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Abstract In this paper, a new type of entropy, directional preimage entropy including topo-

logical and measure theoretic versions for Zk
+-actions, is introduced. Some of their properties

including relationships and the invariance are obtained. Moreover, several systems including Zk
+-

actions generated by the expanding maps, Zk
+-actions defined on finite graphs and some infinite

graphs with zero directional preimage branch entropy are studied.
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1. Introduction

Entropy including measure-theoretic entropy and topological entropy, a measure of the com-

plexity of a system, plays a very important role in the study of dynamical systems. Measure-

theoretic entropy gives the maximum average information we can get from a system, and topo-

logical entropy measures the exponential growth rate of the number of different orbits. It is well

known that they are related by a variational principle. Specifically, let f be a continuous map

on a compact topological space X, htop(f) = supµ∈Mf (X) hµ(f), where Mf (X) is the set of all

f -invariant measures of X. For more details about Measure-theoretic entropy and topological

entropy, one can refer to Walters’s book [1].

In order to get a further understanding of a system, many types of entropies are introduced

and studied from different points of view, most of which are for Z-actions or Z+-actions. For im-

portant results on Z-actions or Z+-actions, the reader can refer to [2–4]. However, it is necessary

to study Zk-actions or Zk
+-actions due to the research need of the lattice statistical mechanics.

For a high-dimensional system, we can study its complexity by considering the complexity of its

subsystems. For instance, the complexity of a high-dimensional system can be described by di-

rectional entropy partially. In 1988, Milnor [5] proposed the concept of directional entropy based

on the problem of cellular automata and presented the problem whether the directional entropy

is continuous in directions. In 1985, Sinai [6] proved that the directional entropy is upper semi-

continuous for a Z2-action generated by cellular automata mappings. But Thouvenot proved
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that the directional entropy is not upper semi-continuous for more general systems. Following

them, Park [7–9] also studied the questions on the continuity of the directional entropy. In 1999,

Boyle and Lind [10] considered the concepts of directional entropy including measure-theoretic

directional entropy and topological directional entropy for expansive subdynamics of Zk-actions.

And the techniques of coding and shading were used to prove that the directional entropy is

continuous on every expansive branch. For the classical entropies, the systems are considered

with respect to the future behavior. While we can also study the system from the view of past

time. Langevin, Hurley [11] and Nitecki [12] gave the definition of topological preimage entropy

by studying the exponential growth rate of the number of the reverse orbits. Lately, Cheng and

Newhouse [13] introduced a new version of topological preimage entropy, and the concept of

measure-theoretic preimage entropy is also given. Then a variational principle relating them is

obtained. In 2005, Zhang, Zhu and He [14] considered the preimage entropy for non-autonomous

system. And in [15,16], Zhu generalized them to random dynamical systems.

Our purpose is to formulate and study a new type of entropy, directional preimage entropy

for Zk
+-actions, a concept combining the directional entropy with the preimage entropy, which

will give us a further understanding of the complexity of a system.

This paper is organised as follows: In Section 2, some definitions and notations are given and

the directional preimage entropy for Zk
+-actions is introduced using spanning sets and separated

sets. In Section 3, the properties of directional preimage entropy for Zk
+-actions are investigated.

Some relationships among these entropies and the invariance are obtained. In the last section,

several systems with zero directional preimage branch entropy including Zk
+-actions generated

by the expanding maps, Zk
+-actions defined on finite graphs and some infinite graphs are studied.

2. Directional preimage entropy for Zk
+-actions

Let (X, ρ) be a compact metric space. If αn⃗ := α(n⃗, ·) : X → X, n⃗ ∈ Zk
+ satisfy

(1) α0⃗ = id, where id is the identity on X;

(2) For any m⃗, n⃗ ∈ Zk
+, α

m⃗+n⃗ = αm⃗ ◦ αn⃗;

(3) For any n⃗ ∈ Zk
+, α

n⃗ is a continuous map,

then α is called a continuous Zk
+-action on X. Let e⃗i = (0, . . . , 1, . . . , 0), where the i-th element is

1, and put fi := αe⃗i , i = 1, 2, . . . , k. And fi is said to be a generator of α. And the commutative

law holds for all generators, that is, for any i, j ∈ {1, 2, . . . , k}, fi ◦ fj = fj ◦ fi.

Let K be a compact subset of X. For any ε > 0, a subset E ⊂ X is said to be an (E, ε, ρ)-

spanning set of K, if for any x ∈ K, there exists y ∈ E such that ρ(x, y) < ε. Let r(E, ε, ρ,K)

denote the smallest cardinality of any (E, ε, ρ)-spanning set of K. For any ε > 0, a subset

F ⊂ K is said to be an (F, ε, ρ)-separated set of K, if x, y ∈ F , x ̸= y implies ρ(x, y) > ε.

Let s(F, ε, ρ,K) denote the largest cardinality of any (F, ε, ρ)-separated set of K. In particular,

if K = X, then for simplicity, denote r(E, ε, ρ,K) and s(F, ε, ρ,K) by r(E, ε, ρ) and s(F, ε, ρ),

respectively.
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Let α be a Zk
+-action on (X, ρ). For a subset E ⊂ Rk, put a metric by

ρE(x, y) := sup{ρ(αn⃗(x), αn⃗(y))|n⃗ ∈ E ∩ Zk
+},

if E ∩ Zk
+ = ∅, then put ρE(x, y) = 0.

Given a subset E ⊂ Rk, v⃗ ∈ Rk, let ∥ · ∥ denote the Euclid norm on Rk. Then define

dist(v⃗, E) := inf{∥v⃗ − w⃗∥
∣∣w⃗ ∈ E}.

For any t > 0, s > 0, put Et = {v⃗ ∈ Rk|dist(v⃗, E) ≤ t} and sE = {sv⃗|v⃗ ∈ E}.
A d-frame Φ = (v⃗1, . . . , v⃗d) is a d-tuple of linearly independent vectors in Rk. Let Fd be the

set of all d-frames. Denote the line segment in Rk with endpoints v⃗, w⃗ by [v⃗, w⃗]. Then we let

QΦ = [⃗0, v⃗1]⊕ · · · ⊕ [⃗0, v⃗d] denote the parallelepiped spanned by Φ.

Definition 2.1 Let α be a Zk
+-action on (X, ρ), a d-frame Φ ∈ Fd. Define the d-dimensional

topological directional entropy of Φ as

hd(α,Φ) = lim
ε→0

sup
t>0

lim
s→∞

log rα((sQΦ)
t, ε, ρ(sQΦ)t)

sd

= lim
ε→0

sup
t>0

lim
s→∞

log sα((sQΦ)
t, ε, ρ(sQΦ)t)

sd
.

Now, we consider the case that d = 1, then Φ = (v⃗), QΦ = [⃗0, v⃗], so we define the topological

directional entropy of α in v⃗ as

h(α, v⃗) = lim
ε→0

sup
t>0

lim
s→∞

log rα((s[⃗0, v⃗])
t, ε, ρ(s[⃗0,v⃗])t)

s

= lim
ε→0

sup
t>0

lim
s→∞

log sα((s[⃗0, v⃗])
t, ε, ρ(s[⃗0,v⃗])t)

s
.

Before giving the definition of directional preimage entropy for Zk
+-actions we give some

notations and definitions.

Given v⃗ ∈ Rk, t > 0, for all elements in
∪∞

s=1((s[⃗0, v⃗])
t ∩ Zk

+), an order ≤ is compatible

with the alphabetical order. And the set of the such orders is denoted by Os,t. When an order

≤∈ Os,t is taken, we represent the elements in
∪∞

s=1((s[⃗0, v⃗])
t ∩ Zk

+) as {u⃗1, u⃗2, . . .} and put

g1 = αu⃗1 : X → X, i = 1,

gi = αu⃗i−u⃗i−1 : X → X, i > 1,

where {gi}∞i=1 is a sequence of continuous maps on X.

Remark 2.2 In fact, gi is a combination of some elements in {fj}kj=1.

Let {gi}∞i=1 be a sequence of continuous maps on X. Put

g0i = id,

gni = gi+(n−1) ◦ · · · ◦ gi+1 ◦ gi,

g−n
i = g−1

i ◦ g−1
i+1 ◦ · · · ◦ g

−1
i+(n−1).
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Define a metric ρs,t,≤ on X by ρs,t,≤(x, x
′) = max

0≤i≤n−1
{gi1(x), gi1(x′)}.

Let H = {hi}∞i=1 be a sequence of continuous maps on X. For k = 0, 1, 2, . . . , the k-th

preimage set of x is the subset of X as follows

h−k(x) := {z ∈ X|hk
1(z) = hk ◦ hk−1 ◦ · · · ◦ h1(z) = x}.

The n-th preimage tree of x under H is the set Tn(x,H) :=
∪n

k=0 h
−k(x)× {k}.

The k-th level of the tree Tn(x,H) is the subset h−k(x) × {k} and its branches are defined

as β := [zk, zk−1, . . . , z1, z0 = x], where hn−(j−1)(zj) = zj−1, j = 1, . . . , k ≤ n, and this k

is called the order of the branch β. Let Bn(x,H) be the set of branches whose order is n in

Tn(x,H) \ {x} × {0}.
For {gi}∞i=1 above, we denote the two notations about the n-th preimage tree as Tn

s,t,≤(x, α, v⃗)

and Bn
s,t,≤(x, α, v⃗), respectively. Obviously, n is related to s and t and a more rigorous notation

would be n(s, t). Since it does not cause confusion, we abbreviate it to n here.

Define a metric on Bn
s,t,≤(x, α, v⃗) by ρs,t,≤(βi, βj) = max

1≤k≤n
ρ(zik, z

j
k) for any branch βi =

[zin, z
i
n−1, . . . , z0 = x] and βj = [zjn, z

j
n−1, . . . , z0 = x] ∈ Tn

s,t,≤(x, α, v⃗).

Definition 2.3 Define the pointwise directional preimage entropies of Zk
+-action to be

hp(α, v⃗) = sup
x∈X

lim
ε→0

sup
t>0

lim
s→∞

log sup
≤∈Os,t

rα((s[⃗0, v⃗])
t, ε, ρs,t,≤, B

n
s,t,≤(x, α, v⃗))

s

= sup
x∈X

lim
ε→0

sup
t>0

lim
s→∞

log sup
≤∈Os,t

sα((s[⃗0, v⃗])
t, ε, ρs,t,≤, B

n
s,t,≤(x, α, v⃗))

s
,

hm(α, v⃗) = lim
ε→0

sup
t>0

lim
s→∞

sup
x∈X

log sup
≤∈Os,t

rα((s[⃗0, v⃗])
t, ε, ρs,t,≤, B

n
s,t,≤(x, α, v⃗))

s

= lim
ε→0

sup
t>0

lim
s→∞

sup
x∈X

log sup
≤∈Os,t

sα((s[⃗0, v⃗])
t, ε, ρs,t,≤, B

n
s,t,≤(x, α, v⃗))

s
.

Let (X, ρ) be a compact metric space. For any order ≤∈ Os,t, there is a certain branch

distance. Put β = [zk, zk−1, . . . , z1, z0 = x] ∈ Tn
s,t,≤(x, α, v⃗) and β′ = [z′l, z

′
l−1, . . . , z

′
1, z

′
0 = x′] ∈

Tn
s,t,≤(x

′, α, v⃗), define

ρbs,t,≤(β, β
′) =

 max
1≤k≤n

ρ(zk, z
′
l), l = k;

diam(X), l ̸= k.

Then, for any positive integer n and x, x′ ∈ X, define ρn,bs,t,≤(x, x
′) < ε if for every branch

β ∈ Tn
s,t,≤(x, α, v⃗), there exists a branch β′ ∈ Tn

s,t,≤(x
′, α, v⃗) such that ρbs,t,≤(β, β

′) < ε and

vice-versa (for branch of Tn
s,t,≤(x

′, α, v⃗)).

Definition 2.4 Define the branch directional preimage entropy of Zk
+-action to be

hi(α, v⃗) = lim
ε→0

sup
t>0

lim
s→∞

log sup
≤∈Os,t

rα((s[⃗0, v⃗])
t, ε, ρn,bs,t,≤, X)

s
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= lim
ε→0

sup
t>0

lim
s→∞

log sup
≤∈Os,t

sα((s[⃗0, v⃗])
t, ε, ρn,bs,t,≤, X)

s
.

Let us call the above definitions as Definition 1. Since it is a little complex, we will give

another definition, which will be called as Definition 2.

Denote the lattice point sequence in Zk
+ as {n⃗i}i∈Z+ : n⃗i is the integer in the set {n⃗i||n⃗i−iv⃗e| =

min
m⃗∈Zk

+

|m⃗−iv⃗e|} with the smallest norm. Note that the choice of n⃗i is not unique, but the following

definitions are independent of the choice of n⃗i.

Put

g̃1 = αn⃗1 : X → X, i = 1,

g̃i = αn⃗i−n⃗i−1 : X → X, i > 1,

obviously, g̃i ∈ {id, f1, f2, . . . , fk} and {g̃i}∞i=1 is a sequence of continuous maps on X. (X, g̃1,∞)

is called a nonautonomous dynamical system along the direction v⃗, where g̃1,∞ = {g̃i}∞i=1.

For any positive integer n, define a metric on X by ρn(x, y) = max
0≤i≤n−1

ρ(g̃i1(x), g̃
i
1(y)).

Then the following types of entropy are defined for g̃1,∞.

Definition 2.5 Define the topological directional entropy for g̃1,∞ to be

h(α, v⃗e) = lim
ε→0

lim
n→∞

log rα(ε, ρ
n)

n
= lim

ε→0
lim

n→∞

log sα(ε, ρ
n)

n
,

where rα(ε, ρ
n) is the smallest cardinality of any (ε, ρn)-spanning set in Zk

+ (Similarly, sα(ε, ρ
n)

is the largest cardinality of any (ε, ρn)-separated set in Zk
+).

Definition 2.6 Define the pointwise directional preimage entropies for g̃1,∞ to be

hp(α, v⃗e) = sup
x∈X

lim
ε→0

lim
n→∞

log rα(ε, ρ
n, g̃−n

1 (x))

n

= sup
x∈X

lim
ε→0

lim
n→∞

log sα(ε, ρ
n, g̃−n

1 (x))

n
,

hm(α, v⃗e) = lim
ε→0

lim
n→∞

sup
x∈X

log rα(ε, ρ
n, g̃−n

1 (x))

n

= lim
ε→0

lim
n→∞

sup
x∈X

log sα(ε, ρ
n, g̃−n

1 (x))

n
.

Let β = [zk, zk−1, . . . , z1, z0 = x] ∈ Tn(x), β′ = [z′l, z
′
l−1, . . . , z

′
1, z

′
0 = x′] ∈ Tn(x′). Define

ρb(β, β′) =

 max
0≤i≤n−1

ρ(zk, z
′
l), l = k,

diam(X), l ̸= k.

Then, define branch distance ρn,b(x, x′) < ε for any positive integer n if for every branch β ∈
Tn(x), there exists a branch β′ ∈ Tn(x′) such that ρb(β, β′) < ε and vice-versa (for branch of

Tn(x′)).
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Definition 2.7 Define the branch directional preimage entropy for g̃1,∞ to be

hi(α, v⃗e) = lim
ε→0

lim
n→∞

log rα(ε, ρ
n,b, X)

n
= lim

ε→0
lim

n→∞

log sα(ε, ρ
n,b, X)

n
.

Obviously, the order of the elements in g̃1,∞ is compatible with the alphabetical order. Then

h(α, v⃗e) ≤ h(α, v⃗) and the following preimage entropies also satisfy the same relationship, namely

hj(α, v⃗e) ≤ hj(α, v⃗), where j = p, m or i.

3. Properties of directional preimage entropy for Zk
+-actions

In this section, properties of directional preimage entropy for Zk
+-actions are investigated

based on the definition 2.

Proposition 3.1 For g̃1,∞ = {g̃i}∞i=1 defined above, we have

0 ≤ hp(α, v⃗e) ≤ hm(α, v⃗e) ≤ h(α, v⃗e).

Proof The result is obtained by definitions of hp(α, v⃗e), hm(α, v⃗e) and h(α, v⃗e) directly. �

Proposition 3.2 For g̃1,∞ = {g̃i}∞i=1 defined above, we have

h(α, v⃗e) ≤ hm(α, v⃗e) + hi(α, v⃗e).

Proof Define

g̃1 = αn⃗1 , i = 1,

g̃i = αn⃗i−n⃗i−1 ,i > 1,

where n⃗i is the integer in {n⃗i||n⃗i − iv⃗e| = min
m⃗∈Zk

+

|m⃗ − iv⃗e|} with the smallest norm. Obviously,

g̃i ∈ {id, f1, f2, . . . , fk}, g̃1,∞ = {g̃i}∞i=1 is a sequence of continuous maps on X. Put

g̃n1 = g̃n ◦ · · · ◦ g̃2 ◦ g̃1,

g̃−n
1 = g̃−1

1 ◦ g̃−1
2 ◦ · · · ◦ g̃−1

n .

For any 0 < ε < 3 diam(X), n ≥ 1, let R be a maximal ( ε3 , ρ
n,b)-spanning set of X. For any

x ∈ X, let S(x) be a maximal ( ε3 , ρ
n)-spanning set of g̃−n

1 (x). If S =
∪

x′∈R S(x′), we only have

to prove for any zn ∈ X there is z ∈ S such that ρn(zn, z) < ε, then we can get that S is a

(ε, ρn)-generated set of X.

Assume x = g̃n1 (zn) for some zn ∈ X, because R is a maximal ( ε3 , ρ
n,b)-spanning set of X, R

is a ( ε3 , ρ
n,b)-spanning set of X. Then there are two cases:

(1) zn ∈ R, then x = g̃n1 (zn) implies zn ∈ g̃−n
1 (x). Because S(x) is a maximal ( ε3 , ρ

n)-

spanning set of g̃−n
1 (x), S(x) is a ( ε3 , ρ

n)-spanning set of the set g̃−n
1 (x), so for any zn ∈ g̃−n

1 (x),

there exists z′n ∈ S(x) such that ρn,b(zn, z
′
n) ≤ ε

3 < ε.

(2) zn /∈ R, then there is z′n ∈ R such that ρn,b(zn, z
′
n) ≤ ε

3 . Thus for the branch β =

[zn, g̃1(zn), g̃
2
1(zn), . . . , g̃

n
1 (zn) = x] ∈ Tn(x, α, v⃗e) with the endpoint zn, we can find β′ in another

preimage tree Tn(x′, α, v⃗e) such that ρb(β, β′) ≤ ε
3 . We know that β and β′ have the same order

by the definition of branch distance due to ε
3 < diam(X). Suppose β′ = [z′n, z

′
n−1, . . . , z

′
1, z

′
0 =



Directional preimage entropy for Zk
+-actions 39

x′], then ρn(zn, z
′
n) ≤ ε

3 . Because S(x′) is a maximal ( ε3 , ρ
n)-spanning set of g̃−n

1 (x′), S(x′)

is a ( ε3 , ρ
n)-spanning set of g̃−n

1 (x′), and z′n ∈ g̃−n
1 (x′), so there exists z ∈ S(x′) such that

ρn(z′n, z) ≤ ε
3 , therefore

ρn(zn, z) ≤ ρn(zn, z
′
n) + ρn(z′n, z) ≤

2ε

3
< ε,

namely, S is a (ε, ρn)-spanning set of X.

Thus rα(ε, ρ
n, X) ≤ |S|, where |S| is the cardinality of the set S.

According to the choice of R and S, it is easy to get

rα(ε, ρ
n, X) ≤ |R| sup

x′∈R

∣∣S(x′)
∣∣ ≤ sα(

ε

3
, ρn,b, X) · sup

x∈X
sα(

ε

3
, ρn, g̃−n

1 (x)).

Then we get

lim
n→∞

log rα(ε, ρ
n, X)

n
≤ lim

n→∞

log sα(
ε
3 , ρ

n,b, X))

n
+ lim

n→∞

log sup
x∈X

sα(
ε
3 , ρ

n, g̃−n
1 (x))

n
.

Let ε → 0. Then

h(α, v⃗e) ≤ hm(α, v⃗e) + hi(α, v⃗e). �
And the topological invariance is easy to prove.

Definition 3.3 Suppose that (X1, ρ1) and (X2, ρ2) are compact metric spaces, g̃
(1)
1,∞ = {g̃(1)i }∞i=1

and g̃
(2)
1,∞ = {g̃(2)i }∞i=1 are continuous map sequences for Zk

+-actions α
(1) and α(2) on X1 and X2,

respectively. If there exists a sequence of continuous homeomorphisms π1,∞ = {πi}∞i=1 : X1 → X2

such that πi+1 ◦ g̃(1)i = g̃
(2)
i ◦ πi for any i ≥ 1, then g̃

(1)
1,∞ and g̃

(2)
1,∞ are said to be topologically

conjugate.

Definition 3.4 Assume that every element gi of g1,∞ = {gi}∞i=1 is continuous. Then g1,∞ =

{gi}∞i=1 is said to be equicontinuous if for every ε > 0, x ∈ X, i = 1, 2, . . . , there exists neighbor-

hood V (x) such that for any y ∈ V (x), ρ(gni (x), g
n
i (y)) < ε.

Since the sets
{
g̃
(1)
1 , g̃

(1)
2 , . . .

}
and

{
g̃
(2)
1 , g̃

(2)
2 , . . .

}
are finite, there exists a sequence π1,∞ such

that {π1, π2, . . .} is finite, namely π1,∞ is equicontinuous.

Proposition 3.5 If g̃
(1)
1,∞ and g̃

(2)
1,∞ are topologically conjugate, then

hj(α
(1), v⃗e) = hj(α

(2), v⃗e), j = p,m or i.

Proof (1) Since g̃
(1)
1,∞ and g̃

(2)
1,∞ are topologically conjugate, there exists a sequence of continuous

homeomorphisms π1,∞ = {πi}∞i=1 : X1 → X2 such that for every i ≥ 1, πi+1◦g̃(1)i = g̃
(2)
i ◦πi. Thus

for any ε > 0, x1, x2 ∈ X1, there exists δ(ε) > 0 such that for some i ≥ 1, ρ2(πi(x1), πi(x2)) > ε

implies ρ1(x1, x2) > δ(ε). So if E ⊂ X2 is a (g̃
(2)
1,∞, ε, ρn2 )-separated set of (g

(2)
1 )−n(y), then

π−1
1 (E) is a (g̃

(1)
1,∞, δ(ε), ρn1 )-separated set of (g̃

(1)
1 )−n(π−1

n+1(y)), therefore

sα(1)(g̃
(1)
1,∞, δ(ε), ρn1 , (g̃

(1)
1 )−n(π−1

n+1(y))) ≥ sα(2)(g̃
(2)
1,∞, δ(ε), ρn2 , (g̃

(2)
1 )−n(y)).

Hence by the definition of pointwise directional preimage entropies, we get

hp(α
(1), v⃗e) ≥ hp(α

(2), v⃗e) and hm(α(1), v⃗e) ≥ hm(α(2), v⃗e).
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Furthermore, changing the positions of g̃
(1)
1,∞ and g̃

(2)
1,∞, we have

hp(α
(1), v⃗e) ≤ hp(α

(2), v⃗e) and hm(α(1), v⃗e) ≤ hm(α(2), v⃗e).

Therefore, we have

hp(α
(1), v⃗e) = hp(α

(2), v⃗e) and hm(α(1), v⃗e) = hm(α(2), v⃗e).

(2) Given ε and δ(ε) as those in (1). If E ⊂ X2 is a (g̃
(2)
1,∞, ε, ρn,b2 )-separated set of X2, then

π−1
n+1(E) is a (g̃

(1)
1,∞, δ(ε), ρn,b1 )-separated set of X1, then

sα(1)(g̃
(1)
1,∞, δ(ε), ρn,b1 , X1) ≥ sα(2)(g̃

(2)
1,∞, δ(ε), ρn,b2 , X2).

Hence by the definition of branch directional preimage entropies, we have

hi(α
(1), v⃗e) ≥ hi(α

(2), v⃗e),

and then changing the positions of g̃
(1)
1,∞ and g̃

(2)
1,∞, we get

hi(α
(1), v⃗e) ≤ hi(α

(2), v⃗e).

Therefore, we have hi(α
(1), v⃗e) = hi(α

(2), v⃗e). �

4. Some systems with zero directional preimage entropy

This section is devoted to proving that hi(α, v⃗e) = 0 for the following three systems generated

by:

(1) Forward-expansive covering maps;

(2) Actions on a finite graph;

(3) Actions on an infinite graph with some additional conditions.

4.1. Zk
+-action generated by forward-expansive covering maps

First we give some basic definitions before proving that hi(α, v⃗e) = 0 for forward-expansive

covering maps.

Definition 4.1 ([12]) A continuous map f : X → X is called forward expansive if there is an

ε > 0 such that whenever x, y ∈ X and x ̸= y there exists n ≥ 0 with ρ(fn(x), fn(y)) ≥ ε. In

this case, ε is called an expansive constant for f .

Definition 4.2 ([12]) A continuous map f : X → X is called a covering map if for any x ∈ X,

there is an open neighborhood Ux whose preimage f−1(Ux) is a disjoint union of open sets, that

is f−1(Ux) = V1(x) ∪ V2(x) ∪ · · · ∪ Vk(x), and Vs(x) ∩ Vt(x) = ∅ (s ̸= t; s, t = 1, 2, . . . , k), and

f is a homeomorphism on each Vi(x).

The expanding map is an example of forward-expansive covering maps.

Definition 4.3 ([12]) Suppose that M is a closed Riemannian manifold, ∥·∥ is the norm on the

tangential TM induced by the Riemannian inner product ⟨·, ·⟩ on M , d(·, ·) is the metric on M ,

and f : M → M is a mapping on M . If there exists C > 0 and λ > 1 such that for any v ∈ TxM ,
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∥Tfn(v)∥ ≥ Cλn∥v∥, n = 1, 2, . . . , then f : M → M is called an expanding map. In this case, λ

is called an expanding constant for f .

Theorem 4.4 Let α be a Zk
+-action on a closed Riemannian manifold M whose generators are

expanding maps. Then hi(α, v⃗e) = 0.

Proof Actually, for the sequence g̃1,∞ = {g̃i}∞i=1 which is induced by α and v⃗e, because the

set {g̃1, g̃2, . . .} is finite and the generators fi are expanding maps, the covering property and

compactness of M yield that there exists ε0 > 0 such that for any x ∈ X, i = 1, 2, . . . ,

g̃−1
i (B(x, ε0)) = Vi,1(x) ∪ Vi,2(x) ∪ · · · ∪ Vi,k(x)(x),

where Vi,s(x) ∩ Vi,t(x) = ∅ (s ̸= t; s, t = 1, 2, . . . , k(x)), and on each Vi,s(x), f is a homeomor-

phism.

By the expansion of g̃i, for any x1, x2 ∈ Vi,s(x), λ > 1, we can get

ρ(g̃i(x1), g̃i(x2)) ≥ λρ(x1, x2),

where ρ is the metric induced by the Riemannian structure on M . By g̃i(Vi,s(x)) = B(x, ε0) and

the expansion of g̃i on Vi,s(x), we have diam(Vi,s(x)) < ε0.

Now given x′ ∈ B(x, ε0) and a branch β = [zk, zk−1, . . . , z1, z0 = x] ∈ Tn(x, α, v⃗e), we can

find a branch β′ = [z′k, z
′
k−1, . . . , z

′
1, z

′
0 = x′] ∈ Tn(x′, α, v⃗e), such that ρn,b(x, x′) = ρ(x, x′). Pick

z′0 = x′, because

g̃n(z1) = z0 = x,

g̃−1
n (B(x, ε0)) = Vn,1(x) ∪ Vn,2(x) ∪ · · · ∪ Vn,k(x)(x),

where Vn,s(x)∩Vn,t(x) = ∅ (s ̸= t; s, t = 1, 2, . . . , k(x)), and on each Vn,s(x) (s = 1, 2, . . . , k(x))g̃n

is a homeomorphism, there exists a unique Vn,s(x) such that z1 ∈ Vn,s(x). Since x′ ∈ B(x, ε0),

there must be a point z′1 ∈ Vn,s(x) such that g̃n(z
′
1) = z′0 = x′.

Because z1, z′1 ∈ Vn,s(x) and diam(Vn,s(x)) < ε0, we can start from Vn,s(x) and regard

z1, z′1, Vi,s(x) as the former x, x′, B(x, ε0). According to the construction above, we can

get z′2 such that ρ(z2, z
′
2) < ε0 and g̃n−1(z

′
2) = z′1. And so on, we can get the branch β′ =

[z′k, z
′
k−1, . . . , z

′
1, z

′
0 = x′] ∈ Tn(x′, α, v⃗e) satisfying ρb(β, β′) = ρ(x, x′). By the arbitrariness of

β, we have ρn,b(x, x′) = ρ(x, x′). So for any 0 < ε < ε0, r(g̃i, ε, ρ
n,b) is independent of n, then

hi(α, v⃗e) = 0. �

4.2. Zk
+-action on finite graphs

Assume that X is a graph. X is a finite graph if there exists a distinguished finite set of

points (vertices) V = {v1, v2, . . . , vn} such that X \ V has finitely many components (edges),

each homeomorphic to the unit interval (0, 1).

The metric in which each edge has length 1 is called the geodesic metric, and the distance

between two points is the length of the shortest path joining them. Any in the graph homeo-

morphic image of [0, 1] in X is said to be a closed interval and the interior of a closed interval is
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called an open interval.

Lemma 4.5 Suppose X is a finite graph, f : X → X a continuous map, and I is a closed interval

in X. Then the number of points in the frontier of f(I) does not exceed four times the number

of edges in X.

Proof For the proof, the reader can refer to [12]. �

Definition 4.6 ([12]) Let P be a finite set of points in X. If each component of X \ P is an

open interval in X and two distinct open intervals share at most one common endpoint, then we

call P a division of X. The closures of these intervals are called the atoms of P .

Note that when |P | = N , a division P has at most 2N distinct atoms.

Suppose that g1,∞ = {gi}∞i=1 is a sequence of continuous selfmaps on finite graph X. Given

a division P of X, define a sequence of divisions Pi(g1,∞), i = 0, 1, 2, . . . by

P0(g1,∞) =P0,

Pi+1(g1,∞) =Pi(g1,∞) ∪ gi+1(Pi(g1,∞))∪

{frontier pts of gi+1(I)|I an atom of Pi(g1,∞)}.

Then we have the following lemma, whose proof is similar to that in [12].

Lemma 4.7 Suppose that X is a finite graph, g1,∞ = {gi}∞i=1 is a sequence of continuous

selfmaps on X, Pi(g1,∞) (i = 0, 1, 2, . . .) is a sequence of divisions as above. If x and x′ are both

interior to the same atom of Pn(g1,∞) and β = [zk, zk−1, . . . , z1, z0 = x] ∈ Tn(x, α, v⃗e), then there

exists a branch β′ = [z′k, z
′
k−1, . . . , z

′
1, z

′
0 = x′] ∈ Tn(x′, α, v⃗e) such that for i = 0, 1, 2, . . . , k, zi

and z′i are both interior to the same atom of Pn−i(g1,∞).

Then we have the following theorem.

Theorem 4.8 Suppose thatX is a finite graph and α is a Zk
+-action on (X, ρ), then hi(α, v⃗e) = 0.

Proof Since the set {g̃1, g̃2, . . .} is finite, g̃1,∞ is equicontinuous. By the equicontinuity of g̃1,∞,

we have that for any positive integer k and ε > 0, there exists δ > 0 such that ρ(x, x′) ≤ δ

implies

ρ(g̃ji (x), g̃
j
i (x

′)) ≤ ε, (4.1)

where i = 1, 2, . . . and j = 0, 1, 2, . . . , k.

Pick a division P of X such that the length of each atom of P is at most δ. Let P0 = P . By

the above construction method, we get P0(g̃1,∞), . . . , Pk(g̃1,∞). Define ḡ1,∞ = {ḡi}∞i=1, where

ḡi = g̃kik and then let P0 = Pk(g̃1,∞). We obtain P0(ḡ1,∞), P1(ḡ1,∞), . . . . By the way in [12],

Lemma 4.7 and (4.1), for any integer n > 0, if x and x′ are both interior to the same atom of

Pn(ḡ1,∞), then ρ(n+1)k,b(x, x′) ≤ ε. So a (g̃1,∞, ε, ρnk,b)-spanning set for X can be formed by

adding one inner point to each atom of Pn(ḡ1,∞) to the division points of Pn(ḡ1,∞).

Denote by E the number of edges in X, by N(Pn(ḡ1,∞)) the number of points in Pn(ḡ1,∞),
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and by A(Pn(ḡ1,∞)) the number of atoms for Pn(ḡ1,∞). Since

A(Pn(ḡ1,∞)) ≤ 2 ·N(Pn(ḡ1,∞)),

we have

r(g̃1,∞, ε, ρnk,b, X) ≤ A(Pn(ḡ1,∞)) +N(Pn(ḡ1,∞)) ≤ 3 ·N(Pn(ḡ1,∞)).

By construction of Pn(ḡ1,∞) and Lemma 4.5, we have

N(Pn(ḡ1,∞)) ≤ 4E ·A(Pn−1(ḡ1,∞)) + 2 ·N(Pn−1(ḡ1,∞))

≤ 4E · 2 ·N(Pn−1(ḡ1,∞)) + 2 ·N(Pn−1(ḡ1,∞))

≤ (8E + 2) ·N(Pn−1(ḡ1,∞)),

thus

N(Pn(ḡ1,∞)) ≤ (8E + 2)n ·N(P0(ḡ1,∞)).

Also, for nk < m < (n+ 1)k,

r(g̃1,∞, ε, ρnk,b, X) ≤ r(g̃1,∞, ε, ρm,b, X) ≤ r(g̃1,∞, ε, ρ(n+1)k,b, X),

so

lim
m→∞

log rα(g̃1,∞, ε, ρm,b, X)

m
≤ lim

n→∞

log rα(g̃1,∞, ε, ρ(n+1)k,b, X)

nk

≤ 1

k
lim

n→∞

log 3 ·N(Pn+1(ḡ1,∞))

n
≤ 1

k
lim

n→∞

log 3(8E + 2)n+1 ·N(P0(ḡ1,∞))

n

=
1

k
log(8E + 2).

Note that ε is arbitrary, so we have hi(α, v⃗e) ≤ 1
k log(8E+2). By the arbitrariness of k, we have

hi(α, v⃗e) = 0. �

4.3. Zk
+-action on some infinite graphs

Suppose G(V,E) (denoted as G for convenience) is a graph satisfying:

(1) The set V of vertices and the set E of edges are infinite;

(2) There are finite accumulation points in V , namely V ′ = {a1, a2, . . . , ak}, and

f−1
j

( k∪
i=1

U(ai, ε) ∩G
)
⊂

k∪
i=1

U(ai, ε) ∩G

for any ε > 0, 1 ≤ i ≤ k, 1 ≤ j ≤ l;

(3) For ε > 0, put A1 =
k∪

i=1

U(ai, ε)∩V , A2 = (
k∪

i=1

U(ai, ε))
c∩V and Eε = {(x, y)|(x, y) ∈ E,

where x ∈ A1, y ∈ A2}, Vε = {v|v is vertex of edge in Eε}.
We require that Eε is a finite set. It is clear that A1 is an infinite set and A2 is finite. Suppose

P is an infinite set of points of G. If each component of G \ P is an open interval in G and two

distinct open intervals share at most one common endpoint, then we call P a division of G. The

closures of these intervals are called the atoms of P .
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Suppose g1,∞ = {gi}∞i=1 is a sequence of continuous selfmaps of G. Given a division P0 of G,

define a sequence of divisions Pi(g1,∞), i = 0, 1, 2, . . . by

P0(g1,∞) =P0,

Pi+1(g1,∞) =Pi(g1,∞) ∪ gi+1(Pi(g1,∞))∪

{frontier pts of gi+1(I)| I is an atom of Pi(g1,∞)}.

Then we have the following lemma whose proof is similar to Lemma 4.7.

Lemma 4.9 Let G be a infinite graph, g1,∞ = {gi}∞i=1 a sequence of continuous selfmaps on

G, and Pi(g1,∞) the sequence of divisions as above. For any integer n > 0, if x and x′ are both

interior to the same atom of Pn(g1,∞), and β = [zk, zk−1, . . . , z1, z0 = x] ∈ Tn(x, α, v⃗e), then

there exists a branch β′ = [z′k, z
′
k−1, . . . , z

′
1, z

′
0 = x′] ∈ Tn(x′, α, v⃗e), such that for i = 0, 1, 2, . . . , k,

zi and z′i are both interior to the same atom of Pn−i(g1,∞).

Take ε > 0, we need to construct a new sequence partition of partitions

Pε,i(g1,∞) = Pi(g1,∞) ∩G(Vε/2, Eε/2), i = 0, 1, 2, . . . .

For the sequence of partitions Pε,i(g1,∞), we can get the following lemma.

Lemma 4.10 Suppose that G is an infinite graph, g1,∞ = {gi}∞i=1 is a sequence of continuous

maps on G, each atom in P0 is less than or equal to ε, Pε,i(g1,∞) is the sequence of divisions as

above. For any integer n > 0, if x and x′ are both interior to the same atom of Pε,n(g1,∞), and

β = [zk, zk−1, . . . , z1, z0 = x] ∈ Tn(x, α, v⃗e), then there exists a branch β′ = [z′k, z
′
k−1, . . . , z

′
1, z

′
0 =

x′] ∈ Tn(x′, α, v⃗e) such that ρn,b(x, x′) ≤ ε.

Proof According to the construction of Pε,i(g̃1,∞), we can get Pε,i(g̃1,∞) ⊂ Pi(g1,∞), so if x

and x′ are both interior to the same atom of Pε,n(g̃1,∞), then x and x′ are both interior to the

same atom of Pn(g̃1,∞). By Lemma 4.9 there exists a branch β′ = [z′k, z
′
k−1, . . . , z

′
1, z

′
0 = x′] ∈

Tn(x′, α, v⃗e) such that for i = 0, 1, 2, . . . , k, zi and z′i are both interior to the same atom of

Pn−i(g1,∞). Thus we get ρn,b(x, x′) ≤ ε. �

Theorem 4.11 Assume that G is the above infinite graph, and α is a Zk
+-action on G, then

hi(α, v⃗e) = 0.

Proof Because the set {g̃1, g̃2, . . .} is finite, g̃1,∞ is equicontinuous. By equicontinuity of g̃1,∞,

for any positive integer k and ε > 0 there is δ > 0 such that ρ(x, x′) ≤ δ implies

ρ(g̃ji (x), g̃
j
i (x

′)) ≤ ε, (4.2)

where i = 1, 2, . . . and j = 0, 1, 2, . . . , k.

Suppose that there is only one accumulation point a on the infinite graph G, then for any

ε > 0, there are only finite points in V out of U(a, ε
2 ). The meaning of A1, A2, and Eε/2 is

described as above. To simplify the notation, denote G(Vε/2, Eε/2) by Gε/2.

A partition P of G is taken whose length of each atom on the partition P is less than or

equal to δ. According to the above construction, we start constructing the sequence of partitions
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from Pε,0 = P ∩Gε/2 as follows

Pε,0(g̃1,∞), . . . , Pε,k(g̃1,∞).

Define sequence ḡ1,∞ = {ḡi}∞i=1, where ḡi = g̃kik, then we continue to construct the sequence of

partitions from Pε,k(g̃1,∞) as the new Pε,0. Construct the partition sequence

Pε,0(ḡ1,∞), Pε,1(ḡ1,∞), . . . .

In fact, if x ∈ Gε/2, by Lemma 4.10 and (4.2) as that for a finite graph, for any given integer

n > 0, we can find x′ ∈ Pε,n(ḡ1,∞) such that ρ(n+1)k,b(x, x′) ≤ ε. If x ∈ G\Gε/2, it is easy to find

x′ such that ρ(n+1)k,b(x, x′) ≤ ε. A new set will be given if we take any inner point from each

atom of Pε,n(ḡ1,∞) and add it to partition Pε,n(ḡ1,∞). The new set is a (g̃1,∞, ε, ρnk,b)-spanning

set of G.

Ley N(Pε,n(ḡ1,∞)) be the number of point in Pε,n(ḡ1,∞), A(Pε,n(ḡ1,∞)) be the number of

atom in Pε,n(ḡ1,∞). Since

A(Pε,n(ḡ1,∞)) ≤ 2 ·N(Pε,n(ḡ1,∞)),

we have

r(g̃1,∞, ε, ρnk,b, G) ≤ A(Pε,n(ḡ1,∞)) +N(Pε,n(ḡ1,∞)) ≤ 3 ·N(Pε,n(ḡ1,∞)).

According to the construction of Pε,n(ḡ1,∞) and Lemma 4.5, we obtain

N(Pε,n(ḡ1,∞)) ≤ 4Eε/2 ·A(Pε,n−1(ḡ1,∞)) + 2 ·N(Pε,n−1(ḡ1,∞))

≤ 4Eε/2 · 2 ·N(Pε,n−1(ḡ1,∞)) + 2 ·N(Pε,n−1(ḡ1,∞))

= (8Eε/2 + 2) ·N(Pε,n−1(ḡ1,∞)),

therefore

N(Pε,n(ḡ1,∞)) ≤ (8Eε/2 + 2)n ·N(Pε,0(ḡ1,∞)).

When nk < m < (n+ 1)k, we have

r(g̃1,∞, ε, ρnk,b, G) ≤ r(g̃1,∞, ε, ρm,b, G) ≤ r(g̃1,∞, ε, ρ(n+1)k,b, G),

thus

lim
m→∞

log rα(g̃1,∞, ε, ρm,b, G)

m
≤ lim

n→∞

log rα(g̃1,∞, ε, ρ(n+1)k,b, G)

nk

≤ 1

k
lim

n→∞

log 3 ·N(Pε,n+1(ḡ1,∞))

n

≤ 1

k
lim

n→∞

log 3(8Eε/2 + 2)n+1 ·N(Pε,0(ḡ1,∞))

n

=
1

k
log(8Eε/2 + 2).

By arbitrariness of k, we have

lim
n→∞

log rα(g̃1,∞, ε, ρm,b, G)

n
≤ 0,

then by arbitrariness of ε, we get hi(α, v⃗e) = 0.
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Similar results can be obtained when there are a finite accumulation points on the infinite

graph G. �
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