Journal of Mathematical Research with Applications
Jan., 2020, Vol. 40, No. 1, pp. 26-32
DOI:10.3770/j.issn:2095-2651.2020.01.003
Http://jmre.dlut.edu.cn

Approximate Quadratic Functional Inequality in
f-Homogeneous Normed Spaces

Zhihua WANG
School of Science, Hubei University of Technology, Hubei 430068, P. R. China

Abstract Using the direct method, we investigate the generalized Hyers-Ulam stability of the
following quadratic functional inequality || f(x—y)+ f(y—2)+ f(z—2) =3f(z) —3f(y) —3f(2)| <
||f(z +y+ z)|| in S-homogeneous complex Banach spaces.
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1. Introduction and preliminaries

The stability problems concerning group homomorphisms were raised by Ulam [1] in 1940
and affirmatively answered for Banach spaces by Hyers [2] in the next year. Hyers’ result was
generalized by Aoki [3] for approximate additive mappings and by Rassias [4] for approximate
linear mappings by allowing the Cauchy difference operator CD(z,y) = f(z+y)—[f(z)+f(y)] to
be controlled by (||z||?+||y||?). In 1994, a generalization of the Rassias’ theorem was obtained by
Gavruta [5], who replaced e(||z||” + ||y||?) by a general control function ¢(z,y) in the spirit of the
Rassias approach. Since then, the stability of several functional equations has been extensively
investigated by several mathematicians [6-9].

The functional equation

flx+y)+ fle—y) =2f(x) +2f(y) (1.1)

is called quadratic functional equation. In fact, every solution of the quadratic equation (1.1) is
said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional
equation (1.1) was investigated by Skof [10], Cholewa [11], Czerwik [12] and Lee et al. [13] in
different settings. In 2001, Bae and Kim [14] discussed the Hyers-Ulam stability of the quadratic

functional equation

fla+y+z2)+ flz—y)+fly—2)+ flz—2) =3f(x) +3f(y) + 3f(2) (1.2)

which is equivalent to the original quadratic functional equation (1.1). The hyperstability of

a pexiderized o-quadratic functional equation on semigroups was investigated by El-fassi and
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Brzdek [15]. In 2013, Kim et al. [16] introduced the following quadratic functional inequality:
1f(@—y)+ fly—2)+ f(z =) =3f(x) =3f(y) =3f) < lf (e +y+2). (13

They established the general solution of the quadratic functional inequality (1.3), and then
investigated the generalized Hyers-Ulam stability of this inequality in Banach spaces and in
non-Archimedean Banach spaces. Recently, the Hyers-Ulam stability problem for the additive
functional inequality and the quartic functional equation was discussed by Lee et al. [17], Lu
and Park [18] in -homogeneous F-spaces, respectively. In 2017, Park et al. [19] established the
Hyers-Ulam stability of the quadratic p-functional inequallites in S-homogeneous normed spaces.

The main purpose of this paper is to establish the generalized Hyers-Ulam stability of the
quadratic functional inequality (1.3) in S-homogeneous complex Banach spaces by using the
direct method. Our results generalize those results of [16] to S-homogeneous complex Banach

spaces.

Definition 1.1 ([17-19]) Let X be a linear space. A nonnegative valued function || - || is an
F-norm if it satisfies the following conditions:

(FN1) |jz|| =0 if and only if x = 0;

(FN2) |[Ax| = ||z| for all x € X and all A with |A\| =1;

(FN3) o+ yll < ol + gl for all 2,y € X;

(FN4) |[Apz|| = 0 provided A, — 0;

(FN5) ||[Axy|| — 0 provided x,, — 0.
Then (X, || - ||) is called an F*-space. An F-space is a complete F*-space.

An F-norm is called 8-homogeneous (3 > 0) if |tz| = [t|°||z| for all z € X and all t € C
(see [20]). A S-homogeneous F-space is called a -homogeneous complex Banach space [19].

2. Main results

In this section, we prove the stability problem of the quadratic functional inequality (1.3)
in S-homogeneous complex Banach space. Let (1, 82 be positive real numbers with 5; < 1 and
B2 < 1. Assume that X is a f1-homogeneous real or complex normed space with || - || and that ¥
is a B2-homogeneous complex Banach space with || - ||. Now before taking up the main subject,

we need introduce the following lemma.

Lemma 2.1 ([16]) Let V and W be real vector spaces. A mapping f : V — W satisfies the
functional inequality (1.3) for all x,y,z € V if and only if f is quadratic.

Theorem 2.2 Let 6; be a nonnegative real number and r; be a positive real number such that

0<r < % orr; > 2[% for all i = 1,2,3. If a mapping f: X — Y with f(0) = 0 satisfies the

inequality

(& =y) + [y = 2) + fz = 2) = 3f(2) = 3f(y) = 3/ (2)|
<N f(@+y+2)+ 0™ + 02yl + 052" (2.1)
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for all x,y,z € X, then there exists a unique quadratic mapping @) : X — Y such that

(252 +3ﬁ2)91 . 3520, . 2620, i
1f (@) = Q)] < m\lxll i mHI” *+ mllw\l ’ (2.2)

for all x € X.

Proof Assume that 0 < r; < % Replacing z by —z — y in (2.1), we have

[f(z—y) + f(z+2y) + f2z +y) = 3f(x) = 3f(y) = 3f(—z — )l
< Ozl + B2yl + O]z +yl"™ (2.3)

for all z,y € X. Letting y = —x and z = 0 in (2.1), we obtain

£ (2x) = 2f(2) = 2f (=)|| < Oullx[|™ + b2l (2.4)
for all z € X. Putting y = 0 in (2.3), we have

1 (2x) = f(z) = 3f(=2)[| < Ouf|]|™ + Os]j[|" (2.5)

for all z € X. Tt follows from (2.4) and (2.5) that

1f(22) = 4f (2)]| < (272 +372)01 |||t + 37205 ||| "> + 27205 (2.6)
for all z € X. So
L N o VA R O
17 - 282y <« X3 g oy 3 bl + 2l (2.7
for all x € X. Tt follows from (2.7) that
n—1 ;
f@ra) g, (@R e
1= = = =5 > 15 Orllzll™ +
j=m
382 n-1 9or2fij 962 n—1 9r3fij i
15 Z WGQHCUH” + 15 Z WGBHI'”TS (2.8)
Jj=m j=m

for all nonnegative integers m and n with n > m and all x € X. By virtue of r; < %, it

follows from (2.8) that the sequence {f(i:x)} is a Cauchy sequence for all z € X. Since YV
is complete, the sequence {%} converges. So, one can define a mapping @ : X — Y by
f(2"z)

Q(r) := lim, o =37 for all x € X. Moreover, letting m = 0 and passing the limit n — oo in
(2.8), we get

(252 + 352)91 3829 2820

T1 2 T2 3 T3
[f(z) = Q)] < m”fﬂn + m”xn + mﬂwll (2.9)

for all x € X.
Next, we claim that the mapping @ : X — Y is quadratic. In fact, it follows from (2.1) that
1Q( —y) + Qy — 2) + Qz — 2) = 3Q(z) — 3Q(y) — 3Q(2)
. 1 n n n
= lim 5 |[f(2" (@ =) + F(2"(y — 2)) + f(2"(2 = 2))—

n—oo

3f(2"x) = 3f(2"y) —3f(2"2)|
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r181n

2
< n _—
< lm m 4ﬁ AIF@H @ty + L)l + lim =

r2f1n r3fin

2
lim O |ly|l"™ + lim
n—

n—oo 4B2n oo 4B2m

=[Q(z+y+2)|. (2.10)

Thus, the mapping @ : X — Y is quadratic by Lemma 2.1.

Ol +

0s]|z[|"

Now, let @’ : X — Y be another quadratic mapping satisfying (2.9). Then, we obtain
1 n n
Q@) = Q'(@)l| = 535 1Q(2"2) — Q' (2"2)|
1 n n n n
< 7ran (1QQ2"2) = F2" )| + 1@ (2"z) — f(2")])
2(252 4 3ﬁ2)2r1ﬁ1n 9. 3B29r2p1n
Ty
- 45271(4[32 — 2T1ﬂ1) 01l 4,3271(452 — 27‘251)
9. 9B29rspin
4/32”(4/32 — 2T3ﬁ1)

Ol +

Os (| (2.11)

which tends to zero as n — oo for all z € X. So, we can conclude that Q(z) = Q'(z) for all
e X.
Now, assume that r; > % Tt follows from (2.6) that

T (252 + 352)91 ., . 23293 i,
17w —ap(oy < EEEE o B0 e 2200 (22)

for all z € X. Hence

e T I (262 4 362 n-l 4B23 ,
47 ()~ 4 () < LY il

orif or1B1j
j=m
3Bz n-l 4B23 ., 252 n-l 4P23 .
or2B1 Z orafij O [|" 27’351 Z or3fBij 93||$H ’ (213)
j=m j=m

for all z € X. Define Q : X =Y by Q(z) := lim,, o 4" f(5%) for all z € X. Letting m = 0 and
passing the limit n — oo in (2.13), we get

(2°2 + 3P2)0,

2820
1£(@) - Q@I < Grm—gmy = :

(27"3,51 — 452)

3/32 92
(27"2,31 — 452)

[l +

]| + ] (2.14)

for all z € X. The rest of the proof is similar to the proof for the case 0 < r; < 26"‘ By (2.9)
and (2.14), we obtain the approximation (2.2) of f by @, as desired. This completes the proof
of the theorem. [

Corollary 2.3 Let 8 > 0 be fixed. Let f : X — Y be a mapping with f(0) = 0 such that

1f(x—y)+ fly—2)+ fla—2)=3f(z) =3f(y) = 3f) < flz+y+2)+6  (2.15)
for all x,y,z € X. Then there exists a unique quadratic mapping @ : X — Y such that

282 4 3P

1f(2) = Q)] < 1 |9 (2.16)

for allx € X.
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From now on, assume that X is a S-homogeneous real or complex normed space and that
Y is a S-homogeneous complex Banach space. We prove the stability problem of the quadratic

inequality (1.3) with perturbed control function ¢.

Theorem 2.4 Let ¢ : X3 — [0,00) be a function such that

o0

> pre(202,20y,272) < o0,
= (2.17)
(Z 4354,0(%, 355 57) < 00, Tesp.)

for all z,y,z € X. Suppose that a mapping f : X — Y with f(0) = 0 satisfies the inequality

[fx—y)+ fly—2)+ flz—2) = 3f(x) = 3f(y) = 3f ()l
<\ fz+y+2)|+ ey, 2) (2.18)

for all x,y,z € X. Then there exists a unique quadratic mapping @ : X — Y such that
1) ~ Q@I < & 3 {8%e(2r, ~2/2,0) + 27p(2n, 0,2},

(If (@) - Q@) < 4= Z WP{300(55, —55.0) +2°0(55,0, = 55) } resp.)

(2.19)

for allz € X.

Proof Replacing z by —z — y in (2.18), we have

[f(z—y)+ fle+2y) + f2x +y) = 3f(z) = 3f(y) = 3f(—z —y)| < (2,9, —x —y) (2.20)

for all z,y € X. Letting y = —x and z = 0 in (2.18), we obtain

1(20) = 2f(@) — 2f(~a)| < pla,~2,0) (2.21)
for all z € X. Putting y = 0 in (2.20), we have
1£(20) ~ (@)~ 37(~2)]| < .0, ) (2.22)
for all z € X. It follows from (2.21) and (2.22) that
1£(20) ~ A1) < 3ol ~2.0) + 2p(a,0, ~2) (2.23)
for all x € X. So
£ - 222 < Lt ote, —2.0) + (.0, -0)) (221)

for all z € X. Tt follows from (2.24) that for all nonnegative integers n and m with n > m

m n n—-1 ) j+1
Hf(2 z) f(inx)n < Z 43%”“2]:5) _ MH

4m 4 4
j=m
1 1
<5 § it {3%p(20x, —272,0) + 28 (22,0, —27x)} (2.25)
for all z € X. Tt means that the sequence {f @

f(2"z)
4’7L

complete, the sequence { } converges in Y. Therefore, we can define a mapping Q X =Y
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by Q(z) := lim, f(i:I) for all z € X. Moreover, letting m = 0 and taking the limit n — oo
n (2.25), we obtain the inequality (2.19), as desired.
By (2.17) and (2.18), we have

1Q(x —y) + Qy — 2) + Rz — 2) = 3Q(z) - 3Q(y) - 3Q(2)]
= lim 476||f(2"(x— y) + 2%y —2) + F2"(z - 2))—-
3f(2" )—3f(2" ) =3f(2"2)

< hm 5 If2"(z+y+2))| + hm (2"x,2"y,2"z)

1
S 4B Y
= HQ(ererZ)II- (2.26)
By Lemma 2.1, the mapping @ : X — Y is quadratic.
Next, we show that the uniqueness of Q. Let Q' : X — Y be another quadratic mapping
satisfying (2.19). Then, we obtain

Q=) — Q' ()|l = 4,LBIIQ(T’ z) - Q'(2"x)|
< 4niﬁ(l\Q(Q”ﬂc) = f2")| + Q" (2" ) — f(2"x)|))

2 — 1 . 4 ' |
< 47 Z W{?’BSD(Q]—H% _2j+n33, 0) + 25()0(2J+n$7 0, _2]+n$)}
j=0

2 w— 1 , . , ,
=15 2 g 3Tz, —22,0) + 27p(22,0, - 2x)} (2.27)

Jj=n
which tends to zero as n — oo for all x € X. Hence Q(z) = Q'(x) for all z € X. This completes
the proof of the theorem. [

Corollary 2.5 Let ¢; > 0 be a real number and \; be a positive real number with \; < 2 or
A > 2 for all i =1,2,3. If a mapping f : X — Y with f(0) = 0 satisfies the inequality

1f(@=y)+ fly—2)+ flz—2) =3f(x) = 3f(y) =3/ (=)l
<|f(@+y+2)| +ellz]™ +ezllyl?® + &5z (2.28)

for all x,y,z € X, then there exists a unique quadratic mapping @) : X — Y such that

(2°4+3%)e1
1f(z) = Qz)] < WH x| +

for all z € X.

2ﬁ€3

3'682 )\2

m T [ (2:29)

Proof Define ¢(z,y,2) := e1||z||* + eafly[*? + e3]|z[|** and apply Theorem 2.4 to get the
result. OJ
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