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Abstract In this paper, we introduce the concepts of I-covering mappings and 1-I-covering
mappings, discuss the difference between sequence-covering and I-covering mappings by some

examples. With those concepts, we get some interesting properties of I-covering (1-I-covering)
mappings and some characterizations of I-covering (1-I-covering) and compact mapping images

of metric spaces.
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1. Introduction

Statistical convergence, which is a generalization of the usual notion of convergence, was

introduced independently by Fast [1] and Steinhaus [2]. There is not doubt that the study of

statistical convergence and its various generalizations has become an active research area [3–9].

In particular, Kostyrko, Šalát and Wilczynski [10] introduced two interesting generalizations of

statistical convergence by using the notion of ideals of subsets of positive integers, which were

named as I and I∗-convergence, and studied some properties of I and I∗-convergence in metric

spaces. Later, Lahiri and Das [11] discussed I and I∗-convergence in topological spaces. Some

further results connected with I and I∗-convergence can be found in [12–17].

On the other hand, to find the internal characterizations of certain images of metric spaces

is one of the central questions in general topology. In 1971, Siwiec [18] introduced the concept

of sequence-covering mappings. Thereafter, the research in this area has been well developed

[19–25]. In 2017, Renukadevi and Prakash [26] extended sequence-covering mappings to statis-

tical sequence-covering mappings. Naturally, we wonder if we can combine sequence-covering

mappings with I-convergence. For this reason, this paper draws into I-covering mappings and

1-I-covering mappings for an ideal I on N, and discusses some basic properties of them.

Recently, the researches on I-convergence are mainly focused on aspects of I∗-convergence

[11], I-limit points [10], I-cluster points [16], I-Cauchy sequences [13], and selection principles

[14] and so on. As we know, continuous mappings, sequence-covering mappings and sequentially

quotient mappings are the most important tools to study convergence, sequential and metric
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spaces. It is expected that I-covering mappings and 1-I-covering mappings will also play an

active role.

The paper is organized as follows. In Section 2, we introduce some basic concepts and proposi-

tions in topological spaces. In Section 3, we define I-covering mappings and discuss the difference

between sequence-covering mappings and I-covering mappings by some examples. In Section 4,

we discuss the I-covering (1-I-covering) compact mappings and obtain some characterizations

of I-covering (1-I-covering) compact mapping images of metric spaces.

In this paper, the letter X will always denote a topological space. Ux denotes the family of

all neighborhoods of a point x in a topological space X. The cardinality of the set B is denoted

by |B|. The set of all positive integers, the first infinite ordinal, and the first uncountable ordinal

are denoted by N, ω and ω1, respectively. Let P be a family of subsets of X, st(x,P) and (P)x

denote the union ∪{P : P ∈ P, x ∈ P} and the subfamily {P ∈ P : x ∈ P}, respectively. ⟨xn⟩
denotes the subset {xn : n ∈ N} ⊂ X. A point α = (αn)n∈N of a Tychonoff-product space is

abbreviated to (αn). The readers may refer to [27,28] for notation and terminology not explicitly

given here.

2. Preliminaries

Recall some related concepts and notations. For each subset A of N the asymptotic density

of A, denoted δ(A), is given by

δ(A) = lim
n→∞

1

n
|{k ∈ A : k ≤ n}|,

if this limit exists. Let X be a topological space. A sequence {xn}n∈N in X is said to converge

statistically to a point x ∈ X, if δ({n ∈ N : xn ̸∈ U}) = 0, i.e., δ({n ∈ N : xn ∈ U}) = 1 for each

neighborhood U of x in X, which is denoted by s-limn→∞ xn = x or xn
s−→ x.

The concept of I-convergence in topological spaces is a generalization of statistical conver-

gence, which is based on the ideal of subsets of the set N. Let A = 2N be the family of all

subsets of N. An ideal I ⊂ A is a hereditary family of subsets of N which is stable under fi-

nite unions[10], i.e., the following are satisfied: if B ⊂ A ∈ I, then B ∈ I; if A,B ∈ I, then
A ∪ B ∈ I. An ideal I is said to be non-trivial, if I ≠ ∅ and N /∈ I. A non-trivial ideal I ⊂ A
is called admissible if I ⊃ {{n} : n ∈ N}. Clearly, every non-trivial ideal I defines a dual filter

FI = {A ⊂ N : N \A ∈ I} on N.
Let Iδ be the family of subsets A ⊂ N with δ(A) = 0. Then Iδ is an admissible ideal, and

the dual filter FIδ
= {A ⊂ N : δ(A) = 1}.

Definition 2.1 ([10]) A sequence {xn}n∈N in a topological space X is said to be I-convergent
to a point x ∈ X provided for any neighborhood U of x, we have AU = {n ∈ N : xn /∈ U} ∈ I,
which is denoted by I-limn→∞ xn = x or xn

I−→ x, and the point x is called the I-limit of the

sequence {xn}n∈N.

Definition 2.2 A sequence {xn}n∈N in a set is trivial if the set {xn : n ∈ N} is finite.
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Let X be a topological space, P ⊂ X and x ∈ P . P is called a sequential neighborhood of x

in X if whenever {xn}n∈N is a sequence converging to the point x, {xn}n∈N is eventually in P .

A subset F ⊂ X is called sequentially closed if F is closed with respect to the usual convergence

of sequences in F , i.e., for each sequence {xn}n∈N ⊂ F with xn → x ∈ X, x ∈ F . X is called a

sequential space [8,29] if each sequentially closed subset of X is closed. A subset U ⊂ X is called

sequentially open if X \U is sequentially closed. Obviously, a subset U ⊂ X is sequentially open

if and only if for each sequence {xn}n∈N converging to a point x ∈ U , {xn}n∈N is eventually in

U ; a space X is a sequential space if and only if each sequentially open subset of X is open.

Every first countable space is a sequential space [29].

Definition 2.3 ([30]) Let I be an ideal on N and X be a topological space.

(1) A subset F ⊂ X is said to be I-closed if for each sequence {xn}n∈N ⊂ F with xn
I−→ x ∈

X, x ∈ F .

(2) A subset U ⊂ X is said to be I-open if X \ U is I-closed.
(3) X is called an I-sequential space if each I-closed subset of X is closed.

Obviously, every sequential space is an I-sequential space.

Definition 2.4 Let I be an ideal on N, X, Y be topological spaces and f : X → Y be a

mapping.

(1) f is called preserving I-convergence provided for each sequence {xn}n∈N in X with

xn
I−→ x, the sequence {f(xn)}n∈N I-converges to f(x) (see [11]).

(2) f is called I-continuous provided U is I-open in Y , then f−1(U) is I-open in X.

Definition 2.5 Let X be a topological space and P ⊂ X, P is called an I-sequential neigh-
borhood of x, if for each sequence {xn}n∈N which I-converges to x ∈ P , {n ∈ N : xn /∈ P} ∈ I.

Definition 2.6 Let X be a topological space and P be a cover of X.

(1) P is a cs-cover [31] of X if for any convergent sequence S in X, there exists P ∈ P

such that S is eventually in P ;

(2) P is an sn-cover [32] of X if each element of P is a sequential neighborhood of some

point of X and for each x ∈ X, there exists P ∈ P such that P is a sequential neighborhood of

x.

Similarly, we can define the following two concepts.

Definition 2.7 Let X be a topological space and P be a cover of X.

(1) P is an I-cs-cover of X if for any sequence {xn}n∈N in X which I-converges to x, there

exists P ∈ P such that x ∈ P and {n ∈ N : xn /∈ P} ∈ I;
(2) P is an I-sn-cover of X if each element of P is an I-sequential neighborhood of some

point of X and for each x ∈ X, there exists P ∈ P such that P is an I-sequential neighborhood
of x.

Definition 2.8 ([33]) A class of mappings is said to be hereditary if whenever f : X → Y is in
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the class, then for each subspace H of Y , the restriction of f to f−1(H) is in the class.

Definition 2.9 Let P =
∪

x∈X Px be a cover of a space X, where Px ⊂ (P)x. P is called a

network [34] of X if for each x ∈ U with U open in X, there exists P ∈ Px such that P ⊂ U ,

where Px is called a network at x in X.

Definition 2.10 Let {Pn} be a sequence of covers of a space X. {Pn} is called a point-star

network [32] of X if ⟨ st(x,Pn)⟩ is a network at x in X for each x ∈ X.

Obviously, {Pn} is a point-star network of X if and only if for each x ∈ X and for given

Pn ∈ (Pn)x, ⟨Pn⟩ is a network at x in X (see [20]).

Definition 2.11 Let {Pn} be a point-star network of X. For each n ∈ N, put Λn = Λ and

endow Λn with the discrete topology. Put M = {α = (αn) ∈
∏

n∈N Λn : ⟨Pαn⟩ forms a network

at some point xα in X}. Then M , which is a subspace of the product space
∏

n∈N Λn , is a metric

space and xα is unique for each α ∈ M . Define f : M → X by f(α) = xα; then f is a mapping,

and (f,M,X, {Pn}) is called a Ponomarevs system.

Lemma 2.12 ([30]) Let X, Y be topological spaces and f : X → Y be a mapping.

(1) If f is continuous, then f preserves I-convergence[11].
(2) If f preserves I-convergence, then f is I-continuous.

Lemma 2.13 Let Γ be an index set and {xγ,n}n∈N be a sequence in Xγ for each γ ∈ Γ . Then

each xγ,n
I−→ xγ ∈ Xγ (γ ∈ Γ ) if and only if (xγ,n)γ∈Γ

I−→ (xγ)γ∈Γ ∈
∏

γ∈Γ Xγ .

Proof Necessity. For any neighborhood U of (xγ)γ∈Γ ∈
∏

γ∈Γ Xγ , there exists a finite subset

Γ ′ ⊂ Γ and open set Uγ in Xγ (γ ∈ Γ ′) such that U ⊃
∏

γ∈Γ ′ Uγ ×
∏

γ∈Γ\Γ ′ Xγ . Since each

xγ,n
I−→ xγ , we have {n ∈ N : xγ,n /∈ Uγ} ∈ I for each γ ∈ Γ ′. Obviously, {n ∈ N : xγ,n /∈ Xγ} =

∅ ∈ I for each γ ∈ Γ\Γ ′. Note that {n ∈ N : (xγ,n)γ∈Γ /∈ U} ⊂
∪

γ∈Γ ′{n ∈ N : xγ,n /∈ Uγ}. By
the definitions of ideal and ideal convergence, it follows that {n ∈ N : (xγ,n)γ∈Γ /∈ U} ∈ I, thus
(xγ,n)γ∈Γ

I−→ (xγ)γ∈Γ .

Sufficiency. Let Pγ :
∏

γ∈Γ Xγ → Xγ be the projection mapping, then Pγ is continuous. By

Lemma 2.12, Pγ preserves I-convergence. Hence, xγ,n
I−→ xγ ∈ Xγ for each γ ∈ Γ . �

Let I be an ideal on N, and X be a topological space. It is easy to see that the ideal I = ∅ if

and only if each constant sequence x, x, . . . , x, . . . in X does not I-converge to the point x ∈ X.

If N ∈ I, then I = 2N, and each sequence in X I-converges to any point in X. It is known that

if I is a non-trivial ideal on N and X is a T2 space, then each I-convergent sequence in X has a

unique I-limit [11].

If no otherwise specified, we consider I is always an admissible ideal on N, all mappings are

surjection and all spaces are Hausdorff.

3. Properties of I-covering mappings

In this section, we define I-covering mappings, discuss the difference between sequence-
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covering mappings and I-covering mappings by some examples and prove some properties of

I-covering mappings.

Let X,Y be topological spaces, and f be a mapping from X onto Y . f is said to be sequence-

covering if whenever {yn}n∈N is a sequence in Y converging to y in Y , there exist a sequence

{xn}n∈N of points xn ∈ f−1(yn) for each n ∈ N and x ∈ f−1(y) such that xn → x (see [18]).

Definition 3.1 Let f be a mapping from a topological space X onto a topological space Y . f is

said to be I-covering if whenever {yn}n∈N is a sequence in Y I-converging to y in Y , there exist

a sequence {xn}n∈N of points xn ∈ f−1(yn) for each n ∈ N and x ∈ f−1(y) such that xn
I−→ x.

Proposition 3.2 If f : X → Y and g : Y → Z are I-covering mappings, then g ◦ f : X → Z

is an I-covering mapping.

Proof Let z ∈ Z and {zn}n∈N be a sequence such that zn
I−→ z. Since g is an I-covering mapping,

there exists a sequence {yn}n∈N I-converging to y with each yn ∈ g−1(zn) and y ∈ g−1(z). And

because f is an I-covering mapping, there exists a sequence {xn}n∈N I-converging to x with

each xn ∈ f−1(yn) and x ∈ f−1(y). Note that xn ∈ f−1(yn) ⊂ f−1(g−1(zn)) = (g ◦ f)−1(zn)

and x ∈ f−1(y) ⊂ f−1(g−1(z)) = (g ◦ f)−1(z). Thus g ◦ f is an I-covering mapping. �

Proposition 3.3 (1) The product mapping of I-covering mappings is an I-covering mapping;

(2) I-covering mappings are hereditarily I-covering mappings.

Proof (1) Let
∏

α∈Λ fα :
∏

α∈Λ Xα →
∏

α∈Λ Yα be a mapping, where each fα : Xα → Yα

is an I-covering mapping. Let {(yα,n)}n∈N ⊂
∏

α∈Λ Yα be a sequence I-converging to (yα) in∏
α∈Λ Yα. By Lemma 2.13, each {yα,n}n∈N is a sequence I-converging to yα in Yα. Since each

fα is an I-covering mapping, there exists a sequence {xα,n}n∈N I-converging to xα such that

fα(xα,n) = yα,n, fα(xα) = yα for each α ∈ Λ. By Lemma 2.13 again, the sequence {(xα,n)}n∈N

I-converges to (xα) with (yα) ∈
∏

α∈Λ Yα and (yα,n) ∈
∏

α∈Λ fα(xα,n). Therefore,
∏

α∈Λ fα is

an I-covering mapping.

(2) Let f : X → Y be an I-covering mapping and H be a subspace of Y . Define g :

f−1(H) → H by g = f |f−1(H). Then g is a mapping.

Given a sequence {yn}n∈N I-converging to y in H, since f is an I-covering mapping, there

exists a sequence {xn}n∈N in X such that xn
I−→ x, xn ∈ f−1(yn) ⊂ f−1(H) and x ∈ f−1(y) ⊂

f−1(H). And g = f |f−1(H) implies that each xn ∈ g−1(yn) and x ∈ g−1(y). �
Two examples below show that sequence-covering mappings and I-covering mappings are

independent.

Example 3.4 There exists a continuous and sequence-covering mapping which is not an I-
covering mapping.

Proof Let I = Iδ and S = {xn : n ∈ N} be a sequence with different terms. Take x /∈ S and

put X = S ∪ {x}. The topology on X is defined as follows [8]:

(1) Each point xn is isolated;
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(2) Each open neighborhood of the point x is a set U of the form U = {x} ∪ M , where

M ⊂ S and {n ∈ N : xn ∈ M} ∈ FI = {A ⊂ N : N \A ∈ I}, i.e., δ({n ∈ N : xn ∈ M}) = 1.

It was obtained that the space X is a Hausdorff statistically sequential space but no sequence

of S converges to the point x (see [8, Example 2.1]).

Now, let Z be the set X endowed with the discrete topology. Define a mapping f : Z → X

to be the identity mapping. Obviously, f is continuous. Since there is no non-trivial convergent

sequence in X, f is a sequence-covering mapping. But f is not an I-covering mapping. In fact,

S = {xn}n∈N ⊂ X I-converges to x ∈ X. But {n ∈ N : xn ̸= x} = N /∈ I, since I is an

admissible ideal. Consequently, {xn}n∈N ⊂ Z does not I-converge to x ∈ Z. �

Example 3.5 There exists a continuous I-covering mapping which is not a sequence-covering

mapping.

Proof Let I = Iδ and Y = {0} ∪ { 1
n : n ∈ N} be a subspace of R with the usual topology.

Denote

{{yk:k∈N} : {yk}k∈N ⊂ Y is a convergent sequence } = {Yα : α ∈ Λ}.

Obviously, {Yα : α ∈ Λ} is a cover of Y . For each α ∈ Λ, the set Yα is endowed with the following

topology and denoted it by Xα: if Yα is a finite set, then Xα is a discrete space; if Yα is an infinite

set, the topology on Xα is defined as Example 3.4 with x0 = 0. Put X =
⊕

α∈Λ Xα × {α}. Let
p : X → Y be a natural mapping, that is, p((y, α)) = y, for each (y, α) ∈ Xα × {α} and α ∈ Λ.

Assume that U is a neighborhood of 0 in Y , then Y \U is a finite set, and further (Xα ×
{α})∩p−1(Y \U) is a finite set for each α ∈ Λ. Thus p−1(Y \U) is closed in X, and hence p−1(U)

is open in X. Therefore p is continuous.

It was obtained that there is no non-trivial convergent sequence in Xα for each α ∈ Λ (see

[8]). Hence there is no non-trivial convergent sequence in X. Consequently, p is not a sequence-

covering mapping.

Let {yk}k∈N ⊂ Y be an Iδ-convergent sequence. Without loss of generality, we can assume

that yk
Iδ−→ 0. Since Y is a first countable space, there exists A ∈ FI such that limA∋k→∞ yk = 0

(see [5]). Hence, there exists α ∈ Λ such that {yk : k ∈ A} ∪ {0} = Yα. Since the sequence

{yk}k∈A in Xα Iδ-converges to 0, the sequence {(yk, α)}k∈A Iδ-converges to (0, α). For each

k ∈ N, put xk ∈ p−1(yk) satisfying xk = (yk, α) ∈ Yα × {α} as k ∈ A. And because A ∈ FI , the

sequence {xk}k∈N in X Iδ-converges to 0. Thus p is an Iδ-covering mapping. �

4. I-covering (1-I-covering) and compact mapping of metric spaces

In this section, we discuss I-covering (1-I-covering) and compact mappings and obtain some

characterizations of I-covering (1-I-covering) and compact mapping images of metric spaces.

Next, we assume all mappings are continuous.

Theorem 4.1 X is an I-covering and compact image of a metric space if and only if X has a

point-star network consisting of point-finite I-cs-covers.
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Proof Necessity. Suppose that f : M → X is an I-covering and compact mapping, where

M is a metric space. Then there exists a sequence {Bi}i∈N of locally finite open covers of M

such that for each compact subset K of M , ⟨ st(K,Bi)⟩ is a neighborhood base of K in M .

Put Pi = f(Bi). As f being a compact mapping, Pi is a point-finite cover of X. For each

x ∈ X, let V be an open neighborhood at x in X. Since f−1(x) is a compact subset in M and

f−1(x) ⊂ f−1(V ), there exists n ∈ N such that st(f−1(x),Bn) ⊂ f−1(V ). Hence st(x,Pn) ⊂ V ,

thus ⟨ st(x,Pi)⟩ is a network at x in X. This implies that {Pn} is a point-star network of X.

Let {xn}n∈N ⊂ X be a sequence satisfying xn
I−→ x ∈ X. Since f is an I-covering mapping,

there exist a sequence {bn}n∈N of points bn ∈ f−1(xn) for each n ∈ N and b ∈ f−1(x) such that

bn
I−→ b. And since each Bi is an open cover of X for each i ∈ N, there exists B ∈ Bi such that

b ∈ B. Take P = f(B). Note that bn
I−→ b, hence {n ∈ N : bn /∈ B} ∈ I, and further x ∈ P and

{n ∈ N : xn /∈ f(B) = P} ∈ I. This implies that {Pi} is an I-cs-covers of X. Therefore, X has

a point-star network consisting of point-finite I-cs-covers.
Sufficiency. Let {Pi} be a point-star network consisting of point-finite I-cs-covers of X. For

each i ∈ N, put Pi = {Pα : α ∈ Λi} and each Λi is endowed with the discrete topology. Put

M = {α = (αi) ∈
∏

i∈N Λi : ⟨Pαi⟩ forms a network at some point xα in X}, then M , which is

a subspace of the product space
∏

i∈N Λi , is a metric space and the point xα is unique for each

α ∈ M . Define a function f : M → X by f(α) = xα, then f is a mapping, and (f,M,X, {Pi})
is a Ponomarevs system. By [20, Lemma 3.3.2], f is a compact mapping.

Next, we shall show that f is an I-covering mapping.

For each x0 ∈ X, let {xn}n∈N ⊂ X be a sequence satisfying xn
I−→ x0 ∈ X. Since {Pi} is

a point-finite I-cs-covers of X, we can choose αj ∈ Λj such that x0 ∈ Pαj ∈ Pj and {n ∈ N :

xn /∈ Pαj} ∈ I for each j ∈ N. Since {Pi} is a point-star network of X and Pαj ∈ (Pj)x0 ,

⟨Pαj ⟩ forms a network at x0 in X. Let α = (αj) ∈ M . Then α ∈ f−1(x0). Now choose a

sequence {(αj,n)}n∈N in M as follows: Choose αj,n = αj if xn ∈ Pαj
, otherwise choose βj ∈ Λj

such that xn ∈ Pβj so that αj,n = βj , for each j ∈ N. For each neighborhood Vj of αj in Λj ,

since {n ∈ N : αj,n /∈ Vj} ⊂ {n ∈ N : αj,n ̸= αj} = {n ∈ N : xn /∈ Pαj} ∈ I, αj,n
I−→ αj , and

hence (αj,n)
I−→ (αj) in M from Lemma 2.13. By the choosing of (αj,n), it is easy to see that

Pαj,n ∈ (Pj)xn , hence ⟨Pαj,n⟩ forms a network at xn in X, thus (αj,n) ∈ f−1(xn) for each n ∈ N.
Therefore, f is an I-covering mapping. �

Definition 4.2 Let f be a mapping from a topological space X onto a topological space Y . f

is said to be I-quotient provided f−1(U) is I-open in X, then U is I-open in Y .

The following two theorems can be seen in [30].

Theorem 4.3 Every I-covering mapping is I-quotient.

Theorem 4.4 Let f be a mapping from a topological space X onto a topological space Y .

(1) If X is an I-sequential space and f is continuous quotient, then Y is an I-sequential
space and f is I-quotient.

(2) If Y is an I-sequential space and f is I-quotient, then f is quotient.
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Corollary 4.5 The following conditions are equivalent:

(1) X is an I-covering, quotient and compact mapping image of a metric space;

(2) X is a sequential space and has a point-star network consisting of point-finite I-cs-covers.
Recall the notion of 1-sequence-covering mappings in topological spaces. Let f : X → Y be

a mapping. f is an 1-sequence-covering mapping if for each y ∈ Y , there is x ∈ f−1(y) such that

whenever {yn}n∈N is a sequence converging to y in Y there is a sequence {xn}n∈N converging to

x in X with each xn ∈ f−1(yn) (see [19]). Next, we assume all mappings are continuous.

Definition 4.6 Let f : X → Y be a mapping. f is an 1-I-covering mapping if for each y ∈ Y ,

there is x ∈ f−1(y) such that whenever {yn}n∈N is a sequence I-converging to y in Y there is a

sequence {xn}n∈N I-converging to x in X with each xn ∈ f−1(yn).

Obviously, f is a 1-I-covering mapping, then f is an I-covering mapping.

Proposition 4.7 Let f : X → Y and g : Y → Z be mappings. If f and g are 1-I-covering
mappings, then g ◦ f is 1-I-covering mapping.

Theorem 4.8 Let f : X → Y be a 1-I-covering mapping. Then for each y ∈ Y , there exists

x ∈ f−1(y) such that whenever U is an open neighborhood of x in X, f(U) is an I-sequential
neighborhood of y in Y .

Proof Let f : X → Y be a 1-I-covering. Then for each y ∈ Y , there is x ∈ f−1(y) such that

whenever {yn}n∈N is a sequence I-converging to y in Y there is a sequence {xn}n∈N I-converging
to x in X with each xn ∈ f−1(yn). Let U be an open neighborhood of x. Note that xn

I−→ x,

hence {n ∈ N : xn /∈ U} ∈ I, and further {n ∈ N : yn /∈ f(U)} = {n ∈ N : xn /∈ U} ∈ I.
Therefore, f(U) is an I-sequential neighborhood of y in Y . �

Theorem 4.9 X is a 1-I-covering and compact mapping image of a metric space if and only if

X has a point-star network consisting of point-finite I-sn-covers.

Proof Necessity. The procedure to prove that X has a point-star network {Pi} consisting of

a point-finite covers is similar to Theorem 4.1. Next, we shall show that {Pi} is an I-sn-covers
of X.

Since f is a surjection, there exists b ∈ f−1(x) satisfying the condition in Theorem 4.8 for

each x ∈ X. And since each Bi is an open cover of X, there exists B ∈ Bi such that b ∈ B. Take

P = f(B). By Theorem 4.8, P is an I-sequential neighborhood of x. Let P ′
i = {P ∈ Pi : P

is an I-sequential neighborhood of some point in X}. Then P ′
i is a point-finite cover of X and

{P ′
i} is a point-star network consisting of point-finite I-sn-covers of X.

Sufficiency. Let {Pi} be a point-star network consisting of point-finite I-sn-covers of X. And

let (f,M,X, {Pi}) be a Ponomarevs system. By [20, Lemma 3.3.2], f is a compact mapping.

Next, we shall show that f is a 1-I-covering mapping.

For each x ∈ X, since {Pi} is a point-finite I-sn-covers of X, there exists Pαj ∈ Pj such that

Pαj is an I-sequential neighborhood of x for each j ∈ N. And since {Pi} is a point-star network
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of X and Pαj ∈ (Pj)x, ⟨Pαj ⟩ forms a network at x in X. Let α = (αj) ∈ M , then α ∈ f−1(x).

And let {xn}n∈N ⊂ X be a sequence satisfying xn
I−→ x ∈ X. Then {n ∈ N : xn /∈ Pαj} ∈ I for

each j ∈ N. Now choose a sequence {(αj,n)}n∈N in M as follows: Choose αj,n = αj if xn ∈ Pαj ,

otherwise choose βj ∈ Λj such that xn ∈ Pβj so that αj,n = βj , for each j ∈ N. For each

neighborhood Vj of αj in Λj , since {n ∈ N : αj,n /∈ Vj} ⊂ {n ∈ N : αj,n ̸= αj} = {n ∈ N :

xn /∈ Pαj} ∈ I, αj,n
I−→ αj , and hence (αj,n)

I−→ (αj) in M from Lemma 2.13. By choosing of

(αj,n), it is easy to see that Pαj,n ∈ (Pj)xn , hence ⟨Pαj,n⟩ forms a network at xn in X, thus

(αj,n) ∈ f−1(xn) for each n ∈ N. Therefore, f is a 1-I-covering mapping. �

Question 4.10 Are I-covering and compact mapping images of metric spaces equivalent with

1-I-covering and compact mapping images of metric spaces?

Example 4.11 There exist an admissible ideal I on N, a topological space X, and two sequences

{xn}n∈N, {yn}n∈N in X, such that xn
I−→ x0, yn

I−→ x0, but the sequence {x1, y1, x2, y2, x3, y3, . . .}
does not I-converge to x0.

Proof Let I be an admissible ideal of N generated by all subsets of the set of all even positive

integers and all finite subsets of the set of all odd positive integers. Let the topological space

(R, τ) be the set of all real numbers R endowed with the usual topology τ . Set xn = 0, if n is

odd; xn = n, if n is even, n = 1, 2, 3, . . . . And let yn = 1
n , n = 1, 2, 3, . . . . It is easy to verify that

xn
I−→ 0 and yn

I−→ 0. Now define a sequence {x1, y1, x2, y2, x3, y3, . . .}, and denote it by {zn}n∈N.

Then, {zn}n∈N does not I-converge to 0. In fact, if not, then {4n− 1 : n ∈ N} ⊂ {n ∈ N : zn /∈
U} ∈ I, for each neighborhood U of 0 in R. Hence, {4n− 1 : n ∈ N} ∈ I. But this contradicts

the structure of I. �
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[14] P. DAS, LJ. D. R. KOČINAC, D. CHANDRA. Some remarks on open covers and selection principles using

ideals. Topology Appl., 2016, 202: 183–193.

[15] D. N. GEORGIOU, S. D. ILIADIS, A. C. MEGARITIS, et al. Ideal-convergence classes. Topology Appl.,

2017, 222: 217–226.

[16] J. JASINSKI, I. RECLAW. Ideal convergence of continuous functions. Topology Appl., 2006, 153(18): 3511–

3518.
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