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Abstract Given a sequence ρ over a finite alphabet A, an important topic in combinatorics on

words is to find out all factors ω of ρ and positive integers p such that ωp (the p-th occurrence

of ω) fulfills property P. This problem is equivalent to determining a notion called the factor

spectrum. Determining the factor spectrum is a difficult problem. To this aim, we introduce

several notions, such as: kernel word, envelope word, return word and derived sequence of each

factor ω. Using the factor spectrum and derived sequence, we can solve some enumerations of

factors, such as the numbers of palindromes, fractional powers, etc. We will show some results for

several sequences, such as the Fibonacci sequence, the Tribonacci sequence, the Period-doubling

sequence, etc. And we think that these notions and methods are suitable for all recurrent

sequences.
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1. Introduction

A sequence ρ is said to be recurrent if every factor occurs infinitely often [1]. We arrange all

occurrences of factor ω in ρ as the sequence {ωp}p≥1, where ωp denotes the p-th occurrence of

ω. Let P be a property about factor, and if the p-th occurrence of ω has property P, we denote

ωp ∈ P. We denote ω ∈ P, if there exists an integer p ≥ 1 such that ωp ∈ P. When ω ∈ P,

maybe not all p ∈ N such that ωp ∈ P. An important topic in combinatorics on words is to find

out all ω and p such that ωp fulfills property P. More precisely, let ρ be a sequence and P be

a property, we introduce the following notion factor spectrum of a sequence ρ and a property P
that

Spt(ρ,P) := {(ω, p) | ω ≺ ρ, p ≥ 1, ωp ∈ P} ⊂ (Ωρ,N), (1.1)

where Ωρ is the set of all factors in ρ. When we write (ω, p) ∈ Spt(ρ,P), we regard ω and p as

two variable function over (Ωρ,N). By the definition in Eq. (1.1), the above problem is equivalent

to determining the factor spectra.
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Determining the factor spectra is a difficult problem. For this aim, we use the return word

and derived sequence of each factor ω, which are introduced in Durand [2], see Section 2 for

details. From them, we may know the local structure near ωp for each p. In Huang-Wen [3, 4],

we first study the structure of derived sequences of the Fibonacci sequence and the Tribonacci

sequence, then we determine the factor spectra for some combinatorial properties.

2. The return word and derived sequence

Let ω = x1x2 · · ·xN be a finite word. We denote by |ω| the number of letters in ω, called

the length of ω. For 1 ≤ i ≤ j ≤ N , we define ω[i, j] = xixi+1 · · ·xj−1xj , by convention,

ω[i] = ω[i, i] = xi and ω[i, i − 1] = ε (empty word). We call ω[i, j] a factor of ω, denoted by

ω[i, j] ≺ ω. The position of factor ω[i, j] in ω is defined by i. We call a non-empty word ν a

prefix (resp., suffix) of a word ω if there exists a word u such that ω = νu (resp., ω = uν),

denoted by ν / ω (resp., ν . ω). In this case, we write ν−1ω = u (resp., ων−1 = u), where ν−1 is

the inverse word of ν such that νν−1 = ν−1ν = ε. A palindrome ω is a finite word that reads

the same backwards as forwards, i.e., ←−ω := xN · · ·x2x1 = ω.

The definitions of both the return word and derived sequence are from Durand [2]. Let us

recall them as below. Notice that Durand gave these notions for all prefixes of any recurrent

sequence, and we extend these notions to all non-empty factors. Recall that ωp denotes the p-th

occurrence of ω. Denote by occ(ω, p) the position of ωp. For p, q ≥ 1, ωp ≺ Wq means ω ≺ W

and occ(W, q) ≤ occ(ω, p) < occ(ω, p) + |ω| − 1 ≤ occ(W, q) + |W | − 1.

We call ρ[i, j − 1] the p-th return word over ω where i and j are the positions of the p-th

and (p + 1)-th occurrences of ω in ρ, denoted by Rρ,p(ω). Denote by Hρ,ω the set of return

words over factor ω ≺ ρ. Then the sequence ρ can be written in a unique way as a concatenation

ρ = ρ[1, h−1]Rρ,1(ω)Rρ,2(ω) · · · where Rρ,p(ω) ∈ Hρ,ω and ρ[1, h−1] is the prefix of ρ occurring

before the first occurrence of ω. Let us give toHρ,ω the linear order defined by the rank of the first

occurrence in ρ. This defines a one to one and onto map Λρ,ω : Hρ,ω → {1, . . . ,Card(Hρ,ω)} =

Nρ,ω ⊂ {α, β, . . .}, and the sequence Dω(ρ) := Λρ,ω(Rρ,1(ω))Λρ,ω(Rρ,2(ω))Λρ,ω(Rρ,3(ω)) · · · .
This sequence of alphabet Nρ,ω is called a derived sequence of ρ. Notice that we omit the prefix

ρ[1, h− 1]. Moreover, we denote the reciprocal map of Λρ,ω by Θρ,ω : Nρ,ω → Hρ,ω.

The main result of Durand [2] is: a sequence ρ is substitutive primitive if and only if the

number of its different derived sequences is finite. The other property is: for any ω ≺ ρ and

v ≺ Dω(ρ), there exists a factor µ ≺ ρ such that derived sequence Dv(Dω(ρ)) = Dµ(ρ) (see [2,

Proposition 6 (5)]). By the two properties, if ρ is substitutive primitive, then for any ω ≺ ρ,

derived sequence Dω(ρ) is still substitutive primitive.

2.1. Derived sequences of the Fibonacci and Tribonacci sequences

The Fibonacci morphism σ1 over alphabet {a, b} is a substitution defined by σ1(a) = ab and

σ1(b) = a. The Fibonacci sequence F is defined to be the fixed point beginning with the letter

a of the Fibonacci morphism. It is a recurrent infinite word [1]. Define Fm = σm1 (a) for m ≥ 0,
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by convention, F−1 = b and F−2 = ε. The m-th Fibonacci number fm is equal to the length of

Fm. As a classical example of sequences over the binary alphabet, the Fibonacci sequence F has

many remarkable properties. We refer to Lothaire [5, 6], Allouche-Shallit [1] and Berstel [7, 8].

The Tribonacci sequence T is a natural generalization of the Fibonacci sequence, which is the

fixed point beginning with the letter a of morphism σ2(a) = ab, σ2(b) = ac, σ2(c) = a defined

over the alphabet {a, b, c}. Define Tm = σm2 (a) for m ≥ 0.

The m-th Tribonacci number tm is equal to the length of Tm.

2.1.1. Kernel word

The main tool of Huang-Wen [3,4] is kernel word, which is a set of factors in the sequence ρ.

For a factor ω, we first introduce the kernel of a factor ω as follows, denoted by Ker(ω).

Ker(ω) := min
|·|
{W | the difference occ(W,p)− occ(ω, p)

is independent of p for p ≥ 1, W ≺ ω}. (2.1)

We can prove that the kernel of any factor ω is unique when ρ is the Fibonacci or Tribonacci

sequence. If Ker(ω) is unique for all ω in ρ, we define the set of kernel words by that K :=

{Ker(ω) | ω ≺ ρ}. More precisely, we give the definitions of kernel words in the Fibonacci and

Tribonacci sequences as below. In fact, the kernel word in the Fibonacci sequence is just the

singular words defined in Wen-Wen [9]. But unfortunately, the singular words of the Tribonacci

sequence defined in Tan-Wen [10] is not a set satisfying Eq. (2.1), see Example 2.2(b).

Remark 2.1 The two notions are suitable not only for the Fibonacci and Tribonacci sequences,

but also for some other sequences. Notice that the notions are not suitable for the Period-

doubling sequence D, for details see Example 2.2(a). For this kind of sequences, we need other

tools.

Example 2.2 (a) Take ω = baaabababaaab ≺ D, U = aabab and V = babaa. We can check that

|U | = |V |, occ(U, p)−occ(ω, p) ≡ 2 and occ(V, p)−occ(ω, p) ≡ 6 for all p ≥ 1. But for any factor

W in D of length 1 ≤ n ≤ 4, it dose not satisfy that occ(W,p) − occ(ω, p) is independent of p.

This means both U and V satisfy Eq. (2.1).

(b) Tan-Wen [10] defined two kinds of singular words: Ω1
m and Ω2

m for m ≥ 1.{
Ω1
m = {factor of length fm of the word α−1

←−
EmDm−1Emα

−1},
Ω2
m = {factor of length fm of the word β−1Em+1Dm−2

←−−−
Em+1β

−1},

where Dm = Tm−1Tm−2 · · ·T2T1T0, Em = D−1m−1Tm, α is the last letter of Em and β is the

first letter of Em+1. By convention, D0 = ε. For instance, Ω1
1 = {aa}, Ω2

1 = {ac, ca}, Ω1
2 =

{abab, baba} and Ω2
2 = {abaa, baab, aaba}. We can check that the set of all singular words in T

is not satisfying Eq. (2.1).

Definition 2.3 (Kernel words of the Fibonacci sequence) (1) Let {Km}m≥−1 be the sequence



The factor spectrum and derived sequence 721

of factors with

K−1 = a and Km = δm+1Fm[1, fm − 1] for m ≥ 0,

where δm . Fm. We call Km the m-th kernel word. More precisely, δm = a if m ≡ 0 (mod 2),

δm = b otherwise. Obviously, |Km| = fm for m ≥ −1.

(2) Define K := {Km | m ≥ −1}, which is called the kernel set of the Fibonacci sequence.

(3) We define the order of kernel words that Km @ Km+1 for all m ≥ −1. For any factor

ω ≺ F, we define

Ker(ω) = max
@
{Km|Km ≺ ω, m ≥ −1},

which is called the kernel of factor ω.

(4) We define the order Km,p @ Km+1,q for all p, q ≥ 1. For any factor ωp where (ω, p) ∈
(ΩF,N), we define

Ker(ωp) = max
@
{Km,q|Km,q ≺ ωp, m ≥ −1, q ≥ 1},

which is called the kernel of factor ωp.

Here are the first few values of Fm, fm and Km:

• {Fm}m≥−1 = b, a, ab, aba, abaab, abaababa, abaababaabaab, abaababaabaababaababa, . . ..

• {fm}m≥−1 = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, . . ..

• {Km}m≥−1 = a, b, aa, bab, aabaa, babaabab, aabaababaabaa, babaababaabaababaabab, . . ..

We have proved that all kernel words of F are palindrome [3].

Definition 2.4 (Kernel words of the Tribonacci sequence) (1) Let {km}m≥1 be the sequence of

positive integers with

k1 = k2 = k3 = 1 and km = km−1 + km−2 + km−3 − 1 for m ≥ 4.

The number km is called the m-th kernel number.

(2) Let {Km}m≥1 be the sequence of factors with

K1 = a, K2 = b, K3 = c and Km = δmTm−3[1, km − 1] for m ≥ 4,

where δm . Tm. We call Km the m-th kernel word. More precisely, δm = a if m ≡ 0 (mod 3),

δm = b if m ≡ 1 (mod 3), δm = c otherwise. Obviously, |Km| = km for m ≥ 1.

(3) Define K := {Km | m ≥ 1}, which is called the kernel set of the Tribonacci sequence.

(4) We define the order of kernel words that Km @ Km+1 for all m ≥ 1. For any factor

ω ≺ T, we define Ker(ω) = max@{Km | Km ≺ ω, m ≥ 1}, which is called the kernel of factor ω.

(5) We define the order Km,p @ Km+1,q for m, p, q ≥ 1. For any factor ωp where (ω, p) ∈
(ΩT,N), we define Ker(ωp) = max@{Km,q | Km,q ≺ ωp, m, q ≥ 1}, which is called the kernel of

factor ωp.

Here are the first few values of Tm, tm, Km and km:

• {Tm}m≥0 = a, ab, abac, abacaba, abacabaabacab, abacabaabacababacabaabac, . . ..

• {tm}m≥0 = 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, . . ..

• {Km}m≥1 = a, b, c, aa, bab, cabac, aabacabaa, babacabaabacabab, . . ..
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• {km}m≥1 = 1, 1, 1, 2, 3, 5, 9, 16, 29, 53, 97, 178, 327, 601, . . ..

As the case of the Fibonacci sequence, all kernel words of T are also palindrome [4].

Remark 2.5 Notice that, the definitions of Ker(ω) in Eq. (2.1) and Definitions 2.3 and 2.4 look

different. In fact, they are equivalent. More precisely, Eq. (2.1) is more essential, and Definitions

2.3 and 2.4 are more applicable and more convenient.

2.1.2. Derived sequences

Huang-Wen proved the properties about “derived sequence” below, see [3, Theorem 2.11]

and [4, Theorem 5.1], respectively.

Theorem 2.6 (1) For any factor ω ≺ F, derived sequence Dω(F) is still F itself.

(2) For any factor ω ≺ T, derived sequence Dω(T) is still T itself.

Using Theorem 2.6, we determined the numbers of palindromes, squares and cubes occurring

in F[i, j] and T[i, j] for 1 ≤ i ≤ j, see Huang-Wen [11,12] for instance. These topics are of great

importance in computer science.

Example 2.7 (Derived sequence Dω(F) for ω = baab)

F = a baaba︸ ︷︷ ︸
α

baa︸︷︷︸
β

baaba︸ ︷︷ ︸
α

baaba︸ ︷︷ ︸
α

baa︸︷︷︸
β

baaba︸ ︷︷ ︸
α

baa︸︷︷︸
β

baaba︸ ︷︷ ︸
α

baaba︸ ︷︷ ︸
α

baa︸︷︷︸
β

baaba︸ ︷︷ ︸
α

baaba︸ ︷︷ ︸
α

baa︸︷︷︸
β

· · · ,

where

α = ΛF,ω(RF,1(ω)) = ΛF,ω(baaba) and β = ΛF,ω(RF,2(ω)) = ΛF,ω(baa).

It is easy to see that the derived sequence Dω(F) = αβααβαβααβααβ · · · is a Fibonacci sequence

over {α, β}.

2.1.3. Three steps to prove Theorem 2.6

How to prove Theorem 2.6 by the kernel word? We need three steps:

Step 1. Determine derived sequence Dω(ρ) for any kernel words ω ≺ K.

Step 2. For all ω ≺ ρ, prove that the difference occ(Ker(ω), p) − occ(ω, p) is independent of

p.

Step 3. Prove derived sequence Dω(ρ) is exactly DKer(ω)(ρ).

For details, see Huang-Wen [3,4] for instance.

F = a b a a b a b a a b a a b a b a a b a b a a b a · · ·︸ ︷︷ ︸
Ker(ω)1

Ker(ω)2︷ ︸︸ ︷ ︸ ︷︷ ︸
Ker(ω)3

Ker(ω)4︷ ︸︸ ︷ ︸ ︷︷ ︸
Ker(ω)5

ω1� -

ω2
� -

ω3� -

ω4
� -

ω5� -

Figure 1 The relation between ωp and Ker(ω)p for ω = baab and 1 ≤ p ≤ 5.
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2.2. Derived sequences of the Period-doubling sequence

Huang-Wen [3,4] determine the structure of derived sequences of the Fibonacci sequence and

the Tribonacci sequence, respectively. But for the Period-doubling sequence D, there are two

differences. Firstly, we find that for different factors, they may have different derived sequences.

But fortunately, we can divide set ΩD into two types, and each type corresponds to one derived

sequence. Secondly, the main tool of [3, 4] is kernel word. But the kernel word technique is not

valid for the Period-doubling sequence, thus we introduce the envelope words and corresponding

techniques. In this way, we determine the factor spectra for some combinatorics properties.

Let A = {a, b} be a binary alphabet. The Period-doubling sequence D is the fixed point

beginning with the letter a of substitution σ3(a) = ab and σ3(b) = aa. It is also the first difference

of the Thue-Morse sequence, where we use an equivalent substitution σ̂(1) = 10, σ̂(0) = 11, and

the definition of the difference of an integer sequence is natural. It has been heavily studied

in mathematics and computer science. Damanik [13] determined the numbers of palindromes,

squares and cubes of length n occurring in D. Allouche-Peyrière-Wen-Wen [14] proved that all

the Hankel determinants of D are odd integers [15–20, 22–28]. We denote Am = σm3 (a) and

Bm = σm3 (b) for m ≥ 0. Then |Am| = |Bm| = 2m. Let δm ∈ {a, b} be the last letter of Am.

Obviously, δm = a if and only if m is even; and δm+1 is the last letter of Bm.

Recall that for any factor ω of F, derived sequence Dω(F) is still F itself. But Huang-

Wen [29] proved that for different factors in D, there will be different derived sequences. In [29],

we determined two types of derived sequences, see Theorem 2.9.

2.2.1. Envelope word

The main tool of Huang-Wen [29] is envelope word, which is a set of factors in sequence. We

first introduce the envelope of a factor ω for the factor in sequence ρ, denoted by Env(ω).

Env(ω) := max
|·|
{W | the difference occ(ω, p)− occ(W,p)

is independent of p for p ≥ 1, ω ≺W}. (2.2)

We can prove that the envelope of any factor ω is unique. In fact, if U and V are two words

satisfying Eq. (2.2) and occ(U, 1) < occ(V, 1), then W = ρ[occ(U, 1), occ(V, 1) + |V | − 1] also

satisfies Eq. (2.2). Since |W | > |U | = |V |, a contradiction. We define the set of envelope words

by that E := {Env(ω) | ω ≺ ρ}.

More precisely, we give the definitions of envelope words in the Period-doubling sequence as

below. Notice that, the definitions of Env(ω) in Eq. (2.2) and Definition 2.8 look different. In

fact, they are equivalent. More precisely, Eq. (2.2) is more essential, and Definition 2.8 is more

applicable and more convenient.

We think notions of envelop words will be suitable for all recurrent sequence.

Definition 2.8 (Envelope word of the Period-doubling sequence) (1) Let {Eim | i = 1, 2, m ≥ 1}
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be a set of factors with

E1
m = Amδ

−1
m and E2

m = BmBm−1δ
−1
m .

We call Eim the m-th envelope word of type i. Moreover |E1
m| = 2m−1 and |E2

m| = 3×2m−1−1.

(2) Define E := {Eim | i = 1, 2, m ≥ 1}, which is called the envelope set of the Period-

doubling sequence.

(3) We define the order of envelope words that E1
m @ E2

m and Eim @ Ejm+1 for i, j ∈ {1, 2},
m ≥ 1. For any factor ω ≺ D, we define Env(ω) = min@{Eim | ω ≺ Eim, i = 1, 2, m ≥ 1}, which

is called the envelope of factor ω.

(4) We define the order Eim,p @ Ejn,q if Eim @ Ejn for i, j ∈ {1, 2}, m,n, p, q ≥ 1. For any factor

ωp where (ω, p) ∈ (ΩD,N), we define Env(ωp) = min
@
{Eim,q | ωp ≺ Eim,q, i = 1, 2, m, q ≥ 1},

which is called the envelope of factor ωp.

Obviously, the lengths of all envelope words are odd, except E2
1 = aa. Moreover, by the def-

inition of Eim and Amδ
−1
m = Bmδ

−1
m+1, we have E1

m+1 = E1
mδmE

1
m and E2

m+1 = E1
mδmE

1
mδmE

1
m

for m ≥ 1. By induction, all envelope words are palindromes [29].

Here are the first few values of Am, Bm, E1
m and E2

m:

• {Am}m≥0 = a, ab, abaa, abaaabab, abaaabababaaabaa, . . . .

• {Bm}m≥0 = b, aa, abab, abaaabaa, abaaabababaaabab, . . . .

• {E1
m}m≥1 = a, aba, abaaaba, abaaabababaaaba, . . . .

• {E2
m}m≥1 = aa, ababa, abaaabaaaba, abaaabababaaabababaaaba, . . . .

By this definition, there exists a unique envelope for each factor. For instance, Env(abab) =

ababa = E2
2 and Env(abaaabab) = E1

4 . We can check them by the expressions of Eim. More

precisely, there exists an integer j and two words u and ν, such that

ω = Env(ω)[j + 1, j + |ω|] and Env(ω) = u · ω · ν, (2.3)

where 0 ≤ j ≤ |Env(ω)| − |ω|, |u| = j, u / Env(ω) and ν . Env(ω). We proved that the integer j

is unique for any fixed ω in [29].

2.2.2. Derived sequences

In Huang-Wen [29, Theorem 2.6], we determined two types of derived sequences.

Theorem 2.9 Let factor ω ≺ D have expression in Eq. (2.3).

(1) If there exists an integer m ≥ 1 such that Env(ω) = E1
m, derived sequence Dω(D) =

D(α, ββ). More precisely,{
α = ΛD,ω(RD,1(ω)), RD,1(ω) = Am, |RD,1(ω)| = 2m;

β = ΛD,ω(RD,2(ω)), RD,2(ω) = Am−1, |RD,2(ω)| = 2m−1.
(2.4)

Moreover RD,0(ω) = D[1, (ω)1 − 1] = u and |RD,0(ω)| = j.

(2) If there exists an integer m ≥ 1 such that Env(ω) = E2
m, derived sequence Dω(D) =
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D(αβ, αγαγ). More precisely,
α = ΛD,ω(RD,1(ω)), RD,1(ω) = Am−1, |RD,1(ω)| = 2m−1;

β = ΛD,ω(RD,2(ω)), RD,2(ω) = Am−1AmBm+1, |RD,2(ω)| = 7× 2m−1;

γ = ΛD,ω(RD,4(ω)), RD,4(ω) = BmBm−1, |RD,4(ω)| = 3× 2m−1.

(2.5)

Moreover RD,0(ω) = D[1, (ω)1 − 1] = Amu and |RD,0(ω)| = 2m + j.

D = a b a a a b a b a b a a a b a · · ·
D(α, ββ) = α ββ α α α ββ α ββ α ββ α α α ββ α · · ·
D(αβ, αγαγ) = αβ αγαγ αβ αβ αβ αγαγ αβ αγαγ αβ αγαγ αβ αβ αβ αγαγ αβ · · ·

Figure 2 The first few letters of D, D(α, ββ) and D(αβ, αγαγ)

Example 2.10 (Derived sequence Dω(D)) Let ω = aba, Env(aba) = aba = E1
2 and Daba(D) =

D(α, ββ) where ΘD,aba(α) = RD,1(aba) = abaa and ΘD,aba(β) = RD,2(aba) = ab.

D = abaa︸︷︷︸
α

ab︸︷︷︸
β

ab︸︷︷︸
β

abaa︸︷︷︸
α

abaa︸︷︷︸
α

abaa︸︷︷︸
α

ab︸︷︷︸
β

ab︸︷︷︸
β

abaa︸︷︷︸
α

ab︸︷︷︸
β

ab︸︷︷︸
β

· · · (2.6)

Let ω = aa, Env(aa) = aa = E2
1 . In this case D(αβ, αγαγ) where ΘD,aa(α) = RD,1(aa) = a,

ΘD,aa(α) = RD,2(aa) = aababab and ΘD,aa(α) = RD,4(aa) = aab.

D = ab a︸︷︷︸
α

aababab︸ ︷︷ ︸
β

a︸︷︷︸
α

aab︸︷︷︸
γ

a︸︷︷︸
α

aab︸︷︷︸
γ

a︸︷︷︸
α

aababab︸ ︷︷ ︸
β

a︸︷︷︸
α

aababab︸ ︷︷ ︸
β

a︸︷︷︸
α

aababab︸ ︷︷ ︸
β

a︸︷︷︸
α

aab︸︷︷︸
γ

a︸︷︷︸
α

aab︸︷︷︸
γ

a︸︷︷︸
α

aababab︸ ︷︷ ︸
β

a︸︷︷︸
α

aab︸︷︷︸
γ

a︸︷︷︸
α

aab︸︷︷︸
γ

· · · (2.7)

2.2.3. Three steps to prove Theorem 2.9

How to prove Theorem 2.9 by the envelope word? We need three steps:

Step 1. Determine derived sequence Dω(ρ) for any envelope word ω ≺ E .

Step 2. For ω ≺ ρ, prove that the difference occ(ω, p)− occ(Env(ω), p) is independent of p.

Step 3. Prove derived sequence Dω(ρ) is exactly DEnv(ω)(ρ).

For details [29].

D = a b a a a b a b a b a a a b a a a b a a a b a b · · ·︸ ︷︷ ︸
ω1

ω2︷ ︸︸ ︷ ︸ ︷︷ ︸
ω3

ω4︷ ︸︸ ︷
Env(ω)1� -

Env(ω)2� -

Env(ω)3� -

Env(ω)4� -

Figure 3 The relation between ωp and Env(ω)p for ω = baa and p = 1, 2, 3, 4

2.2.4. The reflexivity of derived sequences

A known result in that for any ω ≺ ρ and v ≺ Dω(ρ), there exists a factor µ ≺ ρ such
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that derived sequence Dv(Dω(ρ)) = Dµ(ρ) (see [2, Proposition 6(5)]). Thus for any ω ≺ D and

v ≺ Dω(D), derived sequence Dv(Dω(D)) ∈ {Dω(D) | ω ≺ D} = {D(α, ββ),D(αβ, αγαγ)}.

Let ρ ∈ {D(α, ββ),D(αβ, αγαγ)}. In Huang-Wen [29], we first define the envelope words in

ρ. Then we divide Ωρ into two types: Ω1
ρ and Ω2

ρ, according to their envelopes. At last, we prove

that for all v ∈ Ω1
ρ, Dv(ρ) = D(α, ββ); otherwise Dv(ρ) = D(αβ, αγαγ). We call it the reflexivity

property of derived sequence, see Figure 4.

Env(ω) = E
1
m

Env(ω) = E 2
m

1
E

n
v
(v

)
=

1 E
2 m

2
E

n
v
(v

)
=

2 E
1 m

D

D(αβ, αγαγ)

D(α, ββ)

2Env(v) = 2E2
m

1Env(v) = 1E1
m

Figure 4 The reflexivity of derived sequences. For instance, the edge

‘D
Env(ω)=E1

m−→ D(α, ββ)” means that for any ω ≺ D if Env(ω) = E1
m

then derived sequence Dω(D) = D(α, ββ), which is given in Theorem 2.9 (1)

3. The factor spectrum

Recall the definition of factor spectrum given in the first paragraph in Section 1. Our aim

in this section is to determine the factor spectra for some combinatorics properties, such as

separated (P1), adjacent (P2) and overlapped (P3). The structure of derived sequences will play

an important role in these studies.

For instance, ωp ∈ P2 means that there exists an integer q (> p) such that the p-th and q-th

occurrences of ω are adjacent. And ω ∈ P2 means that there exist two integers p and q such that

the p-th and q-th occurrences of ω are adjacent. In this case, ωω ≺ ρ. We call ωω a square in ρ.

We consider ω = ab ∈ D for example.

D = ab︸︷︷︸
[1]

aa ab︸︷︷︸
[2]

ab︸︷︷︸
[3]

ab︸︷︷︸
[4]

aa ab︸︷︷︸
[5]

aa · · · . (3.1)

We denote the first five occurrences of ω by notations [1] to [5] in Eq. (3.1). Thus the first five
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occurrences of ω are D[1, 2], D[5, 6], D[7, 8], D[9, 10] and D[13, 14].

The first (resp., 4-th, 5-th) occurrence of ω is not followed by another ω = ab;

=⇒ ω1 6∈ P2, ω4 6∈ P2, ω5 6∈ P2;

=⇒ square ωω = abab does not exist at these positions.

The second (resp., third) occurrence of ω is followed by another ω = ab;

=⇒ ω2 ∈ P2, ω3 ∈ P2;

=⇒ square ωω = abab exists at these positions.

3.1. The factor spectra in the Fibonacci sequence

Huang-Wen [3] discussed the factor spectra for some combinatorial properties in the Fibonacci

sequence. We first define several subsets of (ΩF,N) such that the disjoint union of them is (ΩF,N),

see Eq. (3.2) and Figure 5.

S1 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, |ω| = fm},

S2.1 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, |ω| = fm+1,F[p] = a},

S2.2 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, |ω| = fm+1,F[p] = b},

S3.1 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, |ω| = fm+2,F[p] = a},

S3.2 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, |ω| = fm+2,F[p] = b},

S4 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, fm < |ω| < fm+1},

S5.1 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, fm+1 < |ω| < fm+2,F[p] = a},

S5.2 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, fm+1 < |ω| < fm+2,F[p] = b},

S6 =
⋃
m=−1{(ω, p) | Ker(ω) = Km, fm+2 < |ω| < fm+3}.

(3.2)

Obviously, the disjoint union of S2.1 and S2.2 is
⋃
m=−1{(ω, p) | Ker(ω) = Km, |ω| = fm+1}.

|ω| = fm

|ω| = fm+1

|ω| = fm+2

fm < |ω| < fm+1

fm+1 < |ω| < fm+2

fm+2 < |ω| < fm+3

F[p] = a F[p] = b

S1

S2.1 S2.2

S3.1 S3.2

S4

S5.1 S5.2

S6

Figure 5 Several subsets of (ΩF,N) in Eq. (3.2)

Property 3.1 Spt(F,P1) = S1 ∪ S2.1 ∪ S4 ∪ S5.1, Spt(F,P2) = S2.2 ∪ S3.1, Spt(F,P3) =

S3.2 ∪ S5.2 ∪ S6.

Using the factor spectrum Spt(F,P2), we get a new proof of the conclusion that all squares

in F are of length 2fm. Furthermore, we find that not all occurrences of all factors of length fm

belong to Spt(F,P2).
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3.2. The factor spectra in the Period-doubling sequence

Huang-Wen [29] discussed the factor spectra for some combinatorial properties in the Period-

doubling sequence. We first define several subsets of (ΩD,N) such that the disjoint union of them

is (ΩD,N), see Eq. (3.3) and Figure 6.

S1 =
⋃
m=1{(ω, p) | Env(ω) = E1

m,D(α, ββ)[p] = α},
S2.1 =

⋃
m=1{(ω, p) | Env(ω) = E1

m, |ω| < 2m−1,D(α, ββ)[p] = β},
S2.2 =

⋃
m=1{(ω, p) | Env(ω) = E1

m, |ω| = 2m−1,D(α, ββ)[p] = β},
S2.3 =

⋃
m=1{(ω, p) | Env(ω) = E1

m, |ω| > 2m−1,D(α, ββ)[p] = β},
S3 =

⋃
m=1{(ω, p) | Env(ω) = E2

m,D(αβ, αγαγ)[p] = α},
S4 =

⋃
m=1{(ω, p) | Env(ω) = E2

m,D(αβ, αγαγ)[p] 6= α}.

(3.3)

The disjoint union of S2.1, S2.2 and S2.3 is
⋃
m=1{(ω, p) | Env(ω) = E1

m,D(α, ββ)[p] = β}.

D(α, ββ)[p] = α D(α, ββ)[p] = β

D(αβ, αγαγ)[p] = α D(αβ, αγαγ)[p] 6= α

Env(ω) = E2
m

Env(ω) = E1
m

S3 S4

S2.3

S2.2

S2.1

S1

Figure 6 Several subsets of (ΩD,N) in Eq. (3.3)

Property 3.2 Spt(D,P1) = S1 ∪ S4 ∪ S2.1, Spt(D,P2) = S2.2, Spt(D,P3) = S3 ∪ S2.3.

Using Spt(D,P2), we get new proofs of some conclusions in Damanik [13]:

(1) All squares in D are
⋃
m≥1{Am−1[j + 1, 2m−1]Am−1Am−1[1, j] | 0 ≤ j < 2m−1};

(2) There are 2m−1’s distinct squares with length 2m for m ≥ 1.

4. Enumerations

Using Theorems 2.6 and 2.9, we determined the numbers of palindromes, squares and cubes

occurring in each factor of F, T and D, see Huang-Wen [11,12,30] for instance. These topics are

of great importance in computer science.

4.1. Enumeration of palindromes in F and T

A palindrome is a finite word that reads the same backwards as forwards. Let PalF (resp.,

PalT) be all palindromes occurring in F (resp., T). Some previous research has been done on “rich

word”, which is based on the number of distinct palindromes. A finite word ω is rich if and only

if ω contains exactly |ω|+1 distinct palindromes (including the empty word). An infinite word is

rich if and only if all of its factors are rich. Droubay-Justin-Pirillo [31] proved that episturmian
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sequences are rich. Therefore, as special cases, F and T are rich. Thus the number of distinct

palindromes in F[1, n] (resp., T[1, n]) is n+ 1 for all n.

In Huang-Wen [11], we consider the numbers of repeated palindromes in F[1, n] and T[1, n].

All results in this subsection are from this paper. Denote

A(n) = #{(ω, p) | ω ∈ PalF, ωp ≺ F[1, n]} and B(n) = #{(ω, p) | ω ∈ PalT, ωp ≺ T[1, n]}.

The research on counting the repeated palindromes is not rich. From our knowledge, it seems the

first work to study this problem. In related fields, the numbers of special types of factors have

been investigated in recent years, such as squares, cubes, r-powers, palindromes, runs, Lyndon

factors, etc [10,21,31–41].

The main difficulty of this problem is twofold:

(1) The positions of all occurrences for all palindromes are not easy to be determined.

In [11], we overcome this difficulty by using the derived sequence properties of F and T, which

we introduced and studied in [3, 4], see also Theorem 2.6.

(2) Taking F for instance, by the derived sequence property of F, we can find out all distinct

palindromes in F[1, n]. We can also count the number of occurrences of each palindrome. So

the summation of these numbers are the numbers of repeated palindromes in F[1, n]. But this

method is complicated. We overcome this difficulty by studying the relations among positions of

each ωp, and establishing the recursive structure of PalF. Using the derived sequence properties

and recursive structures, we give algorithms for counting A(n) and B(n), respectively.

Take A(n) for instance. We have A(n) =
∑n
i=1 a(i) where a(i) is given in Property 4.1.

Property 4.1 The vectors [a(1)] = [1], [a(2), a(3)] = [1, 2] and for m ≥ 3

[a(fm − 1), . . . , a(fm+1 − 2)]

= [a(fm−2 − 1), . . . , a(fm−1 − 2), a(fm−1 − 1), . . . , a(fm − 2)] + [1, . . . , 1︸ ︷︷ ︸
fm−1

].

The first few values of a(n) are [a(1)] = [1], [a(2), a(3)] = [1, 2],

[a(4), a(5), a(6)] = [a(1), a(2), a(3)] + [1, 1, 1] = [2, 2, 3],

[a(7), . . . , a(11)] = [a(2), . . . , a(6)] + [1, 1, 1, 1, 1] = [2, 3, 3, 3, 4],

[a(12), . . . , a(19)] = [a(4), . . . , a(11)] + [1, . . . , 1︸ ︷︷ ︸
8

] = [3, 3, 4, 3, 4, 4, 4, 5].

[a(20), . . . , a(32)] = [a(7), . . . , a(19)] + [1, . . . , 1︸ ︷︷ ︸
13

] = [3, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 6].

We also get explicit expressions for some special n, such as: for m ≥ 0,{
A(fm) = m−3

5 fm+2 + m−1
5 fm +m+ 3,

B(tm) = m
22

(
10tm + 5tm−1 + 3tm−2

)
+ 1

22

(
− 23tm + 12tm−1 − 5tm−2

)
+m+ 3

2 .
(4.1)

We think this method for counting the repeated palindromes is valid for the m-bonacci word,

and even valid for sturmian sequences, episturmian sequences etc. But now we only have the

derived sequence properties of F, T and D. In the final remark in [11], we establish the cylinder

structures and chain structures of PalF and PalT. Using them, we prove some known results.
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4.2. Enumeration of repetitions in F

The fractional power is a topic dealing with repetitions in words. We say a (finite or infinite)

word ω contains a r-power (real r > 1) if ω has a factor of the form xbrcx′ where x′ is a prefix

of x and |xbrcx′| ≥ r|x| see [1]. In this case, we call xbrcx′ a r-power with size |x|. For instance,

taking x = ab, then F[4, 8] = ababa is a 5
2 -power of size |ab| = 2 in F. Obviously the notion

r-power is a generalization of square (2-power) and cube (3-power).

The study of power of a word has a long history. There are many significant contributions,

for example [9, 10, 32–35, 39, 42–44]. In particular, Iliopoulos-Moore-Smyth [35] computed the

positions of all squares in F. Fraenkel-Simpson [32,33] obtained the number of squares in Fm =

σm(a). Damanik-Lenz [43] studied the index of Sturmian sequences. Glen [34] determined

all of the squares (and subsequently higher powers) occurring in episturmian words. Using

the results in [34], it was possible to determine the exact number of distinct squares in each

building block (for instance, the building blocks in the Fibonacci sequence is Fm = σm(a)), which

extends Fraenkel and Simpson’s result [32,33]. Du-Mousavi-Schaeffer-Shallit [44,45] obtained the

numbers of repeated squares and cubes in F[1, n] for all n ≥ 1. All their numerations start from

the first letter of the sequence.

In Huang-Wen [12], we count the number of distinct r-powers in F[i, n+ i− 1] for all i, n ≥ 1

and r ≥ 2, denoted by D(r, i, n). Our numeration can start from any letter of the sequence,

comparing starting from the first letter, there are some difficulties. To overcome these difficulties,

we introduce a new notion called the position sequence. In Huang-Wen [30], we count the number

of repeated r-powers in F[i, n + i − 1] for all i, n ≥ 1 and r ≥ 2, denoted by R(r, i, n). We give

precise results for r ∈ {2, 2 + ε, 3}, where ε is a small positive number.

The methods of counting the distinct or repeated factors in F[i, n+ i− 1] is quite different.

Take r = 2 (squares) for instance. Let

h =
⌊ ln(
√

5n/2)

lnα
+

2

n

⌋
− 2 (i.e., 2fh ≤ n < 2fh+1).

(1) A well known result is that the number of distinct squares of length 2fm in the Fibonacci

sequence is fm (see [9]). By the arguments in [12, Subsection 5.2], F[i, n + i − 1] contains all

distinct squares of length 2fm for any m ≥ 0 and n ≥ fm+3 + 2fm − 1. Thus in order to count

the number of distinct square in F[i, n+ i− 1] for n ≥ 6, we only need to pay close attention to

the number of the squares of length fm where m ∈ {h−2, h−1, h}. Through careful observation

and analysis, we get explicit expression of the number of distinct fractional powers in each factor

of the Fibonacci sequence.

(2) Obviously, this method above is not fit for counting the repeated squares. Comparing

with the distinct case, we will introduce two completely different tools, which we call square tree

and matrix decomposition. The former is used for counting the number of repeated r-powers in

F[1, n+ i− 1], i.e., R(r, 1, n). The latter is used for determining the difference between R(r, i, n)

and R(r, 1, n).
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