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On the Spectra of Strong Power Graphs of Finite Groups
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Abstract Let G be a finite group of order n. The strong power graph of G is the undirected

graph whose vertex set is G and two distinct vertices x and y are adjacent if xn1 = yn2 for some

positive integers n1, n2 < n. In this paper, we give the characteristic polynomials of the distance

and adjacency matrix of the strong power graph of G, and compute its distance and adjacency

spectrum.
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1. Introduction

Given a connected graph Γ, denote by V (Γ) and E(Γ) the vertex set and edge set of Γ,

respectively. Let V (Γ) = {v1, v2, . . . , vn}. The distance between the vertices vi and vj , denoted

dΓ(vi, vj), is the length of the shortest path between them. The diameter of Γ, denoted diam(Γ),

is the maximum distance between any pair of vertices of Γ. The set of neighbours of a vertex vi

in Γ is denoted by NΓ(vi), that is, NΓ(vi) = {vj ∈ V (Γ) : {vi, vj} ∈ E(Γ)}.
The distance matrix D(Γ) of Γ is the n× n matrix, indexed by V (Γ), such that D(Γ)vi,vj =

dΓ(vi, vj). The distance characteristic polynomial Θ(Γ, x) of Γ is |xI − D(Γ)|, where I is the

identity matrix of size n. Note that D(Γ) is symmetric. The distance characteristic polynomial

has real roots µ1 ≥ µ2 ≥ · · · ≥ µn. If µi1 ≥ µi2 ≥ · · · ≥ µit are the distinct roots of Θ(Γ, x), then

the distance spectrum (also called D-spectrum) of Γ can be written as

specD(Γ) =

(
µi1 µi2 . . . µit

m1 m2 . . . mt

)
, (1.1)

where mj is the algebraic multiplicity of µij . Clearly,
∑t

j=1 mj = n. The adjacency matrix

A(Γ) of Γ is an n × n matrix, indexed by V (Γ), and the ij-th entry of A(Γ) is 1 if the vertices

vi and vj are adjacent, otherwise it is 0. Denote by Φ(Γ, x) the characteristic polynomial of

A(Γ). Similarly to (1.1), we can define the adjacency spectrum spec(Γ) of Γ. The largest root of

Θ(Γ, x) (resp., Φ(Γ, x)) is called the distance spectral radius (resp., adjacency spectral radius)

of Γ (see [1]).
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Graphs associated with groups and other algebraic structures have been actively investigated,

since they have valuable applications [2] and are related to automata theory [3, 4]. Let G be a

finite group of order n. The undirected power graph of G has the vertex set G and two distinct

elements are adjacent if one is a power of the other. In 2000, Kelarev and Quinn [5] introduced

the concept of a directed power graph. In 2009, Chakrabarty, Ghosh, and Sen [6] introduced

the undirected power graph of a group. Motivated by this, Singh and Manilal [7] defined the

strong power graphs as a generalization of the power graphs. The strong power graph Ps(G) of

G is a graph whose vertex set consists of the elements of G and two distinct vertices x and y are

adjacent if xn1 = yn2 for some positive integers n1, n2 < n. Recently, Bhuniya and Berathe [8]

gave the Laplacian spectrum of the strong power graphs of finite groups.

In this paper, we give the characteristic polynomials of the distance and adjacency matrix of

the strong power graph of a finite group, and compute its distance and adjacency spectrum.

2. The results

Throughout this section G denotes a finite group, and Zn stands for the cyclic group of order

n. We always assume Zn = {0, 1, . . . , n− 1}. For strong power graphs, the proof of the following

result is straightforward.

Proposition 1.1 (1) If G is not cyclic, then Ps(G) is complete.

(2) Ps(Zn) is not connected if and only if n is a prime number.

(3) NPs(Zn)(0) = {k ∈ Zn : m ̸= 0, (m,n) ̸= 1}, and the subgraph of Ps(Zn) induced by

Zn \ {0} is complete. In particular, diam(Ps(Zn)) = 2 if n is not a prime number.

Now we determine the characteristic polynomial of the distance matrix associated with the

strong power graph Ps(Zn) for any composite number n.

Theorem 2.2 For any composite number n,

Θ(Ps(Zn), x) = (x+ 1)n−3
(
x3 + (3− n)x2 + (3− 2n− 3ϕ(n))x− ϕ(n)2 − ϕ(n)(4− n)− n+ 1

)
,

where ϕ(n) is Euler’s totient function.

Proof Write ϕ(n) = t and k = n−ϕ(n)−1. By Proposition 1.1, the distance matrix D(Ps(Zn))

is the n×n matrix given below, where the rows and columns are indexed in order by the vertices

in NPs(Zn)(0), then all generate elements of Zn, and 0 is in the last position.

D(Ps(Zn)) =



0 1 . . . 1 1 . . . 1 1
1 0 . . . 1 1 . . . 1 1
...

...
. . .

...
...

. . .
...

...
1 1 . . . 0 1 . . . 1 1
1 1 . . . 1 0 . . . 1 2
...

...
. . .

...
...

. . .
...

...
1 1 . . . 1 1 . . . 0 2
1 1 . . . 1 2 . . . 2 0


.
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The characteristic polynomial of D(Ps(Zn)) is

Θ(Ps(Zn), x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 . . . −1 −1 . . . −1 −1
−1 x . . . −1 −1 . . . −1 −1
...

...
. . .

...
...

. . .
...

...
−1 −1 . . . x −1 . . . −1 −1
−1 −1 . . . −1 x . . . −1 −2
...

...
. . .

...
...

. . .
...

...
−1 −1 . . . −1 −1 . . . x −2
−1 −1 . . . −1 −2 . . . −2 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.1)

Subtract the first column from the columns 2, 3, . . . , n of (2.1) to obtain the determinant (2.2):

(x+ 1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 . . . −1 −1− x . . . −1− x −1− x
−1 1 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
−1 0 . . . 1 0 . . . 0 0
−1 0 . . . 0 x+ 1 . . . 0 −1
...

...
. . .

...
...

. . .
...

...
−1 0 . . . 0 0 . . . x+ 1 −1
−1 0 . . . 0 −1 . . . −1 x+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2)

Adding the rows 2, 3, . . . , n − 1 to the first row of (2.2), and then adding columns 2, 3, . . . , k to

the first column, we arrive at the determinant (2.3):

(x+ 1)k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− n+ 2 0 . . . 0 0 . . . 0 −1− x− t
0 1 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
0 0 . . . 1 0 . . . 0 0
−1 0 . . . 0 x+ 1 . . . 0 −1
...

...
. . .

...
...

. . .
...

...
−1 0 . . . 0 0 . . . x+ 1 −1
−1 0 . . . 0 −1 . . . −1 x+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

Subtract the first column from the last column of (2.3). Then subtract the row k + 1 from the

rows k + 2, k + 3, . . . , n to obtain the determinant (2.4):

(x+ 1)n−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− n+ 2 0 . . . 0 0 0 . . . 0 −2x+ k − 2
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
−1 0 . . . 0 x+ 1 0 . . . 0 0
0 0 . . . 0 −1 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 −1 0 . . . 1 0
0 0 . . . 0 −2− x −1 . . . −1 x+ 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.4)
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Adding the rows k + 2, k + 3, . . . , n− 1 to the last row of (2.4), we get the determinant (2.5):

(x+ 1)n−3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− n+ 2 0 . . . 0 0 0 . . . 0 −2x+ k − 2
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
−1 0 . . . 0 x+ 1 0 . . . 0 0
0 0 . . . 0 −1 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 −1 0 . . . 1 0
0 0 . . . 0 −x− t− 1 0 . . . 0 x+ 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.5)

Expand it along the first row to obtain the determinant (2.6):

(x+ 1)n−3
(
(x− n+ 2)(x+ 1)(x+ 2) + (−1)1+n(−2x+ k − 2)|A|

)
, (2.6)

where

|A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
−1 0 . . . 0 x+ 1 0 . . . 0
0 0 . . . 0 −1 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 −1 0 . . . 1
0 0 . . . 0 −x− t− 1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.7)

In (2.7) the determinant has order n − 1. Interchange the row k − 1 and the last row of (2.7).

Then expand it along the first column to obtain |A| as follows:

|A| = (−1)n(−x− t− 1).

It follows that

Θ(Ps(Zn), x) = (x+ 1)n−3
(
x3 + (3− n)x2 + (3− 2n− 3t)x− n+ nt− t2 − 4t+ 1

)
.

This completes our proof. �

By Proposition 2.1, one has that Ps(G) is connected if and only if G is not cyclic, or G ∼= Zn

for some composite number n. Now we compute the D-spectrum of any connected strong power

graph.

Theorem 2.3 If G is not cyclic, then

specD(Ps(G)) =

(
n− 1 −1

1 n− 1

)
.

If G ∼= Zn for some composite number n, then specD(Ps(Zn)) is −1
n−3+2 cos θ

3

√
n2+9ϕ(n)

3

n−3+2 cos θ+2π
3

√
n2+9ϕ(n)

3

n−3+2 cos θ−2π
3

√
n2+9ϕ(n)

3

n− 3 1 1 1

 ,
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where 0 < θ < π
2 and θ = arccos 2n3+27ϕ(n)2+27ϕ(n)

2
√

(n2+9ϕ(n))3
.

Proof Note that if G is not cyclic, then Ps(G) is complete. Thus, it suffices to compute the

distance spectrum of Ps(Zn) for some composite number n. Let

f(x) = x3 + (3− n)x2 + (3− 2n− 3ϕ(n))x− ϕ(n)2 − ϕ(n)(4− n)− n+ 1.

Suppose that f(−1) = 0. Then ϕ(n)(n − ϕ(n) − 1) = 0. It follows that ϕ(n) = n − 1. Namely,

n is a prime number, a contradiction. This implies that D-spectrum of Ps(Zn) has −1 with

multiplicity n− 3 by Theorem 2.2. Noticing the canonical solutions of any quadratic and cubic

equation, we conclude that f(x) has three pairwise distinct roots, as presented above. �

Corollary 2.4 For any composite number n, the distance spectral radius of Ps(Zn) is

n− 3 + 2 cos θ
3

√
n2 + 9ϕ(n)

3
,

where 0 < θ < π
2 and θ = arccos 2n3+27ϕ(n)2+27ϕ(n)

2
√

(n2+9ϕ(n))3
.

For any positive integer n, the adjacency matrix A(Ps(Zn)) is given below:

A(Ps(Zn)) =



0 1 . . . 1 1 . . . 1 1
1 0 . . . 1 1 . . . 1 1
...

...
. . .

...
...

. . .
...

...
1 1 . . . 0 1 . . . 1 1
1 1 . . . 1 0 . . . 1 0
...

...
. . .

...
...

. . .
...

...
1 1 . . . 1 1 . . . 0 0
1 1 . . . 1 0 . . . 0 0


,

where the rows and columns are indexed in order by the vertices in NPs(Zn)(0), then all generate

elements of Zn, and 0 is in the last position. Note that NPs(Zn)(0) may be the empty set.

By an argument similar to the one used in the computing of Θ(Ps(Zn), x), we can get

Φ(Ps(Zn), x).

Theorem 2.5 For any positive integer n,

Φ(Ps(Zn), x) = (x+ 1)n−3
(
x3 + (3− n)x2 + (3− 2n+ ϕ(n))x+ (n− ϕ(n)− 1)(ϕ(n)− 1)

)
.

Corollary 2.6 For a prime number p, Φ(Ps(Zp), x) = x(x+ 1)p−2(x+ 2− p).

As an application of Theorem 2.5, we may obtain the adjacency spectrum of the strong power

graph of a finite group.

Theorem 2.7 If G is not cyclic, then

spec(Ps(G)) =

(
n− 1 −1

1 n− 1

)
.
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If G ∼= Zp for some prime number p, then

spec(Ps(Zn)) =

(
0 −1 p− 2

1 p− 2 1

)
.

If G ∼= Zn for some composite number n, then spec(Ps(Zn)) is −1
n−3+2 cos θ

3

√
n2−3ϕ(n)

3

n−3+2 cos θ+2π
3

√
n2−3ϕ(n)

3

n−3+2 cos θ−2π
3

√
n2−3ϕ(n)

3

n− 3 1 1 1

 ,

where 0 < θ < π
2 and θ = arccos 2n3+27ϕ(n)2+27ϕ(n)−36nϕ(n)

2
√

(n2−3ϕ(n))3
.

Corollary 2.8 For any composite number n, the adjacency spectral radius of Ps(Zn) is

n− 3 + 2 cos θ
3

√
n2 − 3ϕ(n)

3
,

where 0 < θ < π
2 and θ = arccos 2n3+27ϕ(n)2+27ϕ(n)−36nϕ(n)

2
√

(n2−3ϕ(n))3
.
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