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Abstract In a previous paper by the author joint with Baogang XU published in Discrete Math

in 2018, we show that every non-planar toroidal graph can be edge partitioned into a planar

graph and an outerplanar graph. This edge partition then implies some results in thickness

and outerthickness of toroidal graphs. In particular, if each planar graph has outerthickness at

most 2 (conjectured by Chartrand, Geller and Hedetniemi in 1971 and the confirmation of the

conjecture was announced by Gonçalves in 2005), then the outerthickness of toroidal graphs is

at most 3 which is the best possible due to K7.

In this paper we continue to study the edge partition for projective planar graphs and Klein

bottle embeddable graphs. We show that (1) every non-planar but projective planar graph can

be edge partitioned into a planar graph and a union of caterpillar trees; and (2) every non-planar

Klein bottle embeddable graph can be edge partitioned into a planar graph and a subgraph of

two vertex amalgamation of a caterpillar tree with a cycle with pendant edges. As consequences,

the thinkness of projective planar graphs and Klein bottle embeddabe graphs are at most 2,

which are the best possible, and the outerthickness of these graphs are at most 3.

Keywords surface; planar graph; edge partition; thickness; outerthickness; caterpillar tree;

projective plane; Klein bottle
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1. Introduction

Much work has been done in partitioning the edges of graphs such that each subset induces

a subgraph of a certain type. A well-known result by Nash-Williams [1] gives a necessary and

sufficient condition for a graph to admit an edge-partition into a fixed number of forests. An

outerplanar graph is a planar graph that can be embedded in the plane without crossing edges,

in such a way that all the vertices are incident with the same face (the infinite face). The

thickness of a graph G, denoted by θ(G) (first defined by Tutte [2]), is the minimum number

of planar subgraphs whose union is G. Similarly, the outerthickness θo(G) is obtained when

“planar subgraphs” is replaced by “outerplanar subgraphs” in the previous definition. If Σ is a

surface, define θ(Σ) = max{θ(G) : G is embeddable in Σ}, where the maximum is taken over

all graphs embeddable in Σ. Define θo(Σ) analogously. Nash-Williams’ result in fact shows that
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any planar graph can be edge-partitioned into three forests, and hence the outerthickness of any

planar graph is at most 3.

The thickness of some special classes of graphs has been determined, including the complete

graphs Kn (see [3, 4]), the complete bipartite graphs Km,n (see [5]) (except possibly if m and

n are both odd, or m ≤ n and n takes some special values), and the hypercube Qn (see [6]).

See the survey paper [7] for more results on the thickness of graphs. Guy and Nowakowski [8,9]

determined the outerthickness of complete graphs, the hypercube and some complete bipartite

graphs. It is known that the thickness problem isNP-hard [10]. For many other classes of graphs,

attention has been focused on finding upper bounds of thickness and outerthickness. Jünger et

al. [11] have shown that a graph has thickness at most 2 if it contains no K5-minor. Asano [12]

proved that, if a graph G is triangle free and has orientable genus γ, then θ(G) ≤ γ(G) + 1.

He also showed that all toroidal graphs have thickness at most 2. Dean and Hutchinson [13]

strengthened Asano’s result by proving that θ(G) ≤ 6 +
√
2γ(G)− 1. Xu and Zha [14] slightly

improved Dean and Hutchinson’s result to θ(G) ≤ 3+
√
2γ(G)− 1 by introducing the technique

of removing a maximal spanning disk from the embedding. Xu and Zha also improved Asano’s

result by dropping the triangle free condition, i.e., θ(G) ≤ γ(G) + 1 holds for all graphs with

orientable genus γ. While this upper bound is in general weaker than Dean/ Hutchinson and

Xu/Zha’s upper bounds with the square root, it works better for graphs with small genus. Xu

and Zha also obtained upper bounds for both thickness and outerthickness in terms of their

nonorientable genus in [14].

In 1971, Chartrand, Geller and Hedetniemi [15] conjectured that every planar graph has an

edge partition into two outerplanar graphs. Ding, Oporowski, Sanders and Vertigan [16] proved

that every planar graph has an edge partition into two outerplanar graphs and a vee-forest, where

a vee-forest is the disjoint union of a number of K2’s and K1,2’s. They also showed that every

graph with nonnegative Euler characteristic has an edge partition into two graphs of tree-width

at most three. Kedlaya [17] showed that some planar graphs cannot be edge-partitioned into two

outerplanar subgraphs such that one of them is outerplanarly embedded. In 2005 Gonçalves [18]

announced that he had solved the Chartrand, Geller and Hedetniemi’s conjecture.

In this paper, we first provide some technical results in Section 2. We then study the edge

partition, thickness and outerthickness problems for graphs embedded in the projective plane

and the Klein bottle in Section 3 and Section 4, respectively. We show that (i) Every non-planar

but projective planar graph can be edge partitioned into a planar graph and a union of caterpillar

trees; (ii) Every graph embedded in the Klein bottle can be edge partitioned into a planar graph

and a subgraph of two vertex amalgamation of a caterpillar tree and a cycle with pendant edges;

(iii) The thickness of all non-planar graphs embeddable in the projective plane and the Klein

bottle is 2 (iv) If each planar graph has outerthickness at most 2 (announced by Goncalves [18]),

then all projective plane or Klein bottle embeddable graphs have outerthickness at most 3.

2. Notation and technical results
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We state and prove some technical results in this section. The following is obvious.

Lemma 2.1 If G is a subgraph of H, then

(i) Each edge partition of H induces an edge partition of G;

(ii) θ(G) ≤ θ(H) and θo(G) ≤ θo(H).

Lemma 2.1 may not be true if the subgraph relation is replaced by the minor relation.

Example 2.2 shows that edge partition of G can be much more complicated than H when G is

a minor of H. Example 2.2 also provides cases that θ(G) > θ(H) and θo(G) > θo(H). This

may add difficulty to problems of finding edge partition problem, as well as the thickness and

outerthickness problem, since many techniques and results on the minor relation may not be

applied here.

Example 2.2 Let G be the complete graph Kn and H be the graph obtained by subdividing

each edge of G with two degree 2 vertices. Let H1 be the subgraph of H consisting of all matching

edges each with two degree 2 vertices of H as endvertices, and H2 be the subgraph of H with

remaining edges, i.e., H2 consists of all edges each with one of original vertex of Kn as one

endvertex and the other endvertex is a degree 2 vertex. H2 consists of n copies of disjoint stars

and H1 consists of
(n
2

)
matching edges of H. Hence H can be edge partitioned into two forests

(one is a disjoint union of stars, and the other is a matching).

In Example 2.2, G is a minor of H. While H can be edge partitioned into two forests, G

cannot be edge partitioned into less than ⌊n+7
6 ⌋ planar graphs since θ(Kn) = ⌊n+7

6 ⌋ (see [3, 4]).

For many edge partition problems, such as partitioning into simpler subgraphs as discussed

in this paper, adding multiple edges to a graph G does not increase the complexity of edge

partition of G. Also the edge partition for a graph with a cut vertex can be reduced to the

edge partition of its components of separation obtained by the cut vertex. It is clear that

the thickness/outerthickness of a graph is equal to the maximum thickness/outerthickness of

its blocks. Therefore in this paper we may assume that all graphs considered are simple and

2-connected unless specified for some technical reasons.

Let G be a graph and Ψ(G) be an embedding of G in a surface Σ. Suppose C is a cycle of G,

and x and y are two vertices on C. We assign a direction to C and define (xCy) to be the open

path from x to y in this direction (x and y are not included), and [xCy] for the path from x to y

in this direction with end vertices included. Therefore, [xCy]∪ [yCx] = C. A subembedding Ψs

is spanning if it contains all vertices of G. A spanning subembedding is contractible if it does not

contain any noncontractible cycle of Ψ(G). In particular a contractible spanning subembedding

is a spanning disk if it is homeomorphic to a closed disk, in which case the boundary of this

spanning subembedding is a contractible cycle of Ψ(G). For any embedding, a spanning tree

is always a contractible spanning subembedding. However, an embedding may not contain a

spanning disk. An example is the unique embedding of the Heawood graph in the torus which

is the dual embedding of K7. It contains no spanning disk even though the embedding is 3-

representative (or equivalently, a polyhedral embedding, or a wheel-neighborhood embedding).

An edge e is essential, with respect to a contractible spanning subembedding Ψs if e ∪ Ψs



584 Xiaoya ZHA

contains a noncontractible cycle. Note that if e is an essential edge, then e is contained in every

noncontractible cycle of e ∪Ψs, and all noncontratible cycles contained in e ∪Ψs are homotopic

since Ψs is contractible. An essential edge becomes a noncontractible loop if Ψs is contracted

to a single point. We define homotopy classes of essential edges according to the corresponding

homotopy classes of loops of these essential edges obtained by contracting Ψs to a single point.

In order to study edge partition and thickness/outerthickness of graphs embedded in surfaces,

it is sometimes more convenient to add more edges to the graphs in the given embeddings. We

apply Lemma 2.1 by adding edges to the embedding of G to obtain an embedded supergraph H

of G with nice spanning subgraphs, then study the edge partition and thickness/outerthickness

of H. In this way we obtain a better structure of embeddings. The following lemma in [14] will

play an important role in our approach in this paper.

Lemma 2.3 Let G be a simple graph and Ψ(G) be an orientable genus embedding or a minimal

surface embedding (i.e., with maximum Euler characteristic) of G in Σ. Then either Ψ(G)

contains a spanning disk, or there is a supergraph H with embedding Ψ(H) in Σ such that H is

simple, V (H) = V (G), Ψ(G) is a subembedding of Ψ(H), and Ψ(H) contains a spanning disk.

The conclusion of Lemma 2.3 may not be true if the embedding is not an orientable genus

embedding or a minimal surface embedding. For example, if G is a complete graph embedded in

its orientable maximum surface Σ, then there does not exist an H embedded in Σ with G being

a spanning subgraph of H such that the embedding of H contains a spanning disk. Lemma 2.3

includes the minimal surface embeddings as part of the assumption because, in the proof, we

may need to cut a nonorientable surface open and cap off with disk(s) to obtain a surface with

larger Euler characteristic. We cannot determine whether the resulting surface is orientable or

nonorientable.

Let Ψ(G) be an embedding of a graph G in a surface Σ. We now allow G to have multiple

edges. If so then any two multiple edges form a noncontractible cycle (this is to prevent two

multiple edges from forming a face of size 2). Suppose Ψ(G) has a maximal spanning disk D,

where maximal means it contains as many faces as possible. Denote the subgraph embedded in

D by D(G) (including all edges on the boundary of D). Then Ψ(G) \D(G) consists of essential

edges only, which is called the subembedding of essential edges, and is denoted by Ge. We also

use Ge to represent the subgraph consisting of all essential edges.

3. Edge partitions of projective planar graphs

In this section we study the edge partitions of graphs embedded in the Möbius band and the

projective plane whose Euler characteristic is 1.

We first study embeddings in the Möbius band, which can be considered as the projective

plane with the interior of a disk removed. Let Ψ be an embedding of a graph G in the Möbius

band and e be an edge of Ψ. The edge e is called noncontractible if the resulting surface

obtained by contracting e to a point is not homeomorphic to Möbius band any more. The edge

e is nonseparating if e does not separate the Möbius band into two connected components. We
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have the following theorem

Theorem 3.1 Let Ψ be an embedding of a graph G in the Möbius band M . Let the boundary

of M be the simple closed curve B. If every edge of Ψ is noncontractible and nonseparating,

then

(i) All vertices of G are on the boundary B;

(ii) For any pair of edges e1 = xy and e2 = uv with x, y, u and v all being distinct, x and y

are separated by u and v on B;

(iii) G is either a single cycle with pendant edges on some vertices, or a disjoint union of

caterpillar trees.

Proof Let e = xy be an edge. If one of x and y is an interior point of the Möbius band M ,

then clearly, after contracting e, the resulting surface is still homeomormhic to M . This implies

that e is contractible, a contradiction. Therefore, all vertices are on B, the boundary of M , and

(i) is true.

If we cap off the Möbius band with a disk D along the boundary B, the resulting surface is

the projective plane. For each edge e = xy we add an artificial edge e′ which is a straight line

segment contained in D joining x and y. Then e ∪ e′ is a nonseparating loop in the projective

plane. All nonseparating loops in the projective plane are noncontractible and they are all

homotopic. Each pair of these loops intersect once (homotopically can be viewed as in the center

of D) which implies that, homotopically, x and y are antipodal points of D. Hence (ii) is true.

Figure 1 Graph embedded in the Möbius band

By (i), all vertices of G are embedded on the boundary B. We assume that v1, v2, . . . , vn are

vertices on B in this clockwise order. All edges of G can be viewed as edges in the projective

plane as an essential edges with respect to the spanning disk D. There is only one homotopic

class of noncontractible simple closed curve in the projective plane. This implies that, if a vertex

vi has degree ≥ 2, then all vertices of G incident to vi are consecutively on a section b of B.

Assume the first vertex on b incident to vi is vi1 and the last vertex on b incident to vi is vik .

Then vivi1 , vivik together with b, form a contractible triangle region. Therefore all vertices of G

on b between vi1 and vik are of degree 1, i.e., each of these vertices is the end vertex of a pendant

edge (see Figure 1).
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Delete all pendant edges of G (do not iterate this procedure, just once) to obtain a subgraph

G′. The vertices in G′ have degree at most 2. If all vertices have degree 2, then G is a cycle,

otherwise G is a path or disjoint union of paths. Adding back all pendant edges, we obtain (iii).

This completes the proof. �
The following is the main theorem on edge partition for graphs embedded in the projective

plane.

Theorem 3.2 Every non-planar but projective planar graph can be edge partitioned into a

planar graph and a union of caterpillar trees.

Proof The fundamental group of the projective plane is Z2, and there is only one homotopic

class of non-contractile simple closed curves, i.e., all non-contractible simple closed curves in the

projective plane are homotopic. All embeddings of non-planar graphs in the projective plane

are minimal surface embeddings. Let Ψ(G) be an embedding of a non-planar simple graph G

embedded in the projective plane. By Lemma 2.3, either Ψ(G) contains a spanning disk, or

there is a supergraph H with embedding Ψ(H) in the projective plane such that H is simple,

V (H) = V (G), Ψ(G) is a subembedding of Ψ(H), and Ψ(H) contains a spanning disk. Let D

be such a spanning disk with maximal number of faces. Let DG be the graph induced by V (G)

with all edges contained in D. Then there does not exist any edge e with both endvertices on the

boundary of D such that DG ∪ e are contractible. Therefore, all edges not contained in DG are

essential edges. Let Ge be the subembedding of essential edges. Choose any vertex u of degree

at least 2 (u is not a degree 1 vertex as the endvertex of a pendant edge). Let St(u) be the

subgraph of Ge consisting of all essential edges incident to u, and let G1 = D ∪ St(u). Then G1

is planar because, if necessary, we can connect all essential edges incident to u to the boundary

of D by permuting the clockwise order of essential edges incident to u.

By Theorem 3.1, Ge is either a single cycle with pendant edges on some vertices, or a disjoint

union of caterpillar trees with some pendant edges on some vertices. Let G2 = Ge\St(u). Then
G2 is a union of caterpillar trees. This completes the proof. �

Corollary 3.3 (i) The thickness of all non-planar but projective planar graphs is 2;

(ii) If each planar graph has outerthickness at most 2 (announced by Gonçalves [18]), then

all projective planar graphs have outerthickness at most 3.

4. Edge partitions for graphs embedded in the Klein bottle

In this section we study the edge partitions of graphs embedded in the Klein bottle whose

Euler characteristic is 0. We will prove an edge partition result for embeddings in the Klein

bottle similar to that we obtained for the embeddings in the torus in [14].

There are four types of noncontractible simple closed curves in the Klein bottle [19]. We

can view the Klein bottle as the direct sum of two projective planes, or as twisted version of

torus (cutting the torus open and then identify the two boundary circles reversely). These four

types of curves are illustrated in Figures 2 and 3, respectively. Figure 2 is the direct sum model
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and Figure 3 is the twisted torus model. The twisted torus model is widely mentioned in the

textbooks, and the directed sum model provides more combinatorial view which may help to

understand the nature of the problem discussed in this paper. Each projective plane can be

viewed as a crosscap, which is obtained by cutting off a disk and then identifying the antipodal

points.

I II

III

IV

Figure 2 Four nonhomotopic simple closed curves in the Klein bottle - two cross-caps model

The four types of noncontractible simple closed curves are listed as follows with the directed

sum model.

Type I: noncontractible and orientation reversing (called 1-sided curve) that crosses the first

crosscap;

Type II: noncontractible and orientation reversing that crosses the second crosscap;

Type III: noncontractble, orientation preserving (called 2-sided curve), and nonseparating

which crosses both crosscaps exactly once;

Type IV: noncontractible, orientation preserving, and separating which separates the Klein

bottle into two Mb̈ius band (this curve becomes the boundary for the Möbius band, or the

boundary of the hole of the projective plane which is used for the disk sum).

I

II

III

IV

II

IV

Figure 3 Four nonhomotopic simple closed curves in the Klein bottle - twisted torus model

Now suppose the graph G is embedded in the Klein bottle. By Lemma 2.3 we may assume

that the embedding contains a (maximal) spanning disk D. Each essential edge corresponds to a

loop obtained by contracting the spanning disk into a point. Two loops are either homotopically

disjoint or cross transversely exactly once. Each essential edge has two endvertices on the bound-

ary of the spanning disk D. Let ei and ej be two essential edges with ei = uivi and ej = ujvj ,
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and ui, vi, uj , vj are all distinct. The two edges ei and ej are called crossing if the endvertices

of these two essential edges are in this clockwise order ui, uj , vi, vj on the boundary of D. If ei

and ej have common endvertex, then we may view these two edges as disjoint by homotopically

moving ei (or ej) to make the endvertices distinct. If essential edges ei and ej are crossing, then

both GD ∪ ei and GD ∪ ej are planar, but GD ∪ ei∪ ej is not planar. If ei and ej are not crossing

or ei and ej have a common endvertex, then GD ∪ ei ∪ ej is still planar. The following lemma

explains whether two essential edges are crossing or not.

Lemma 4.1 (i) Two Type I essential edges are crossing, and similarly two Type II essential

edges are crossing;

(ii) Two Type III or two Type IV essential edges are not crossing, respectively. Each pair

bounds a cylinder;

(iii) Type I essential edges and Type II essential edges are not crossing;

(iv) Both Type I and Type II essential edges are crossing with Type III essential edges;

(v) Both Type I and Type II essential edges are not crossing with Type IV essential edges;

(vi) For a given embedding in the Klein bottle with a spanning disk D, Type III and Type

IV essential edges do not exist simultaneously. In fact, this is true for embeddings in any surfaces

with a spanning disk.

Proof Two homotopic orientation preserving simple closed curves are topologically disjoint

and they bound a cylinder. On the other hand, two homotopic orientation reversing simple

closed curves are crossing transversely and is the boundary of a disk with a self-attached pinch

point. This can be viewed locally as two homotopic simple closed curves on a projective plane.

Therefore, (i) and (ii) are true. The Klein bottle is the direct sum of two projective planes and

Type I and Type II essential edges belong to different projective planes and therefore (iii) is true.

A Type III simple closed curve passes each of two crosscaps exactly once, hence it crosses each

of Type I loops and Type II loops exactly once. This implies (iv). Type IV loops separates two

crosscaps and therefore it is homotopically disjoint from Type I and Type II curves, and hence

(v) is true. Type IV loops are separating curves and therefore if any loop crosses a Type IV

loop then it must cross with an even number times. But any two loops obtained by contracting

the disk D are either homotopically disjoint or intersecting transversely exactly once. Therefore,

(vi) is true. �
We now have our main theorem for embeddings in the Klein bottle.

Theorem 4.2 Every graph embedded in the Klein bottle can be edge partitioned into a planar

graph and a subgraph of two vertex amalgamation of a caterpillar tree and a cycle with pendant

edges.

Proof By Lemma 4.1 (iv), Type III and Type IV essential edges do not exist simultaneously.

We divide our discussion into two cases according to whether Type III or Type IV essential edges

exist. If none of Type III or Type IV essential edges exist, the proof will be the same as the

case with Type IV essential edges since we may artificially add a Type IV essential edge to the
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embedding.

Case I. There exist Type IV essential edges (noncontractible, e ∪ GD separates the Klein

bottle with any Type IV edge e).

Let e = xy be a Type IV essential edge. Since a Type IV curve separates the Klein bottle

into two Möbius bands, say the left Möbius band and the right Möbius band, D ∪ xy separates

Ge into two subgraphs, Ge
l and Ge

r, which are the essential edges on the left Möbius band and

the essential edges on the right Möbius band, respectively. Let C = ∂D be the boundary of D.

Then C = [xCy] ∪ [yCx]. All Type IV essential edges are homotopic to each other and their

endvertices are contained consecutively in two disjoint sections of C, one contains x and the other

contains y. All Type I essential edges are contained in Ge
l , and their endvertices are contained

consecutively in [yCx], and all Type II essential edges are contained in Ge
r, and their endvertices

are contained consecutively in [xCy]. The only possible common endvertices of essential edges

in Ge
l and Ge

r are x and y (in the case that x and/or y is also the endvertex of Type I and Type

II essential edges).

Let AIV = St(x)∪{all Type IV essential edges}. If x is incident to both Type I and Type II

essential edges, let G1 = GD ∪ AIV ; If x is also incident to a Type I essential edge but not any

of Type II essential edges, choose a vertex u2 in (xCy) such that u2 is an endvertex of a Type II

essential edge and let G1 = GD ∪ AIV ∪ St(u2); If x is also incident to a Type II essential edge

but not any of Type I essential edges, choose a vertex u1 in (yCx) such that u1 is an endvertex

of an Type I essential edge and let G1 = GD ∪AIV ∪ St(u1); If x is not incident to any of Type

I and Type II essential edges, choose a vertex u1 in (yCx) such that u1 is an endvertex of a

Type I essential edge and choose a vertex u2 in (xCy) such that u2 is an endvertex of a Type II

essential edge, and let G1 = GD ∪AIV ∪ St(u1) ∪ St(u2);

By Lemma 4.1 (iii) and (v), G1 is planar (see Figure 4 for the last case).

X

Y

U
U1

2

Figure 4 Embedding with Type IV essential edges

LetG2 = G\G1, G2l = Ge
l \G1, andG2r = Ge

r\G1. ThenG2 = G2l∪G2r, andG2l andG2r can

only possibly have y as a common vertex (because if Ge
l and Ge

r also have x as a common vertex

then St(x) is contained in G1). In all four sub-cases above, G2l contains only Type I edges and

G2r contains only Type II edges. Both G2l and G2r, together with the regions they are embedded

in, are homeomorphic to a Möbius band with a vertex removed. By Lemma 3.1 (iii), G2l and G2r
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each is a union of caterpillar tree (since a vertex is removed from the boundary of each Möbius

band, respectively). Therefore, G2 (= G2l ∪G2r ) is a union of caterpillar tree because G2l and

G2r can only possibly be attached at y. The theorem is true in this case when Type IV essential

edges exist

Case II. There exist Type III essential edges (noncontractible, nonseparating, and orientation

preserving).

Let e = xy be a Type III essential edge. Therefore, by Lemma 4.1 (vi) there does not exist

any Type IV essential edge. We may assume both Type I and Type II essential edges exist, or the

edge partition problem will be simpler. The vertices x and y separate C into two sections: [xCy]

and [yCx]. By Lemma 4.1 (iii)–(v), all endvertices of Type I essential edges and all endvertices

of Type II essential edges are contained separately on two different sections of C, with possible

two common vertices. For each Type I essential edge e = uv, one of u and v is contained in

[xCy] and the other is contained in [yCx], i.e., two endvertices of each Type I essential edge are

separated by x and y on C. Similarly, two endvertices of each Type II essential edge are also

separated by x and y on C. Half endvertices (counting with multiplicity) of Type I essential

edges and half endvertices of Type II essential edges are contained in [xCy], on two different

sections. The other half endvertices of Type I essential edges and the other half endvertices of

Type II essential edges are contained in [yCx], on two different sections. The relative positions

of these endvertices are illustrated in Figure 5.

X

Y

Figure 5 Embedding with Type III essential edges

If there are two disjoint Type III edges, say x1y1 and x2y2, then x1y1 and x2y2, together

with GD, form a cylinder H. We may assume x1y1 and x2y2 are Type III edges so that outside

of the cylinder contains no other Type III edges. Let G1 be the subgraph of G contained in the

cylinder H (including boundary edges). Then G1 is planar. Let G2 = G\G1, G2l = Ge
l \G1, and

G2r = Ge
r\G1. G2l is the subgraph of Ge induced by all Type I essential edges, and G2r is the

subgraph of Ge induced by all Type II essential edges. The subgraph G2l and G2r can have at

most two common vertices, one in the middle of section (x2Cy2) and the other in the middle of

section (y1Cx1). G2l is a graph embedded in the Möbius band with the section on the boundary

from x1 to x2 being removed, and G2r is a graph embedded in the other Möbius band with
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the section on the boundary from y2 to y1 being removed. By Theorem 3.1 both G2l and G2r

are caterpillar trees or disjoint union of caterpillar trees. Since G2l and G2r have at most two

common vertices, G2 is isomorphic to a subgraph of two vertex amalgamation of two caterpillar

trees. The theorem is true in this case.

If there are more than one Type III edges all with a common vertex, say x, let G1 =

GD ∪ St(x). Then G1 is planar. Let G2 = G\G1, G2l = Ge
l \G1, and G2r = Ge

r\G1. Then

G2l is a graph embedded in the Möbius band with the vertex x being removed, and G2r is a

graph embedded in the other Möbius band with the section on the boundary being removed. By

Theorem 3.1 both G2l and G2r are caterpillar tree or disjoint union of caterpillar trees. Since

G2l and G2r have at most two common vertices, G2 is isomorphic to a subgraph of two vertex

amalgamation of two caterpillar trees. The theorem is true in this case.

Now we assume that xy is the only Type III edge. let G1 = GD ∪ St(x). Then G1 is planar.

Let G2 = G\G1, G2l = Ge
l \G1, and G2r = Ge

r\G1. Then G2l is a graph embedded in the Möbius

band with the vertex x being removed, and G2r is a graph embedded in the other Möbius band.

By Theorem 3.1, G2l is a caterpillar tree or disjoint union of caterpillar trees, and G2r is a a

cycle with pendant edges, a caterpillar tree, or disjoint union of caterpillar trees. Hence G2 is

isomorphic to a subgraph of two vertex amalgamation of a caterpillar tree with a cycle with

pendant edges. The theorem is also true in this case. This completes the proof. �

Corollary 4.3 (i) The thickness of all graphs embeddable in the Klein bottle but not planar is

2;

(ii) If each planar graph has outerthickness at most 2 (announced by Gonçalves [18]), then

all Klein bottle embeddable graphs have outerthickness at most 3.
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[11] M. JÜNGER, P. MUTZEL, T. ODENTHAL, et al. The thickness of a minor-excluded class of graphs. Discrete

Math., 1998, 182(1-3): 169–176.



592 Xiaoya ZHA

[12] K. ASANO. On the genus and thickness of graphs. J. Combin. Theory Ser. B, 1987, 43(3): 287–292.

[13] A. M. DEAN, J. P. HUTCHINSON. Relation Among Embedding Parameters for Graphs. Wiley-Intersci.

Publ., Wiley, New York, 1991.

[14] Baogang XU, Xiaoya ZHA. Thickness and outerthickness for embedded graphs. Discrete Math., 2018, 341(6):

1688–1695.

[15] G. CHARTRAND, D. GELLER, S. HEDETNIEMI. Graphs with forbidden subgraphs. J. Combinatorial

Theory Ser. B, 1971, 10: 12–41.

[16] Guoli DING, B. OPOROWSKI, D. P. SANDERS, et al. Surface, tree-width, clique-minor, and partitions. J.

Combin. Theory Ser. B, 2000, 79(2): 221–246.

[17] K. S. KEDLAYA. Outerplanar partitions of planar graphs. J. Combin. Theory Ser. B, 1996, 67(2): 238–248.
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