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Some Applications of the (f, g)-Inversion
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Abstract We present three kinds of applications of the (f, g)-inversion due to Ma. By tak-
ing explicit functions and sequences in the (f, g)-inversion, we derive identities involving hy-
pergeometric series and harmonic numbers. Then we give several inversion relations involving
g-hypergeometric terms. Finally, we combine the (f, g)-inversion and the g-differential operators
to derive some g-series identities.
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1. Introduction and preliminaries

Let N denote the set of nonnegative integers and F' = (fy, k)n ken be an infinite-dimensional
lower-triangular matrix, i.e., f, 5 = 0 for n < k. The matrix G = (gn k)n,ken is the inverse

matrix of F' if and only if

n
Z fn,igi7k = 671,197 n, ke Na
i=k

where ¢ denotes the usual Kronecker delta. We call the entries (fy k, gn,x) an inversion pair.
The study of inversion pairs began with a series of work by Gould [1], Gould-Hsu [2] and
Carlitz [3]. Gessel and Stanton used the inversion pairs to derive a number of hypergeometric
summations and transformations [4]. In 1996, Krattenthaler established the operator method
and found an inversion pair in a general form [5]. In 2004, Ma established the (f, g)-inversion,
which significantly extends Krattenthaler’s results. The main result of Ma can be stated as

follows.

Theorem 1.1 ([6, Theorem 1.3]) Let F = (fpn k)n.ken, G = (gn.k)n.ken be two lower triangular
matrices with entries given by

n—1
_ Hi:k f(xwyk)
ok =0,
Hi:k+1 g(yiv yk)

and
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where f(x,y) and g(z,y) are two arbitrary functions in variables x and y, {x;} and {y;} are
two arbitrary sequences. Suppose further g(x,y) is antisymmetric, i.e., g(z,y) = —g(y,z). Then

(fnk>gn.k) Is an inversion pair if and only if for all a, b, ¢, z,
9(a,b)f(z,c) — g(a,c) f(x,b) + g(b,c) f(z,a) = 0. (1.1)

There is a standard technique for deriving new summation formulas from known ones by

using the inversion pairs [7-9]. If (f, &, gn k) is an inversion pair, then we have

a(n) = Z fnkb(k) <= b(n) = ngka(lﬂ). (1.2)
k=0 k=0

If one side in (1.2) is known, then the other produces a new summation formula. Along this
approach, we derive some hypergeometric identities and basic hypergeometric identities.

By taking explicit functions f(z,y),¢(z,y) and sequences z;,y;, we first derive an identi-
ty with several parameters in Section 2. As an interesting application, we obtain an identity
involving harmonic numbers. Then we consider the g-cases in Section 3 and derive several inver-
sion pairs involving basic hypergeometric terms. Finally, we combine the inversion pair and the
g-differential operator to derive some basic hypergeometric identities in Section 4.

We adopt the notation and terminology in [10]. The hypergeometric series and basic hyper-

geometric series are defined by

A1,A2, ..., 0 = (al)k(a2)k"'(ar)kz
2| = )
b, ba, ..., bs ] kZ:O (01)k(b2) - - - (bs) k!

TFS

ai,ag,...,a0, = (a1, az, ..., a0 q) 2" k() 14sor
rPs 4,2 = -1 2 R
’ [ b1,b, ..., bs ! 1 kZ:O (q,b1,02, ..., bs; @)k (07

where the rising factorial (a)y is given by (a)r = a(a+1)--- (a+ k — 1) and the rising g-factorial
(a;q)r is given by

k—1
(a;¢)k = H(l —aq’).
=0
We also use
(@:@)oe = [[(1 = ag"), (ar,a2,...,ar; @)k = (a1;Q)k(az; Q) - - (ar; -
i=0

2. An inverse relation and its applications

In this section, we derive an identity with several parameters by taking explicit functions
f(z,y),g(x,y) and sequences x;,y; in Theorem 1.1. As two examples of the applications of
the identity, we derive a curious hypergeometric identity and an identity involving harmonic
numbers.

Utilizing Theorem 1.1, we obtain the following identity on hypergeometric series.
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Theorem 2.1 Let ¢(n) be the hypergeometric series

a1y...,0p_2,—MN,0+N
c(n) = ,F 32|
bi,...,bs
where a1, ...,a,_2,b1,...,bs and a, z are parameters independent of n. We have

(@)n+1(a1)n - (@r—2)nz" _ zn:(—l)k (n> (a+ 2k)(a) (k).

(bl)n"'(bs)n - k=0 k (a,—|—'fl—|— l)kc

Proof Let g(z,y) =z —y and f(z,y) = = +y. It is straightforward to check that (1.1) holds.
Setting z; = a 4+ i and y; = ¢ in Theorem 1.1, we obtain an inversion pair

(a+2k)p—k _ (a)n(a+n)g
(n—k)! (a)or(n — k)’
Let a(n) = (a)nc(n)/n! and

et 0+ 2k (a+n+1),

Tk = a+2n(a+n+1)g(n—Fk)

Ink = (_1)

(2.1)

We see that

Hence by (1.2), we have

(=D"(a)2n(a1)n - (ar—2)nz" - -k 0+ 2k (a+n+1), (a)re(k)
(b1)n -+ (bs)nn! _Z( 1 ka+2n (a+n+1Dgn—Fk)! Kk

We thus complete the proof by some simplification. [J

k=0
When the hypergeometric series ¢(n) has a closed formula, we will derive a summation formula
on hypergeometric series.

Example 2.2 The following identity for balanced hypergeometric series of 5 F} is the ¢ = 1 case
of [11, Proposition 2.11]:

P, fn,n+1,g,1+7a,1+%a.l 2—2a+n (1-a),
’ 2(1+2n)(1—a) n!

3 2a =
§a1a1+a‘a?

Setting a = 1 in Theorem 2.1, we thus derive

4+ (HY)a(1+2), 1 Xn:(l)k<n>(22a+k)(1a)k
) .

(%)n(1+a)n(2’?a)n B 2(1-a k (24 n)k

k=0
Huang showed that a new inversion pair can be obtained from a known one by multiplying

suitable factors.

Lemma 2.3 ([12, Lemma 3.6.1]) Suppose that F' = (fp k)n.ken and G = (gn k)n,ken are lower-
triangular matrices that are inverses of each other. Let A, and B,, be two functions of n. Then

A B )
I = (f"gik)n,keN and G' = (g’"‘l’qﬂ)n,keN are also inverses of each other.
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Setting a = 1 in (2.1) and Ay = %, By, =1 in Lemma 2.3, we obtain a new inversion pair:
n\ /n+k e (2_n)(2k+1)

m (D)), s DD ”
k k (M (n+k+1)

This pair leads to an identity involving harmonic numbers, which seems to be new.

Example 2.4 It is known that [13, Equation (2.37)]

() =S () () e v

where H,, denotes the n-th harmonic number H,, = Y ;'_; 1.

Setting a(n) = (—1)”(";1’) (;)(2Hn — H,), b(k) = (—1)’“(’;)Hk in (1.2). Since (2.2) is an

inversion pair, we have

(1) i(—l)”"“W(—l)k ("I (5 -1,

p k=0 (27?)(”"'1‘14‘1 p

After some simplification, we obtain

n\ [2n - 2n E+p\/(k\ (2k+1)
H, = T (20, — H,).
(p) (n) L kz_%(n—k)< p )(p> CETES A
In particular, when p = 0, the above identity becomes
1/2n "/ 2n (2k +1)
- H, = — M.
2(n> %(n—k)(n—l—k—i—l) i
3. Inversion relations involving ¢-hypergeometric terms

In this section, we will give a number of inversion pairs involving basic hypergeometric terms.

Theorem 3.1 Let M(a,b) be the infinite-dimensional lower-triangular matrix

CqDnla™ 24" ™ Ok 4
M(a,b) = - n. .
( ) ( (Q7Eq2,q)k q ) ,keN
Then
—n; 1—¢ 2k+1
M aby = (OB oy

q
(@, 225 (1 — )

Proof Setting g(z,y) = f(z,y) = = — y, ; = aq’, y; = bg~**1) in Theorem 1.1, we obtain the
inversion pair
o= (aqk _ bq—(k+1))(aqk+1 _ bq—(k-i-l)) . (aqn_l _ bq—(k+1))
n,k (bg=k+2) — bg=(k+1)) (bg=(k+3) — hg=(k+1)) ... (bg—(n+1) — pg—(k+1))
_ G Dnik (™ _ (56 Dn(a™" 54" )k
(5602 (T"50)n (54 0)2(a7 5 @)
B aqk _ bq—(k-i-l) (aqk+1 _ bq—(n+1))(aqk+2 _ bq—(7z+1)) . (aqn _ bq—(n+1)
In,k = ag” — bqf(n+1) (bqf(kjtl) _ bqf(n+1))(bq7(k+2) _ bqf(nJrl)) o (bg — bqf(nJrl))

)
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_ - 1— %q2k+1 (1 _ %qn+k+2)(1 _ %qn-‘rk-‘r?)) . (1 _ %q2n+1)
1— %q2n+1 (1—q)(1—g2)---(1—qnF)
S e Ui (4¢;@)2n (" 1
1=%q (565 0n(30"% Ok (—1)kqk+(5) (¢ O)n
. _ ($69)2k9" _ 1 _ 1 1 :
Taking Ay = 7((’1”%(12;(1)]6 and B, = Co (_1)"(1%7(3) @on o Lemma 2.3, we obtain the

desired M (a,b) and M~1(a,b). O
Theorem 3.2 Let N(a,b) be the infinite-dimensional lower-triangular matrix

(%q:q)n (4
(@GDr (2g5q)

— b .
n7a7q7q)k: k

N(a7b) = ( q )n,keN-

Then

Tah) = @Dk -
( ) ((q’ %qun;q)kq ) ,keN

Proof Setting g(x,y) = f(x,y) = — vy, ; = ag'*, y; = bg® in Theorem 1.1, we get

(36 Dn (7"

frge = :
" (G Dn Z—:(gq—";q)k

(%)n(j‘q;q)n (" 0k x

dn.k = a . 2-n.
‘ b (G D)n (3¢5 )k

b )
Taking A = ((“q‘{(’glk “ng and B, = (q'}z)n in Lemma 2.3, we obtain the desired N(a,b) and
N~Y(a,b). O

Theorem 3.3 Let P(a,b) be the infinite-dimensional lower-triangular matrix

1—02¢%  (2,0%,¢7", abq"; q)

P(a,b) = Ry .
(a,0) = ( 1—b% (q,abq,b2qn+1, gq1_n;q>kq Jn,keN
Then . ) |
- 1 —abq & ab, g™, b%q"; Q)
P~ Ya,b) = By
(a,0) =( 1—ab (q,b%q, abq"t1, qun;q)kq )n,keN

Proof Setting g(x,y) = f(x,y) = (z — y)(1 — 2y), 2; = aq’, y; = bg’ in Theorem 1.1, we get

OF (§.abi@)n (0P @2k (¢ abg™ )k 4,
ak (q,0%q; q)n(ab; @)ar (b2qn+1, Lql=miq)

1—abg® 1 — 02" a” (2,0%q)n(ab;Q)2n (7", 0%0" )k 4

fn,k -

Ink = ey n @ 1—n. q .
L—ab 1-0b* b"(q,abg;q)n(b?q; q)2n (abg" T, 54~ @)k
b 2
Taking A = “—k L 1b2b22k (Ez a:q ;’)) :((gqug)z:k nd B, ((qu% in Lemma 2.3, we obtain the desired

P(a,b) and P~*(a,b). O
Theorem 3.4 Let R(a,b) be the infinite-dimensional lower-triangular matrix
(L7 ™)k

R(a,b) = (—a L 2Dk
(@9) (¢, 2q* =5 q)s,

qk)n,kGN'
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Then ( )
_ a4 "Dk
R 1(a7b> - ((qbﬁqlfn. q)qu)mkEN = R(ba a)-
' b ’
Proof Setting g(z,y) = f(z,y) = (z —y)(1 — 2)(1 — y), 7; = aq’, y; = bqg® in Theorem 1.1, we
get
o= LG aan @ bg Ok
T dh (4.04:0)n (2t asq)k
nk = a” (%v‘%@n (qin bq; ) k
TE (g, bg;.0)n (£40, a3 )k
Taklng A, = “—k gqu’;z;-z))z and B, = (;I:;;-Z%: in Lemma 2.3, we obtain the desired R(a,b) and

~a,b). O

Theorem 3.5 Let S(a,b) be the infinite-dimensional lower-triangular matrix

( (avq)n (%qnabqikaqin;Q)k k)

S a,b == a n,keN-
(a,5) ba ™ q)n  (q,0, 4G Q) €
Then o ( . )
1-1%q a;q)n (500777 Qk ,
S5 a,b) = ( b a (7:1.) b oA k)n,keN~
1- b (bq 7Q)n (Qa a, Eq aq)k

Proof Setting g(z,y) = f(z,y) = (x —y)(1 —2)(1 —y), ¥; = aq’, y; = bqg~* in Theorem 1.1, we

get

Fo = ((,,a Q)Z (¢~ bq ) bq ;q)k(—l)"q(g)”,
(Qa bq_n,q)n(g,q) (av(J)k
_a —n —k.
gg = vt (a’a> it (g DI )k gk (3),
1-% (¢ %0007 )0 (34" a59)k

Taking Ay = ((l’q’z);’; ¢* and B, = %(—1)"q(;)+" in Lemma 2.3, we obtain the desired

S(a,b) and S~1(a,b). O

Now we give two examples to illustrate the applications of the inverse relations.

Example 3.6 It is known that the following transformation formula for very-well-poised g¢r
series holds [10, Equation (IIL.18)]:

1 1
Es 5 2 2 aq. aq -

p a,azq,—a2q,b,c,d,e,q”" » a’q™t (aq, 55 @)n p Wode,q" 0
8¢7 1 1 q s 4, = 7agq a 493 s 4, .
5 5 q aq aq aq —+1 q q aq aq _de

a2, =az, 3% =5 4> evaqn bede (d’ e In b’ c’aqn

Taking a — % and b — 1 in Theorem 3.1 gives

a (@ @)n(a™ "™, aq™; @k g
M 771 = n,k)n = n 5
(q ) = (fnge)nken = ( @00 q" )n.kez

(" k(1 — ag®) ")
(¢,aq" 5 q)p(1 —a) ' R

_1,a
M 1(aa1):(gn7k)n7keN:(

Now setting

(a,b,c,d,e;q)k a q k
]{ =
0= (o e g5, e
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and
n
Z 1 - Clq )an ( b,C dae.Q) (a2q2 k (3 1)
prs (q, aq"+1 k(l—a) (52,2, %, 2 q)  bede
we see that
n
= gnralk)
k=0
By (1.2), we derive that
(@b edeiqn @@y, 2": (@ @)ula™" 0q" Ore" (00 G20 | sEdea™
(9, 9,90 q),, bede’ (4,a0; ) G 4 g, de 7
After some simplification, we obtain
(b,c,d,e;q)n (a2q2)n _ zn: (g™, aq", %;q)quuﬁg % d,e
(5,4, 4, 4 q),,  bede P (0, % 25 Q) G L

N
e 10|
ag®
Example 3.7 It is known that the following summation formula for very-well-poised 1¢¢g series
holds [10, Exercise 2.12]:
1099

(1,2

ay\/aQ7_\/aq7\/B7_\/Bv\/b77_\/7qvba bq 4 " 1q,q| = (aquf7q)n
\/6?_\/67%’_(17\/@ \;i’ \/7ab(L b —n7 q7z+1 o aq a’q
Taking a — % and b — v/b in Theorem 3.3 results in

b 7(])
a 1 — bg?*
P V) = (

(2,47, aq"; )k .
\/57 1—-b (q,aq7bqn+17 gql n q)k n,keN,
P*l(i \/B) — (1 - aq2k (%7a’q—n,bqn;q)k
NG l-a
Setting b — g

k
n+l a,1—-n. q )”7kEN'
(q,bq,aq™ !, $4' "5 ),
in the above inversion, we get

2
1— @agk (99 94 g qqn;q),
Q(a’b) = (fﬂ,k)ﬂ,kEN = ( § 3 X ™ T qk)ﬂ,keNa
1- %9 (gaq, “L=, 9" q)y,
b —n a® n+l1.
_ 1—aq2k (5a,q y 5 4 Sk
Q 1(a7b) = (gn,k)n,kEN = ( 1 a((ll q 1 qk)n,kEN.
—a (g, %%, aq™t, Lqq),
Set
2 2
k) = (abq a\/vi\/Ba\/biaf\/an%;Q)
a(k) = (Lﬂ_ﬂﬂ_aq bq; q)
aq’ Vb Vb Vbg' by’ q;4)k
and
_ 2 2 2
b(n) o Xn: 1 —Cl,q2k (@7aaq n’%qn+1;q)k k(abq 7\/5,—\/[;7 \/bqv_Mv%;q)k
- _ 2,2 b . b aq aq _agq_ “aq_ 5
= 1o (@55 et e (g B R S — TR b )k
we see that
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and thus
2 2 2 2 2
(S Vb, Vb, Vba, =0, i q)n o= 1 — 2% (92, 52,47, aq™; ) & (aq, %225 q)k
b . - 2 2 n+2 2—n ) .
(@,%,_%7%,—%,bqu)n k=0 1_% (q,aq,a qb aqb 3 )k (%7%;Q)k
After some simplification, we obtain
2 2 2
%7a%67_a%§,q—n,aqn . o (abq ;\/EafﬁaVani\/b(L%;Q)n
39| avg Teya a7 o 09| T b ag ag ag _ag g
NE N b ) b aq’ /b’ b’ Vbq' V/bq’ y4)n

In particular, when b = ¢, the above identity becomes

[ §>CLQ7 *aq,qfn,aqn . ] o (a’2q7 \/67_\/67617_(1’%;(])77,
504 1) =

— 1 . ’
a,—a, a2q"+1, aql " a? a\/aa —Cl\/g, a, —a, q25 q)n

4. ¢-Differential operator

In this section, we combine the inversion formula and the g¢-differential operator to derive
some identities.

The g-differential operator D, and the g¢-shifted operator 7, acting on the variable x, are
defined by

Dy{f(x)} =

TV =T 1)) = sawa),

respectively. Moreover,
N {f(2)} = fleg™), 0=n""D,
Let a be a parameter and T be an operator. The operator a1 and T™ are given by
(@){f(2)} = a-T{f(z)}
and
T{f(2)} = f(2), T"{f(2)} =T{T"{f(2)}}, n=1,2,....

We also use the notation

to denote the operator

In this following context, all operators only act on the variable d.

Zhang and Wang [14, Lemma 2.3] derived the following formulas

(dt; @)os  _ 0"(1/V; D) (dug™; @)oc

Dat (dv; q)os (dv; q) s
(U5 @)oo v"q_(g)(u/v;q)n(dwq)oo
’ {(dv;q)oo} B (dvg™"; @)oo ' (4.1)
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Lemma 4.1 ([15, Theorem 2.3]) We have

by,...,bs (dv; @)oo

449

o, [ ATEERRL ] {(du;q)oo}: (du;Q)oor+l¢s+l [ Ay ..oy ar,ufv ;wa] 42

(dv; q) o bi,...,bs,du

where b is independent of d.

We generalize Theorem 2.16 of [15] as follows.

Lemma 4.2 We have

A1y.e.,Qy du; q) o du; q) o a1y...,0p,u/v b
r¢s [ ! 34, _b9‘| {( q) }: ( q) T+1¢S+l [ ! / ) ﬁ

bi,.. . bs by b T

Sy dv

(dv; @)oo
where b is independent of d.

Proof By (4.1), we have

b1,...,

= (ai,...,a; ky\ 1S =T du; @) oo
Xt (0O o Ee

k:o b) bR Sy b oo

o~ (a1, a5 q)k I N A () (u/v; @) (du; 0)oc
=5 b @@k (e qykg(s —b

k=0 q>b1>--- syq k (( ) ) ( ) (qu 761)00

_ (du;q)oo A1y ey Qpy )V bq

; . O
 (dv; @)oo (dv; )10 bi, ... bs, £ T d

Theorem 4.3 We have

1— &

b (al’ 1, u/v; q)n n ( n (")> 14s—r
-1 o
1 — ag®tl (aq bl,---7bs—1,du;q)n2 (=1)"q

|

b
i 771 % n+1’q) q ¢ A1y ey Qpr— 1;qikau/v . q qu
1 1 » 4y )
—0 4, 54 Ok S T 18", du
where z,a,b,a1,...,a,_1 and by,...,bs_1 are independent of n and d.
Proof By (1.2) and Theorem 3.1, we have
n - 1. n a 2k+1
(@ @)nla™ 56" @)k 4, (1— 5
a(n) = q"b(k q""a(k).
kzzo 0 59% Dk ,;) (g, q”+2 Jr(1—54)

(a1, a1, Q) 2RgE Ky 1T
b(”)zz<q,b1,.. (%) 0}

Pt S bso1, 50" )k VP

(1 _a, 2k+1 Kk

(4.3)

n 1 __agq o o . 14+s—r
=) gt e e (D) o
0 bq k — 34 — 1-

1 Sbs—13q)k vF
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n

Taking a(k) = 1;:qu+1 ((Zi""’“”'*l;q)’“ Z—k((—l)kq(g))H'S_TD’qC in (4.3), we derive
—ee T )
1_% (alv"',arfl;q)n i
1-— ag?"*1 (%q7 bla RN bs—l; q)n um

1 csbs—13q) K VP
((71)”q(3))1+s_7' D!
b

a 7bqn+17q)k‘ k A1y ey Qp— laq_k Zq
Sy WAy, o 1025,
= (050 Dk bi,... b1, %q

Acting on ';Z’Zgw y (4.1) and (4.2), we get

L (B ) s UL G T

1-— L;H—l (%qa b17 .. '7b571;q)n v (dU7Q)oo
—n a —k
E 7q)k k;(d q)oo A1y ..y Qp— 1aq ,U/U k
= E ,2q7 | .
¢ ir (ci11;c1)o<>’”“¢s+1 bi,. s beoy, 22 du 8

After some sunphﬁcatlon, we complete the proof. O

Theorem 4.4 We have

(a17...,ar,17u/v;q)n n n 1+s—r
—1)g(3)
(%, bl,... by_1,dit; q)n (( ) q2>

,aq,q ko aty. - r1,q K u/v
= Z @ 1 Pst1 @ 9k 34,249
k=0 qaaq 7Q) blv"'ubsflazq adu

where z,a,b,a1,...,a,_1 and by,...,bs_1 are independent of n and d.

Proof By (1.2) and Theorem 3.2 we have

Ly yqd)n q—n7 g 4 —77. .

a(n) = (54:0)n ( 0 Ok ¢“b(k) < b(n) = Z Dk kg, (4.4)
= @Gk (Zaah el )k

Let
k

b(n) = i( (e plaa,. ar159)k 2"

(= <'€>)““Dk
— 2 .
= 2Pk (b by )k OF K !

Taking a(k) = wlzj (- 1)’“(1(;))1”7ng in (4.4), we derive

al,...,a,._l;q)n ﬁ((_l)nq(g)>1+sfan
) 1a~~~7b571;(1)n1}" 4
n

N ar,...,ar—1,4° " “p
_Zi’nq T¢S b b 2k aqa? ql -
“ (4, 247 ) 1o booty 54

—~

(

=8

Acting on EZZfZg"% we complete the proof after some simplification. [J

In a similar way, we derive the following theorem by (1.2) and Theorem 3.3.

Theorem 4.5 We have

_ 12 . A\ 1+s—r
1-9b (al,...,ar,g,?bq,u/v,q)nzn ((—1)”q(2))
L —0%¢?" (by,...,bs_o, 2,02, du; q)y,

_ 1 7abq2k (%7ab7q_n7b2qn;Q)k k
Z ) q" r41Ps41

alv"'vaﬂ“727q7k7abqkau/v 1q, 2q
1—ab q7 b2q7 abqn+17 %ql—n; q)k o

bla teey bs—27 b2qk+17 gqlika du
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where z,a,b,a1,...,a,_2 and by, ...,bs_o are independent of n and d.

For the operator 0, we derive some identities by (1.2) and Theorems 3.1-3.3.

Theorem 4.6 We have

1= (a1,...,ar—1,u/v;q)n (ﬁ)n ((—1)"61(3))1“#
1_aq2:+1 (aq bla"'abs—h%;Q)" d
_i(Q‘”,%q"H;q)kq’“ 5 ary .- a1, % ufv . 2g"
= +1Ps+1 y 4, )
= (@fahae T | by beln, 245F2 L d

where z,a,b,a1,...,a,_1 and by,...,bs_1 are independent of n and d.

Theorem 4.7 We have
. n 14+s—r
(a17'~'7a7“717u//u7q)n (Zq)n ((_1)71(](2))

(ﬂ b17~-~ bs— 17%§Q)n d
_Z 1aq7q W agi e a1y ar1,q F u/v » 2q>
r+1¥s+1 _ y Yy )
k=0 Q7a 7q)k b17'~~ab3717%q2 kad% d
where z,a,b,a1,...,a,_1 and by,...,bs_1 are independent of n and d.
Theorem 4.8 We have
— b2 . N n 1+s—
1 2b _ (a1,...,ar—2,abq, u/v;q)n (zq)n ((—1)"q(2)) s—r
1_bq (bl,“- bs 27aabadU7Q) d
Z ]-7abq (Zaab,q_naqu 7q>kt k Qf) a17"'7a’l"727q_k7abqkau/v
= — q r+1Ps+1 y 4 ——
1 —ab (q,b%q,abg"*t, $q*=";q) e bi,...,be_o,b2g"H1, gqlf’“, 1 ’
where z,a,b,a1,...,a,_o and by,...,bs_o are independent of n and d.
We conclude with two examples of the applications of these theorems.
Example 4.9 Let a1 = a, as = a%q, as = —a%q, as=b, a5 =c, by = a%, by = —a%, by = %‘17

by = %1, Taking % — a in Theorem 4.3, we have

1—a (a,azq,— 2q,bcu/v On n
z

2 1
L =aq™ (a,a2,—a2, 9, %, du;q)n

1 1
aq kq a,azq, CLZ(],b,C,q ,’LL/’U k
_Z—ﬂ% . ML AR

wh—A

= (g0qq

After some simplification, we get

1 1 _
(bcu/v,q n n zn: 7q kq ¢ avaz(J7_a2qvbvcaq kvu/v .qzqk
(%7 acq’du q k=0 q’aq (Z) ’ a%v_a%7%,a—f’aqk+17du Y

1

Example 4.10 Let a; = a, as = aEq, a3 =1b, by =az, by

4. Taking 9¢ — b® in Theorem

4.7, we have

(a’ 1/ 2qab U/’Uq) (Zq)n _ i (q_nab% q) q 5¢4 a7a1/2qab7q_k?u/v :q ﬁ
bl b *
(02,072,588, L:q), d = (4,324 ™ Q) al/?, % pgl =k L d
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