear operators acting on an infinite-dimensional complex Banach

space X, F(X) denote its ideal of finite rank operators and K(X) denote its closed ideal of
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compact operators. An operator T ∈ B(X) is called Riesz if the coset T+K(X) is quasinilpotent

in the Calkin algebra B(X)/K(X). For an operator T ∈ B(X), let T ∗ denote its dual, N (T ) its

kernel, R(T ) its range, α(T ) = dimN (T ) and β(T ) = dimX/R(T ). If the range R(T ) is closed

and α(T ) < ∞ (resp., β(T ) < ∞), then T ∈ B(X) is said to be upper semi-Fredholm (resp.,

lower semi-Fredholm). If T ∈ B(X) is both upper and lower Fredholm opertor, then T is said to

be Fredholm. For T ∈ B(X), the essential spectrum of T is defined by

σe(T ) := {λ ∈ C : T − λ is not Fredholm}.

From Atkinson characterization of Fredholm operators ([6, Theorem 1.53]), it follows that T ∈
B(X) is Riesz if and only if σe(T ) = {0}.

For each n ∈ N := {0, 1, 2, . . .}, we set

cn(T ) = dimR(Tn)/R(Tn+1) and c′n(T ) = dimN (Tn+1)/N (Tn).

It follows from [7, Lemmas 3.1 and 3.2] that, for every n ∈ N,

cn(T ) = dimX/(R(T ) +N (Tn)), c′n(T ) = dimN (T ) ∩R(Tn).

Hence, it is easy to see that the sequences {cn(T )}∞n=0 and {c′n(T )}∞n=0 are decreasing. Recall

that the descent and the ascent of T ∈ B(X) are dsc(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)} and

asc(T ) = inf{n ∈ N : N (Tn) = N (Tn+1)}, respectively (the infimum of an empty set is defined

to be ∞). That is,

dsc(T ) = inf{n ∈ N : cn(T ) = 0}

and

asc(T ) = inf{n ∈ N : c′n(T ) = 0}.

Similarly, the essential descent and the essential ascent of T ∈ B(X) are

dsce(T ) = inf{n ∈ N : cn(T ) < ∞}

and

asce(T ) = inf{n ∈ N : c′n(T ) < ∞}.

If asc(T ) < ∞ and R(T asc(T )+1) is closed, then T is said to be left Drazin invertible. If dsc(T ) <

∞ and R(T dsc(T )) is closed, then T is said to be right Drazin invertible. If asc(T ) = dsc(T ) < ∞,

then T is said to be Drazin invertible. Clearly, T ∈ B(X) is both left and right Drazin invertible

if and only if T is Drazin invertible. If asce(T ) < ∞ and R(T asce(T )+1) is closed, then T is said

to be left essentially Drazin invertible. If dsce(T ) < ∞ and R(T dsce(T )) is closed, then T is said

to be right essentially Drazin invertible.

Let T ∈ B(X) and d ∈ N. The operator range topology on R(T d) is defined by the norm

∥ · ∥R(Td) such that for all y ∈ R(T d),

∥y∥R(Td) = inf{∥x∥ : x ∈ X, y = T dx}.

We say that T has uniform descent for n ≥ d if R(T )+N (Tn+1) = R(T )+N (Tn) for all n ≥ d.

If in addition R(Tn) is closed in the operator range topology of R(T d) for all n ≥ d, then we
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say that T has eventual topological uniform descent, and more precisely, that T has topological

uniform descent for n ≥ d.

2. Main result

The main result of this note is the following theorem, which provides several interesting

characterizations of power finite rank operators.

Theorem 2.1 Let F ∈ B(X). The following statements are equivalent:

(1) Fn ∈ F(X) for some n ∈ N;
(2) F is Riesz and Drazin invertible;

(3) F is Riesz and left Drazin invertible;

(4) F is Riesz and right Drazin invertible;

(5) F is Riesz and left essentially Drazin invertible;

(6) F is Riesz and right essentially Drazin invertible;

(7) F is Riesz and dsc(F ) < ∞;

(8) F is Riesz and dsce(F ) < ∞;

(9) F is a Riesz operator with eventual topological uniform descent.

Proof (1) ⇒ (2). Since Fn ∈ F(X) for some n ∈ N, Fn is Riesz, that is, σe(F
n) = {0}.

By the spectral mapping theorem for the essential spectrum ([6, Corollary 3.61]), we get that

σe(F ) = {0}, so F is Riesz.

From the fact that the range spaces are decreasing

R(F ) ⊇ R(F 2) ⊇ · · · ⊇ R(Fn) ⊇ · · · ,

and the fact that R(Fn) is finite-dimensional, it follows that dsc(F ) < ∞. Since Fn ∈ F(X),

R(Fn) is a closed and finite-dimensional subspace, and hence dimX/N (Fn) = dimR(Fn) < ∞.

That is, N (Fn) has finite-codimension in X. This together with the fact that the null spaces

are increasing

N (F ) ⊆ N (F 2) ⊆ · · · ⊆ N (Fn) ⊆ · · · ⊆ X,

implies that asc(F ) < ∞. Thus F is Drazin invertible.

(2) ⇒ (3) ⇒ (5). Clear.

(5) ⇒ (1). Suppose that F is Riesz and left essentially Drazin invertible. Then there exists

n ∈ N such that asce(F ) = n < ∞ and R(Fn+1) is closed. By [8, Lemma 7], it follows that

R(Fn) is closed. Therefore, the restriction F |R(Fn) : R(Fn) −→ R(Fn) is an upper semi-

Fredholm operator. Since F is Riesz, by [6, Theorem 3.113], the restriction F |R(Fn) of F to

R(Fn) is also Riesz. Hence F |R(Fn) − λ is upper semi-Fredholm for all non-zero λ ∈ C. Thus

F |R(Fn) − λ is upper semi-Fredholm for all λ ∈ C. That is, the upper semi-Fredholm spectrum

σUSF(F |R(Fn)) := {λ ∈ C : F |R(Fn) − λ is not upper semi-Fredholm}

of F |R(Fn) is empty. Also, note that the upper semi-Fredholm spectrum of an operator acting
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on an infinite-dimensional complex Banach space is non-empty [9]. Therefore, R(Fn) is finite-

dimensional.

(2) ⇒ (4) ⇒ (6) ⇒ (8). Clear.

(2) ⇒ (4) ⇒ (7) ⇒ (8). Clear.

(8) ⇒ (9). Suppose that F is Riesz and dsce(F ) < ∞. Then there exists m ∈ N such that

dese(F ) = m < ∞. That is, R(F ) + N (Fm) has finite-codimension in X. This together with

the fact that the spaces {R(F ) +N (Fn)}∞n=0 are increasing

R(F ) +N (F 0) ⊆ R(F ) +N (F ) ⊆ R(F ) +N (F 2) ⊆ · · · ⊆ R(F ) +N (Fn) ⊆ · · · ⊆ X,

we infer that there exists d ≥ m such that R(F )+N (Fn+1) = R(F )+N (Fn) for all n ≥ d. Note

that dimR(F d)/R(Fn) = dimR(F d)/R(F d+1)+dimR(F d+1)/R(F d+2)+· · ·+dimR(Fn−1)/R(Fn)

is finite for all n > d. Because R(Fn) can be viewed as the operator range of the restriction

Fn−d|R(Fd) : (R(F d), ||·||R(Fd)) −→ (R(F d), ||·||R(Fd))

of Fn−d to R(F d), by [6, Corollary 1.15] it follows that R(Fn) is closed in the operator range

topology of R(F d) for all n > d. Therefore, F has eventual topological uniform descent.

(9) ⇒ (1). Suppose that F is a Riesz operator with eventual topological uniform descent.

Then F ∗ also is a Riesz operator ([6, Corollary 3.114]). Hence F ∗ has single valued extension

property at every λ ∈ C ([10, Theorem 0.3]): here we say that an operator T ∈ B(X) has the

single-valued extension property at λ0 ∈ C, if for every open neighbourhood Uλ0 ⊆ C of λ0, the

only analytic solution f : Uλ0 → X of the equation (T − λ)f(λ) = 0 for all λ ∈ Uλ0 is the zero

function on Uλ0 . In particular, F ∗ has single valued extension property at 0. Because F has

eventual topological uniform descent, by [11, Theorem 3.4] it follows that des(F ) < ∞. Then

there exists n ∈ N such that des(F ) = n < ∞. Therefore, the dimension of the quotient space

X/(R(F ) +N (Fn)) is zero. So the induced operator FN (Fn) defined on X/N (Fn) by

FN (Fn)(x+N (Fn)) = Fx+N (Fn)

is surjective, and hence is lower semi-Fredholm. Since F is Riesz, by [6, Theorem 3.115], the

induced operator FN (Fn) is also Riesz. Hence FN (Fn)−λ is lower semi-Fredholm for all non-zero

λ ∈ C. Thus FN (Fn) − λ is lower semi-Fredholm for all λ ∈ C. That is, the lower semi-Fredholm

spectrum

σLSF(FN (Fn)) := {λ ∈ C : FN (Fn) − λ is not upper semi-Fredholm}

of FN (Fn) is empty. Also, note that the lower semi-Fredholm spectrum of an operator acting on

an infinite-dimensional complex Banach space is non-empty [9]. Therefore, X/N (Fn) is finite-

dimensional, so is R(Fn). �
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