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Abstract In this paper, we investigate the coefficient estimate and Fekete-Szegö inequality

of a subclass of analytic and bi-univalent functions defined by Chebyshev polynomials and q-

differential operator. The results presented in this paper improve or generalize the recent works

of other authors.
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1. Introduction

Let R = (−∞,+∞) be the set of real numbers, N := {1, 2, 3, . . .} = N0\{0} be the set of

positive integers.

Let A denote the class of functions of the form:

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Further, by S we denote the family

of all functions in A which are univalent in U .
It is well known that every function f ∈ S has an inverse f−1, which is defined by

f−1(f(z)) = z, z ∈ U

and

f(f−1(ω)) = ω, |ω| < r0(f), r0(f) ≥
1

4
.
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The inverse function g = f−1 is given by

f−1(ω) = ω − a2ω
2 + (2a22 − a3)ω

3 − (5a32 − 5a2a3 + a4)ω
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U . Let

Σ denote the class of all bi-univalent functions in U given by (1.1). The class of bi-univalent

functions was first introduced and studied by Lewin [1] and was showed that |a2| < 1.51. Brannan

and Clunie [2] improved Lewin,s results to |a2| ≤
√
2 and later Netanyahu [3] proved that

max|a2| = 4/3. Recently, many authors investigated bounds for various subclasses of bi-univalent

functions [4–12].

Nowadays, area of q-calculus has attracted the attention of researchers. Ismail et al. [13]

first introduced the class of generalized complex functions via q-calculus on some subclasses of

analytic functions. Recently many newsworthy results related to bi-univalent and q-calculus are

studied by various authors [4, 14,15].

Kamble et al. [4] defined Sǎlǎgean q-differential operator [16] using q-differential operator as

follows:

Dn
q f(z) = z +

∞∑
k=2

[k]nq akz
k, n ∈ N0, z ∈ U . (1.3)

We note that q → 1−,

Dnf(z) = z +
∞∑
k=2

knakz
k, n ∈ N0, z ∈ U . (1.4)

The Chebyshev polynomials are a sequence of orthogonal polynomials that are related to De

Moivre’s formula and which can be defined recursively. They have abundant properties, which

make them useful in many areas in applied mathematics, numerical analysis and approximation

theory. There are four kinds of Chebyshev polynomials, see for details Doha [17] and Mason [18].

The Chebyshev polynomials of degree n of the second kind, which are denoted Un(t), are defined

for t ∈ [−1, 1] by the following three-terms recurrence relation:

U0(t) = 1, U1(t) = 2t, Un+1(t) := 2tUn(t)− Un−1(t).

The first few of the Chebyshev polynomials of the second kind are

U1(t) = 2t, U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, U4(t) = 16t4 − 12t2 + 1, . . . . (1.5)

The generating function for the Chebyshev polynomials of the second kind, Un(t) is given by:

H(z, t) =
1

1− 2tz + z2
=

∞∑
n=0

Un(t)z
n, z ∈ U .

Using q-differential operator and Chebyshev polynomials, we define the following new sub-

class.

Definition 1.1 For λ ≥ 1, µ ≥ 0, 0 < q < 1, n ∈ N0 and t ∈ (1/2, 1), a function f ∈ Σ given by

(1.1) is said to be in the class Bq,µ
Σ (n, λ, t) if the following subordinations hold for all z, ω ∈ U :

(1− λ)(
Dn

q f(z)

z
)µ + λ(Dn

q f(z))
′(
Dn

q f(z)

z
)µ−1 ≺ H(z, t) :=

1

1− 2tz + z2
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and

(1− λ)(
Dn

q g(ω)

ω
)µ + λ(Dn

q g(ω))
′(
Dn

q g(ω)

ω
)µ−1 ≺ H(ω, t) :=

1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

The following special cases of Definition 1.1 are worthy of note:

(1) For 0 < q < 1, n ∈ N0 and t ∈ (1/2, 1), a function f ∈ Σ given by (1.1) is said to be in

the class Bq,1
Σ (n, 1, t) = Bq

Σ(n, t) if the following subordinations hold for all z, ω ∈ U :

(Dn
q f(z))

′ ≺ H(z, t) :=
1

1− 2tz + z2

and

(Dn
q g(ω))

′ ≺ H(ω, t) :=
1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

Remark 1.2 For n = 0 and q → 1− in Bq
Σ(n, t), the class Bq

Σ(n, t) reduces to BΣ(t) studied by

Altinkaya and Yalçin [7].

(2) For λ ≥ 1, 0 < q < 1, n ∈ N0 and t ∈ (1/2, 1), a function f ∈ Σ given by (1.1) is said to

be in the class Bq,1
Σ (n, λ, t) = Bq

Σ(n, λ, t) if the following subordinations hold for all z, ω ∈ U :

(1− λ)
Dn

q f(z)

z
+ λ(Dn

q f(z))
′ ≺ H(z, t) :=

1

1− 2tz + z2

and

(1− λ)
Dn

q g(ω)

ω
+ λ(Dn

q g(ω))
′ ≺ H(ω, t) :=

1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

Remark 1.3 For n = 0 and q → 1− in Bq
Σ(n, λ, t), the class Bq

Σ(n, λ, t) reduces to BΣ(λ, t)

studied by Bulut and Magesh [8].

(3) For µ ≥ 0, 0 < q < 1, n ∈ N0 and t ∈ (1/2, 1), a function f ∈ Σ given by (1.1) is said to

be in the class Bq,µ
Σ (n, t) if the following subordinations hold for all z, ω ∈ U :

(Dn
q f(z))

′(
Dn

q f(z)

z
)µ−1 ≺ H(z, t) :=

1

1− 2tz + z2

and

(Dn
q g(ω))

′(
Dn

q g(ω)

ω
)µ−1 ≺ H(ω, t) :=

1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

Remark 1.4 (i) For n = µ = 0 and q → 1− in Bq,µ
Σ (n, t), the class Bq,µ

Σ (n, t) reduces to S∗
Σ(t)

studied by Magesh and Bulut [9].

(ii) For n = 0 and q → 1− in Bq,µ
Σ (n, t), the class Bq,µ

Σ (n, t) reduces to Bµ
Σ(t) studied by

Altinkaya and Yaçin [10].

We note that n = λ = 1, µ = 0 and q → 1−, the class Bq,µ
Σ (n, λ, t) reduces to KΣ(t) studied

by Murugusundaramoothy et al. ([5], also see [11]).
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(4) For t ∈ (1/2, 1), a function f ∈ Σ given by (1.1) is said to be in the class KΣ(t) if the

following subordinations hold for all z, ω ∈ U :

1 +
zf ′′(z)

f ′(z)
≺ H(z, t) :=

1

1− 2tz + z2

and

1 +
ωg′′(ω)

g′(ω)
≺ H(ω, t) :=

1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

For n = µ = 1 and q → 1−, the class Bq,µ
Σ (n, t) reduces to the following subclass of Σ.

(5) For λ ≥ 1 and t ∈ (1/2, 1), a function f ∈ Σ given by (1.1) is said to be in the class

LΣ(λ, t), if the following subordinations hold for all z, ω ∈ U :

f ′(z) + λzf ′′(z) ≺ H(z, t) :=
1

1− 2tz + z2

and

g′(ω) + λωg′′(ω) ≺ H(ω, t) :=
1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

Remark 1.5 For λ = 1, the class LΣ(λ, t) reduces to the class LΣ(t) studied by Murugusun-

daramoothy et al. [11].

(6) For λ ≥ 1, µ ≥ 0, 0 < q < 1, n ∈ N0 and t ∈ (1/2, 1), a function f ∈ Σ given by (1.1) is

said to be in the class Bµ
Σ(λ, t), if the following subordinations hold for all z, ω ∈ U :

(1− λ)(
f(z)

z
)µ + λ(f(z))′(

f(z)

z
)µ−1 ≺ H(z, t) :=

1

1− 2tz + z2

and

(1− λ)(
g(ω)

ω
)µ + λ(g(ω))′(

g(ω)

ω
)µ−1 ≺ H(ω, t) :=

1

1− 2tω + ω2
,

where the function g = f−1 is given by (1.2).

Remark 1.6 (i) In [12], Bulut et al. investigate the estimates of |a2| and |a3| and get Fekete-

szegö inequalities of the class Bµ
Σ(λ, t).

(ii) Orhan et al. [6] obtained an upper bound estimate for the second Hankel determinant

of the subclass Bµ
Σ(λ, t) of analytic bi-univalent function.

In order to derive our main results, we shall need the following lemma.

Lemma 1.7 ([19]) Let u(z) be an analytic function with u(0) = 0, |u(z)| < 1 and let

u(z) = c1z + c2z
2 + · · · , z ∈ U .

Then |c1| ≤ 1 and |cn| ≤ 1− |c1|2 (n ≥ 2).

2. Coefficient estimates

In this section, we give our main results.
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Theorem 2.1 Let f(z) given by (1.1) be in the class Bq,µ
Σ (n, λ, t). Then

|a2| ≤ min{ 2t

(µ+ λ)[2]nq
,

√
8t2 + 4t− 2

(µ+ 2λ)|2[3]nq + (µ− 1)[2]2nq |
,Ω1}, (2.1)

|a3| ≤


2t

(µ+2λ)[3]nq
, t ≤ (λ+µ)2[2]2nq

2(µ+2λ)[3]nq
,

min{ 4t2

(µ+λ)2[2]2nq
,Ω2,Ω3}, t >

(λ+µ)2[2]2nq
2(µ+2λ)[3]nq

,
(2.2)

where

Ω1 =
2t
√
2t√

|(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)2t2 − (4t2 − 1)(µ+ λ)2[2]2nq |+ 2t(µ+ λ)2[2]2nq

,

Ω2 = (1−
(λ+ µ)2[2]2nq
2t(µ+ 2λ)[3]nq

)× 8t2 + 4t− 2

(µ+ 2λ)|2[3]nq + (µ− 1)[2]2nq |
+

2t

(µ+ 2λ)[3]nq
,

Ω3 =(1−
(λ+ µ)2[2]2nq
2t(µ+ 2λ)[3]nq

)×

8t3

|(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)2t2 − (4t2 − 1)(µ+ λ)2[2]2nq |+ 2t(µ+ λ)2[2]2nq
+

2t

(µ+ 2λ)[3]nq
.

Proof Let f ∈ Bq,µ
Σ (n, λ, t) and g = f−1. Then there are analytic functions u, v : U → U, with

u(0) = v(0) = 0 satisfying

(1− λ)(
Dn

q f(z)

z
)µ + λ(Dn

q f(z))
′(
Dn

q f(z)

z
)µ−1 = 1 + U1(t)u(z) + U2(t)u

2(z) + · · · , (2.3)

(1− λ)(
Dn

q g(ω)

ω
)µ + λ(Dn

q g(ω))
′(
Dn

q g(ω)

ω
)µ−1 = 1 + U1(t)v(ω) + U2(t)v

2(ω) + · · · . (2.4)

By definition of the functions u(z) and v(ω)

u(z) = c1z + c2z
2 + c3z

3 · · · , (2.5)

v(ω) = d1ω + d2ω
2 + d3ω

3 · · · . (2.6)

From (2.3)–(2.6), we get

(1− λ)(
Dn

q f(z)

z
)µ + λ(Dn

q f(z))
′(
Dn

q f(z)

z
)µ−1 = 1+U1(t)c1z+ [U1(t)c2 +U2(t)c

2
1]z

2 + · · · (2.7)

and

(1−λ)(
Dn

q g(ω)

ω
)µ+λ(Dn

q g(ω))
′(
Dn

q g(ω)

ω
)µ−1 = 1+U1(t)d1ω+[U1(t)d2+U2(t)d

2
1]ω

2+· · · . (2.8)

Equating the coefficients in (2.7) and (2.8), we have

(λ+ µ)[2]nq a2 = U1(t)c1, (2.9)

(µ− 1)(λ+
µ

2
)[2]2nq a22 + (µ+ 2λ)[3]nq a3 = U1(t)c2 + U2(t)c

2
1, (2.10)

−(λ+ µ)[2]nq a2 = U1(t)d1, (2.11)

−(µ+ 2λ)[3]nq a3 + (4[3]nq + (µ− 1)[2]2nq )(λ+
µ

2
)a22 = U1(t)d2 + U2(t)d

2
1. (2.12)
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From (2.9) and (2.11), we obtain

c1 = −d1, (2.13)

a22 =
U2
1 (t)(c

2
1 + d21)

2(µ+ λ)2[2]2nq
. (2.14)

Applying Lemma 1.7 and (1.5), we have

|a2| ≤
2t

(µ+ λ)[2]nq
. (2.15)

Adding (2.10) and (2.12), we get

(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)a22 = U1(t)(c2 + d2) + U2(t)(c
2
1 + d21). (2.16)

Using Lemma 1.7 for the coefficients c1, c2, d1 and d2, we get

|a2| ≤

√
8t2 + 4t− 2

(µ+ 2λ)|2[3]nq + (µ− 1)[2]2nq |
. (2.17)

Substituting (2.13) and (2.14) into (2.16), we obtian

c21 =
U1(t)(µ+ λ)2[2]2nq (c2 + d2)

(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)U2
1 (t)− 2U2(t)(µ+ λ)2[2]2nq

. (2.18)

Applying (2.13) and (2.18) in (2.14), we get

a22 =
U3
1 (t)(c2 + d2)

(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)U2
1 (t)− 2U2(t)(µ+ λ)2[2]2nq

. (2.19)

Then, in view of Lemma 1.7 and (2.9), we have

|a2| ≤
2t
√
2t√

|(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)2t2 − (4t2 − 1)(µ+ λ)2[2]2nq |+ 2t(µ+ λ)2[2]2nq

. (2.20)

Therefore, from (2.15), (2.17) and (2.20), we get assertion (2.1).

By subtracting (2.12) from (2.10), we have

2(µ+ 2λ)[3]nq a3 − 2(µ+ 2λ)[3]nq a
2
2 = U1(t)(c2 − d2) + U2(t)(c

2
1 − d21).

Further, in view of (2.13), we get

a3 = a22 +
U1(t)(c2 − d2)

2(µ+ 2λ)[3]nq
.

Then, in view of (1.5), (2.9) and (2.13), applying Lemma 1.7 for the coefficients c2 and d2, we

get

|a3| ≤ |a2|2 +
t

(µ+ 2λ)[3]nq
(|c2|+ |d2|) ≤ |a2|2 +

2t

(µ+ 2λ)[3]nq
(1− |c1|2)

≤ (1−
(λ+ µ)2[2]2nq
2t(µ+ 2λ)[3]nq

)|a2|2 +
2t

(µ+ 2λ)[3]nq
. (2.21)

Hence, from (2.15), (2.17), (2.20) and (2.21), we get assertion (2.2).

Thus, this completes the proof of Theorem 2.1. �
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Now, we are ready to find the sharp bounds of Fekete-Szegö functional |a3 − ηa22| defined for

Bq,µ
Σ (n, λ, t).

Theorem 2.2 Let f(z) given by (1.1) be in the class Bq,µ
Σ (n, λ, t) and η ∈ R. Then

|a3 − ηa22| ≤


2t

(µ+2λ)[3]nq
, 0 ≤ |h(η)| ≤ 1

2(µ+2λ)[3]nq
,

8|1−η|t3
|(2[3]nq +(µ−1)[2]2nq )(µ+2λ)2t2−(4t2−1)(µ+λ)2[2]2nq | , |h(η)| ≥ 1

2(µ+2λ)[3]nq
,

where

h(η) =
2(1− η)t2

(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)2t2 − (4t2 − 1)(µ+ λ)2[2]2nq
.

Proof By using the equalities (2.19) and (2.21), we have

a3 − ηa22 = U1(t)[(h(η) +
1

2(µ+ 2λ)[3]nq
)c2 + (h(η)− 1

2(µ+ 2λ)[3]nq
)d2],

where

h(η) =
(1− η)U2

1 (t)

(2[3]nq + (µ− 1)[2]2nq )(µ+ 2λ)U2
1 (t)− 2U2(t)(µ+ λ)2[2]2nq

.

So, we conclude that

|a3 − ηa22| ≤


2t

(µ+2λ)[3]nq
, 0 ≤ |h(η)| ≤ 1

2(µ+2λ)[3]nq
,

4|h(η)|t, |h(η)| ≥ 1
2(µ+2λ)[3]nq

,

which completes the proof. �

3. Corollaries and consequences

Now, we would like to draw attention to some remarkable results obtained for some values

of q, µ, n, λ and t in Theorems 2.1 and 2.2.

Setting µ = λ = 1, n = 0 and q → 1− in Theorem 2.1, we have the following corollary.

Corollary 3.1 Let f(z) given by (1.1) be in the class BΣ(t). Then

|a2| ≤ min{t,
√

4t2 + 2t− 1

3
,

t
√
2t√

1− t2 + 2t
} =

t
√
2t√

1− t2 + 2t
,

|a3| ≤

{
2t
3 ,

1
2 < t ≤ 2

3 ,

(1− 2
3t )

2t3

1−t2+2t +
2t
3 ,

2
3 < t < 1.

Remark 3.2 The estimates for |a2| and |a3| given by Corollary 3.1 improve the estimates given

by Altinkaya and Yalç in [7, Corollary 8].

Setting µ = 1, n = 0 and q → 1− in Theorem 2.1, we have the following corollary.

Corollary 3.3 Let f(z) given by (1.1) be in the class BΣ(λ, t). Then

|a2| ≤ min{ 2t

1 + λ
,

√
4t2 + 2t− 1

1 + 2λ
,

2t
√
2t√

|(1 + λ)2 − 4t2λ2|+ 2t(1 + λ)2
},

|a3| ≤

{
2t

1+2λ ,
1
2 < t ≤ (1+λ)2

2(1+2λ) ,

min{ 4t2

(1+λ)2 , (1−
(1+λ)2

2t(1+2λ) )
4t2+2t−1

1+2λ + 2t
1+2λ ,Ω3}, (1+λ)2

2(1+2λ) < t < 1,
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where

Ω3 = (1− (1 + λ)2

2t(1 + 2λ)
)× 8t3

|(1 + λ)2 − 4t2λ2|+ 2t(1 + λ)2
+

2t

1 + 2λ
.

Remark 3.4 The estimates of the coefficients |a2| and |a3| of Corollary 3.3 are the improvement

of the estimates obtained in [8, Theorem 1].

Setting µ = n = 0, λ = 1 and q → 1− in Theorem 2.1, we have the following corollary.

Corollary 3.5 Let f(z) given by (1.1) be in the class S∗
Σ(t). Then

|a2| ≤ min{2t,
√
4t2 + 2t− 1,

2t
√
2t√

1 + 2t
} =

2t
√
2t√

1 + 2t
,

|a3| ≤ min{4t2, (1− 1

4t
)(4t2 + 2t− 1) + t, (1− 1

4t
)

8t3

1 + 2t
+ t} = (1− 1

4t
)

8t3

1 + 2t
+ t.

Remark 3.6 Corollary 3.5 provides an improvement of the estimates for |a2| and |a3| obtained
by Magesh and Bulut [9, Corollary 2].

Setting n = µ = 1 and q → 1−, the Theorem 2.1 reduces to the following corollary.

Corollary 3.7 Let f(z) given by (1.1) be in the class LΣ(λ, t). Then

|a2| ≤ min{ t

1 + λ
,

√
4t2 + 2t− 1

3(1 + 2λ)
,

t
√
2t√

|3(1 + 2λ)t2 − (4t2 − 1)(1 + λ)2|+ 2t(1 + λ)2
},

|a3| ≤

{
2t

3(1+2λ) , t ≤ 2(1+λ)2

3(1+2λ) ,

min{ t2

(1+λ)2 , (1−
2(1+λ)2

3t(1+2λ) )×
4t2+2t−1
3(1+2λ) + 2t

3(1+2λ) ,Ω1}, t > 2(1+λ)2

3(1+2λ) ,

where

Ω1 = (1− 2(1 + λ)2

3t(1 + 2λ)
)× 2t3

|3(1 + 2λ)t2 − (4t2 − 1)(1 + λ)2|+ 2t(1 + λ)2
+

2t

3(1 + 2λ)
.

Setting n = µ = λ = 1 and q → 1−, the Theorem 2.1 reduces to the following corollary.

Corollary 3.8 Let f(z) given by (1.1) be in the class LΣ(t). Then

|a2| ≤ min{ t
2
,

√
4t2 + 2t− 1

9
,

t
√
2t√

| − 7t2 + 4|+ 8t
} =

t
√
2t√

7t2 + 8t− 4
,

|a3| ≤

{
2t
9 , t ≤ 8

9 ,
32t3−8t

9(7t2+8t−4) , t > 8
9 .

Remark 3.9 The estimates for |a2| and |a3| given by Corollary 3.8 are more accurate than the

bounds given by Corollary 5.5 in Murugusundaramoothy er al. [11].

Setting n = λ = 1, µ = 0 and q → 1− in Theorem 1, the Theorem 1 reduces to the following

corollary.

Corollary 3.10 For t ∈ (
√
2
2 , 1), let f(z) given by (1.1) be in the class KΣ(t). Then

|a2| ≤ min{t,
√

4t2 + 2t− 1

2
,

t
√
2t√

2t2 + 2t− 1
} =

t
√
2t√

2t2 + 2t− 1
,
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|a3| ≤ min{t2, (1− 1

3t
)
4t2 + 2t− 1

2
+

t

3
, (1− 1

3t
)

2t3

2t2 + 2t− 1
+

t

3
} = (1− 1

3t
)

2t3

2t2 + 2t− 1
+

t

3
.

Remark 3.11 The estimates for |a2| and |a3| given by Corollary 3.10 are smaller than the

improvement of the estimates obtained in [11, Corollary 5.4].

Setting n = 0 and q → 1− in Theorem 2.1, we have the following corollary.

Corollary 3.12 Let f(z) given by (1.1) be in the class Bµ
Σ(λ, t). Then

|a2| ≤ min{ 2t

µ+ λ
,

√
8t2 + 4t− 2

(µ+ 2λ)(µ+ 1)
,Ω1},

|a3| ≤

{
2t

µ+2λ , t ≤ (λ+µ)2

2(µ+2λ) ,

min{ 4t2

(µ+λ)2 ,Ω2,Ω3}, t > (λ+µ)2

2(µ+2λ) ,

where

Ω1 =
2t
√
2t√

|2(µ+ 2λ)(µ+ 1)t2 − (4t2 − 1)(µ+ λ)2|+ 2t(µ+ λ)2
,

Ω2 = (1− (λ+ µ)2

2t(µ+ 2λ)
)× 8t2 + 4t− 2

(µ+ 2λ)(µ+ 1)
+

2t

(µ+ 2λ)
,

Ω3 = (1− (λ+ µ)2

2t(µ+ 2λ)
)× 8t3

|2(µ+ 2λ)(µ+ 1)t2 − (4t2 − 1)(µ+ λ)2|+ 2t(µ+ λ)2
+

2t

(µ+ 2λ)
.

Remark 3.13 Corollary 3.12 provides an improvement of the estimates for |a2| and |a3| obtained
by Bulut et al. [12, Theorem 1]

Setting η = 0 in Theorem 2.2, we get the following corollary.

Corollary 3.14 Let f(z) given by (1.1) be in the class Bq,µ
Σ (n, λ, t). Then

|a3 − a22| ≤
2t

(µ+ 2λ)[3]nq
.

Setting µ = λ = 1, n = 0 and q → 1− in Theorem 2.2, we have the following corollary.

Corollary 3.15 ([8]) Let f(z) given by (1.1) be in the class BΣ(t) and η ∈ R. Then

|a3 − ηa22| ≤

{
2t
3 , |1− η| ≤ 1−t2

3t2 ,
2|1−η|t3
1−t2 , |1− η| ≥ 1−t2

3t2 .

Setting µ = 1, n = 0 and q → 1− in Theorem 2.2, we have the following corollary.

Corollary 3.16 ([8]) Let f(z) given by (1.1) be in the class BΣ(λ, t) and η ∈ R. Then

|a3 − ηa22| ≤

{
2t

1+2λ , |1− η| ≤ |(1+λ)2−4t2λ2|
4(1+2λ)t2 ,

8|1−η|t3
|(1+λ)2−4t2λ2| , |1− η| ≥ |(1+λ)2−4t2λ2|

4(1+2λ)t2 .

Setting µ = n = 0, λ = 1 and q → 1− in Theorem 2.2, we have the following corollary.

Corollary 3.17 ([9]) Let f(z) given by (1.1) be in the class S∗
Σ(t) and η ∈ R. Then

|a3 − ηa22| ≤

{
t, |1− η| ≤ 1

8t2 ,

8|1− η|t3, |1− η| ≥ 1
8t2 .
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Setting n = µ = 1 and q → 1−, the Theorem 2.2 reduces to the following corollary.

Corollary 3.18 Let f(z) given by (1.1) be in the class LΣ(λ, t) and η ∈ R. Then

|a3 − ηa22| ≤

{
2t

3(1+2λ) , |1− η| ≤ |3(1+2λ)t2−(4t2−1)(1+λ)2|
3(1+2λ)t2 ,

2|1−η|t3
|3(1+2λ)t2−(4t2−1)(1+λ)2| , |1− η| ≥ |3(1+2λ)t2−(4t2−1)(1+λ)2|

3(1+2λ)t2 .

Setting n = µ = λ = 1 and q → 1−, the Theorem 2.2 reduces to the following corollary.

Corollary 3.19 Let f(z) given by (1.1) be in the class LΣ(t) and η ∈ R. Then

|a3 − ηa22| ≤

{
2t
9 , |1− η| ≤ |−7t2+4|

9t2 ,
2|1−η|t3
|−7t2+4| , |1− η| ≥ |−7t2+4|

9t2 .

Setting n = λ = 1, µ = 0 and q → 1−, the Theorem 2.2 reduces to the following corollary.

Corollary 3.20 For t ∈ (
√
2
2 , 1), let f(z) given by (1.1) be in the class KΣ(t) and η ∈ R. Then

|a3 − ηa22| ≤

{
t
3 , |1− η| ≤ 2t2−1

6t2 ,
2|1−η|t3
2t2−1 , |1− η)| ≥ 2t2−1

6t2 .

Setting n = 0 and q → 1− in Theorem 2.2, we have the following corollary.

Corollary 3.21 ([12]) Let f(z) given by (1.1) be in the class Bµ
Σ(λ, t) and η ∈ R. Then

|a3 − ηa22| ≤

{
2t

µ+2λ , |1− η| ≤ |(µ+λ)2−2[2(λ+µ)2−(2λ+µ)(µ+1)]t2|
4(µ+2λ)t2 ,

8|1−η|t3
|(µ+λ)2−2t2[2(µ+λ)2−(µ+2λ)(µ+1)]| , |1− η| ≥ |(µ+λ)2−2[2(λ+µ)2−(2λ+µ)(µ+1)]t2|

4(µ+2λ)t2 .
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