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Abstract Consider an optimization problem arising from the generalized eigenvalue problem

Ax = λBx, where A,B ∈ Cm×n and m > n. Ito et al. showed that the optimization problem

can be solved by utilizing right singular vectors of C := [B,A]. In this paper, we focus on

computing intervals containing the solution. When some singular values of C are multiple or

nearly multiple, we can enclose bases of corresponding invariant subspaces of CHC, where CH

denotes the conjugate transpose of C, but cannot enclose the corresponding right singular vectors.

The purpose of this paper is to prove that the solution can be obtained even when we utilize the

bases instead of the right singular vectors. Based on the proved result, we propose an algorithm

for computing the intervals. Numerical results show property of the algorithm.

Keywords generalized eigenvalue problem; nonsquare pencil; invariant subspace; verified

numerical computation
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1. Introduction

Consider the generalized eigenvalue problem Ax = λBx, where A,B ∈ Cm×n, m > n,

λ ∈ C is an eigenvalue and x ∈ Cn \ {0} is an eigenvector corresponding to λ. This problem

appears in many fields [1–4] and attracts much attention from theoretical and numerical points

of view [5–12]. In practical applications, on the other hand, A and B may contain noise, which

may cause n linearly independent eigenvectors to fail to exist even if they are known to exist

in the noiseless case. Boutry et al. [5] thus considered an optimization problem that finds the

minimum perturbation of the given pair of matrices (A,B) such that the perturbed pair (Â, B̂)

has n linearly independent eigenvectors:
Minimize ∥Â−A∥2F + ∥B̂ −B∥2F
subject to Â, B̂ ∈ Cm×n, {(λi, x

(i))}ni=1 ⊆ C× Cn,

Âx(i) = λiB̂x(i), i = 1, . . . , n,

{x(1), . . . , x(n)} : linearly independent,

(1.1)

where ∥ · ∥F denotes the Frobenius norm. Note that λi and x(i) are not given but decision

valuables in the optimization problem. For solving (1.1) numerically, Ito et al. [9] showed that
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(1.1) can be reduced to the total least squares problem considered in [13], and presented the

following outstanding result:

Theorem 1.1 ([9]) Let [B,A] = UΣV H be the singular value decomposition of [B,A], where

U ∈ Cm×m and V ∈ C2n×2n are unitary, V H denotes the conjugate transpose of V , Σ =

diag(σ1, . . . , σt), t := min(m, 2n) and σ1 ≥ · · · ≥ σt. Partition V =

[
V11 V12

V21 V22

]
, where

V11 ∈ Cn×n. If σn > σn+1, V22 is nonsingular and −V12V
−1
22 is diagonalizable, then all the

eigenpairs of −V12V
−1
22 give {(λi, x

(i))}ni=1 in (1.1).

Theorem 1.1 shows that we can obtain {(λi, x
(i))}ni=1 by computing all the eigenpairs of

−V12V
−1
22 if the assumptions are true. In practical computations, on the other hand, there

exists the case where obtaining −V12V
−1
22 explicitly is numerically unstable. This instability

is pronounced especially when V22 is ill-conditioned. In order to avoid computing −V12V
−1
22

explicitly, they gave Lemma 1.2.

Lemma 1.2 ([9]) Let V ∈ C2n×2n be unitary. Partition V similarly to Theorem 1.1. If V22 is

nonsingular, then so is V11, and −V12V
−1
22 = (V H

11 )
−1V H

21 .

Lemma 1.2 implies that we can obtain {(λi, x
(i))}ni=1 by computing all the eigenpairs of the

square pencil V H
21 −λV H

11 if the assumptions in Theorem 1.1 are true. They thus proposed a fast

and robust algorithm for numerically computing {(λi, x
(i))}ni=1 by calculating all the eigenpairs

of V H
21 − λV H

11 .

The work presented in this paper addresses the problem of verified computation of {(λi, x
(i))}ni=1,

specifically, computing intervals which are guaranteed to contain {(λi, x
(i))}ni=1. To the author’s

best knowledge, a verification algorithm designed specifically for {(λi, x
(i))}ni=1 is not available

in literature. If we can obtain intervals containing V11 and V12, the verified computation of

{(λi, x
(i))}ni=1 is possible by executing a known algorithm [14] for all eigenpairs of square pencils.

Since columns of [V H
11 , V

H
21 ]

H are eigenvectors of the Hermitian matrix CHC ∈ C2n×2n, where

C := [B,A], corresponding to the largest n eigenvalues, computing intervals containing V11 and

V12 seems to be possible by utilizing a known verification algorithm [15] for eigenvectors. On the

other hand, verification algorithms for eigenvectors fail when the geometric multiplicity of the

corresponding eigenvalue is two or more [16], which means that we cannot enclose some columns

of [V H
11 , V

H
21 ]

H when some of σ1, . . . , σn are multiple. Moreover, the verification algorithms for

eigenvectors usually fail even when the eigenvalues are not multiple but closely clustered.

In the multiple or nearly multiple case, the algorithms in [14,17] are applicable. Let µ1, . . . , µ2n

be the eigenvalues of CHC such that µ1 ≥ · · · ≥ µ2n. Let also {µ
i
(j)
1
, . . . , µ

i
(j)
pj

}, j = 1, . . . , q

be sets of eigenvalue clusters, where i
(1)
1 , . . . , i

(1)
p1 , . . . , i

(q)
1 , . . . , i

(q)
pq ∈ Z satisfy 1 = i

(1)
1 < · · · <

i
(1)
p1 < · · · < i

(q)
1 < · · · < i

(q)
pq = 2n and p1 + · · · + pq = 2n. Note that the case of a simple

eigenvalue is included in the case pj = 1. For j = 1, . . . , q, let Wj ∈ C2n×pj and Pj ∈ Cpj×pj

satisfy CHCWj = WjPj and λ(Pj) ⊆ {µ
i
(j)
1
, . . . , µ

i
(j)
pj

}, where λ(Pj) is the spectrum of Pj . By

executing the algorithms in [14,17], we can obtain intervals containing Wj and λ(Pj). Note that
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Pj is not necessarily diagonal, so the columns of Wj are not necessarily the eigenvectors of CHC.

Define W := [W1, . . . ,Wq] ∈ C2n×2n, and partition W similarly to V in Theorem 1.1. Since the

columns of Wj are not necessarily the eigenvectors, V = W does not follow in general. Hence,

V11 ̸= W11 and V21 ̸= W21 in general.

The purpose of this paper is to prove the following propositions under some assumptions,

which are checkable via rounding mode controlled floating point computations:

Proposition 1.3 All the eigenpairs of WH
21 − λWH

11 give {(λi, x
(i))}ni=1 in (1.1).

Proposition 1.4 W11 is nonsingular ⇔ V22 is nonsingular.

Proposition 1.3 means that the verified computation of {(λi, x
(i))}ni=1 is possible even when

we compute intervals containingW11 andW21 instead of V11 and V21. Proposition 1.4 says we can

check the nonsingularity of V22 by checking that of W11, which enables us to avoid computing

an interval containing [WH
12 ,W

H
22 ]

H (see Remark 4.1). Based on Propositions 1.3 and 1.4, we

propose a verification algorithm for {(λi, x
(i))}ni=1. Although this algorithm seems to be a direct

application of an already available algorithm, theoretical justification of the direct application is

our main contribution.

This paper is organized as follows: Section 2 introduces notation and theories used in this

paper. Section 3 proves Propositions 1.3 and 1.4. Section 4 proposes the verification algorithm.

Section 5 reports numerical results. Section 6 summarizes the results in this paper and highlights

possible extension and future work.

2. Preliminaries

For M ∈ Cm×n, let Mij , M:j , M
T and MH be the (i, j) element, j-th column, transpose

and conjugate transpose of M , respectively, and |M | := (|Mij |). When m = n, let λ(M) be the

spectrum of M . For M,N ∈ Rm×n, M ≤ N means Mij ≤ Nij , ∀i, j. For v ∈ Cn, vi denotes

the i-th component of v. For v, w ∈ Cn with ∥w∥∞ < 1, define ∥v∥w := maxi(|vi|/(1 − |wi|)).
Let In be the n × n identity matrix and 1 := [1, . . . , 1]T . Define R+ := [0,∞), Rm×n

+ := {M ∈
Rm×n : M ≥ 0}, NSn := {X ∈ Cn×n : X is nonsingular}, Hn := {X ∈ Cn×n : XH = X}
and Un := {X ∈ Cn×n : XHX = In}. For C ∈ Cm×n and R ∈ Rm×n

+ , ⟨C,R⟩ denotes the

interval matrix whose midpoint and radius are C and R, respectively. Let IR be the set of all

real intervals, and IC, ICn and ICm×n be the sets of all complex interval scalars, n-vectors and

m × n matrices, respectively. For a ∈ IC, let mid(a) and rad(a) be the midpoint and radius

of a, respectively, and |a| := maxa∈a |a|. We can then define mid(M), rad(M) and |M | for
M ∈ ICm×n. Expressions containing intervals mean results of interval arithmetic.

Throughout this paper, let C := [B,A] ∈ Cm×2n and C = UΣV H be the singular value

decomposition of C, where U ∈ Um, V ∈ U2n, Σ = diag(σ1, . . . , σt), t := min(m, 2n) and

σ1 ≥ · · · ≥ σt. We partition V similarly to Theorem 1.1. Let µ1, . . . , µ2n ∈ R be the eigenvalues

of CHC such that µ1 ≥ · · · ≥ µ2n ≥ 0. We then have µi = σ2
i , i = 1, . . . , t. Let v(i) := V:i,

i = 1, . . . , 2n. Then, v(1), . . . , v(2n) are orthonormal eigenvectors of CHC corresponding to
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µ1, . . . , µ2n. For p ∈ {1, . . . , 2n}, let i1, . . . , ip ∈ Z satisfy 1 ≤ i1 < · · · < ip ≤ 2n. Define

{i1, . . . , ip}C := {1, . . . , 2n} \ {i1, . . . , ip} and {µi1 , . . . , µip}C := {µ1, . . . , µ2n} \ {µi1 , . . . , µip}.
We cite Lemmas 2.1 to 2.3 for enclosing eigenvalues of an Hermitian matrix. Lemma 2.1 is a

modification of the Rump’s theorem, whose statement and proof can be found in [18, Theorem

1].

Lemma 2.1 ([19]) Let A ∈ Hn, ṽ
(i) ∈ Cn \ {0} and λ̃i ∈ R, i = 1, . . . , n with λ̃1 ≥ · · · ≥ λ̃n

be given, λi be the eigenvalues of A such that λ1 ≥ · · · ≥ λn, Ṽ := [ṽ(1), . . . , ṽ(n)], D̃ :=

diag(λ̃1, . . . , λ̃n), E := AṼ − Ṽ D̃ and F := In − Ṽ H Ṽ . If ∥F∥∞ < 1, then |λi − λ̃i| ≤ δ,

i = 1, . . . , n, where δ :=
√
∥E∥∞∥E∥1/(1− ∥F∥∞).

Lemma 2.2 ([20]) Let A, ṽ(i), λ̃i, λi and E be as in Lemma 2.1, and e(i) be the i-th column of

E. Then, minj |λj − λ̃i| ≤ εi, i = 1, . . . , n, where εi := ∥e(i)∥2/∥ṽ(i)∥2.

Lemma 2.3 ([19]) Let δ and εi be as in Lemmas 2.1 and 2.2, respectively. Then, εi ≤ δ, ∀i.
We will apply Lemmas 2.4 and 2.5 for verifying minj |λj − λ̃i| = |λi − λ̃i|.

Lemma 2.4 ([19]) Let λi and λ̃i, i = 1, . . . , n be sequences of real numbers such that λ1 ≥
· · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n, respectively. Assume |λi − λ̃i| ≤ δ for all i, and

λ̃i − λ̃i+1 > 2δ (i = 1)

λ̃i−1 − λ̃i > 2δ and λ̃i − λ̃i+1 > 2δ (2 ≤ i ≤ n− 1)

λ̃i−1 − λ̃i > 2δ (i = n)

for some i. Then, minj |λj − λ̃i| = |λi − λ̃i| for some i.

Lemma 2.5 ([19]) Let λi, λ̃i and δ be as in Lemma 2.4. Assume minj |λj − λ̃i| ≤ εi for each i,

and some partial sequence λ̃k, . . . , λ̃k with 1 ≤ k < k ≤ n are clustered such that λ̃k−1− λ̃k > 2δ,

λ̃k− λ̃k+1 > 2δ and λ̃k− λ̃k+1 ≤ 2δ, ∀k = k, . . . , k−1. If εk+εk+1 < λ̃k− λ̃k+1, ∀k = k, . . . , k−1,

then minj |λj − λ̃k| = |λk − λ̃k|, ∀k = k, . . . , k.

We refer Lemma 2.6 for enclosing eigenvectors of an Hermitian matrix.

Lemma 2.6 ([15]) Let A, λ̃i and λi be as in Lemma 2.1, e(i) and εi be as in Lemma 2.2, ρi ∈ R+

satisfy 0 < ρi ≤ minj ̸=i |λj − λ̃i|, and ξi := ∥e(i)∥2/ρi. If εi < ρi, then there exists an eigenvector

w(i) corresponding to λi such that ∥w(i) − ṽ(i)∥2 ≤ ξi.

Proof Let x(i) ∈ Cn\{0} with ∥x(i)∥2 = 1 be an eigenvector corresponding to λi. Since A ∈ Hn,

we can take {x(1), . . . , x(n)} as an orthonormal basis. Then, there exist c1, . . . , cn ∈ C such that

ṽ(i) =
∑

j cjx
(j). Since x(1), . . . , x(n) are the orthonormal eigenvectors, we moreover have

∥e(i)∥22 =
∥∥∥A∑

j

cjx
(j) − λ̃i

∑
j

cjx
(j)

∥∥∥2
2
=

∥∥∥∑
j

cj(λj − λ̃i)x
(j)

∥∥∥2
2
=

∑
j

|cj |2|λj − λ̃i|2

≥
∑
j ̸=i

|cj |2|λj − λ̃i|2 ≥ min
j ̸=i

|λj − λ̃i|2
∑
j ̸=i

|cj |2.

From this and 0 < ρi ≤ minj ̸=i |λj − λ̃i|, we obtain
∑

j ̸=i |cj |2 ≤ ξ2i . This and ∥ṽ(i)∥22 =
∑

j |cj |2
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yield ∥ṽ(i)∥22 − ξ2i ≤ |ci|2. From this and εi < ρi, we have ξi < ∥ṽ(i)∥2 and ci ̸= 0. Therefore,

cix
(i) is also an eigenvector corresponding to λi. We can thus put w(i) = cix

(i). This and∑
j ̸=i |cj |2 ≤ ξ2i finally show ∥w(i) − ṽ(i)∥22 = ∥cix(i) −

∑
j cjx

(j)∥2 =
∑

j ̸=i |cj |2 ≤ ξ2i , which

completes the proof. 2

For enclosing eigenvalues and eigenvectors of a square matrix pencil, we use Lemmas 2.7 and

2.9, respectively.

Lemma 2.7 ([14]) Let A,B, X̃, Y ∈ Cn×n be given, Λ̃ ∈ Cn×n be diagonal with Λ̃ii = λ̃i,

i = 1, . . . , n, G := Y (AX̃ − BX̃Λ̃), H := In − Y BX̃, g := |G|1 and h := |H|1. If ∥h∥∞ < 1,

then B, X̃ and Y are nonsingular, and all the eigenvalues of the pencil A− λB are included in∪n
i=1 ⟨λ̃i, ri⟩, where r := g + ∥g∥hh.

Remark 2.8 The eigenvalue inclusion in Lemma 2.7 comes from the Gershgorin theorem. If

p of the intervals form a connected domain which is isolated from the other intervals, therefore,

this domain contains precisely p eigenvalues.

Lemma 2.9 ([14]) Let A, B, X̃, Λ̃, λ̃1, . . . , λ̃n, G, h and r be as in Lemma 2.7, i ∈ {1, . . . , n}, and
I(i) ∈ R(n−1)×n and J (i) ∈ Rn×(n−1) be In without i-th row and column, respectively. Assume

∥h∥∞ < 1 and ⟨λ̃i, ri⟩ is isolated from the other intervals, and define d̃ := Λ̃1, f := |d̃−λ̃i1|−ri1,

v := |G|J (i)1, w := |G|:i, s := (I(i)(v + ∥v∥hh))./(I(i)f), y := (I(i)(w + ∥w∥hh))./(I(i)f) and

u := y+∥y∥ss. Then, ⟨λ̃i, ri⟩ contains precisely one eigenvalue λ∗ of the pencil A−λB, geometric

multiplicity of λ∗ is one and there exists an eigenvector x∗ corresponding to λ∗ satisfying |x∗ −
X̃:i| ≤ |X̃|J (i)u.

Lemma 2.10 will be used for verifying the nonsingularity of a matrix.

Lemma 2.10 ([21]) If ∥S∥∞ < 1 for S ∈ Cn×n, then In − S is nonsingular.

In the proof of Lemma 3.1, we will apply Lemma 2.11, which is a modification of [21, Theorem

8.1.9].

Lemma 2.11 ([21]) Suppose A ∈ Hn, Q1 ∈ Cn×r, Q2 ∈ Cn×(n−r) and [Q1, Q2] ∈ Un. If ran(Q1)

is an invariant subspace of A, then λ(A) = λ(QH
1 AQ1) ∪ λ(QH

2 AQ2).

From Lemma 1.2, we immediately obtain Corollary 2.12.

Corollary 2.12 V11 is nonsingular ⇔ V22 is nonsingular.

Proof Let P :=

[
0 In

In 0

]
. Then, PV P =

[
V22 V21

V12 V11

]
is also unitary. Lemma 1.2 applied

to V := PV P shows that V22 is nonsingular if V11 is nonsingular. This and Lemma 1.2 prove

the result. 2

3. Proofs of Propositions 1.3 and 1.4

For proving Propositions 1.3 and 1.4, we clarify relations between V and W in Section

1. We first consider the equality CHCW = WP , where W ∈ C2n×p, P ∈ Cp×p and p ∈
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{1, . . . , 2n}. We then have λ(P ) ⊆ {µ1, . . . , µ2n}. Let µi1 , . . . , µip be multiple or nearly multiple.

If λ(P ) = {µi1 , . . . , µip}, we can prove ran([v(i1), . . . , v(ip)]) = ran(W ) (see Lemma 3.2). Even if

λ(P ) ∩ {µi1 , . . . , µip}C = ∅, on the other hand, we cannot assert λ(P ) = {µi1 , . . . , µip}. If W =

[v(i1), . . . , v(i1)] and P = µi1Ip, for example, then CHCW = WP and λ(P )∩{µi1 , . . . , µip}C = ∅
follow, but λ(P ) = {µi1} ̸= {µi1 , . . . , µip}. In order to exclude such cases, we present Lemma

3.1.

Lemma 3.1 LetW ∈ C2n×p and P ∈ Cp×p satisfy CHCW = WP . If λ(P )∩{µi1 , . . . , µip}C = ∅
and rank(W ) = p, then λ(P ) = {µi1 , . . . , µip}.

Proof Let W = QR be the QR factorization of W , where Q ∈ U2n, and R ∈ C2n×p is upper

triangular. Partition Q = [Q1, Q2] and R = [RH
1 , 0]H , where Q1 ∈ C2n×p and R1 ∈ Cp×p.

We then have W = Q1R1. From rank(W ) = p, moreover, R1 is nonsingular. Substitut-

ing W = Q1R1 into CHCW = WP gives CHCQ1 = Q1R1PR−1
1 . This and rank(Q1) = p

show that ran(Q1) is an invariant subspace of CHC. The equalities CHCQ1 = Q1R1PR−1
1

and QH
1 Q1 = Ip give (CQ1)

HCQ1 = R1PR−1
1 . Therefore, Lemma 2.11 applied to A :=

CHC yields {µ1, . . . , µ2n} = λ(P ) ∪ λ((CQ2)
HCQ2). This and λ(P ) ∩ {µi1 , . . . , µip}C = ∅

show λ((CQ2)
HCQ2) ⊇ {µi1 , . . . , µip}C . Since λ((CQ2)

HCQ2) has at most 2n − p elements,

λ((CQ2)
HCQ2) = {µi1 , . . . , µip}C . Hence, {µ1, . . . , µ2n} = λ(P ) ∪ {µi1 , . . . , µip}C , so that

λ(P ) ⊇ {µi1 , . . . , µip}. Since λ(P ) has at most p elements, λ(P ) = {µi1 , . . . , µip}. 2
Under the assumptions in Lemma 3.1, we can develop relations between W in Lemma 3.1

and [v(i1), . . . , v(ip)].

Lemma 3.2 Let W be as in Lemma 3.1 and Vi := [v(i1), . . . , v(ip)]. Under the assumptions in

Lemma 3.1, it holds that ran(Vi) = ran(W ).

Proof Let P , Q1 and R1 be as in Lemma 3.1 or its proof. Lemma 3.1 gives λ(R1PR−1
1 ) =

{µi1 , . . . , µip}. From R1PR−1
1 = (CQ1)

HCQ1, moreover, R1PR−1
1 ∈ Hn. Therefore, there

exist Z ∈ Up and Ω := diag(µi1 , . . . , µip) such that R1PR−1
1 = ZΩZH . Substituting this

into CHCQ1 = Q1R1PR−1
1 gives CHCQ1Z = Q1ZΩ. This and (Q1Z)HQ1Z = Ip show

(Q1Z):1, . . . , (Q1Z):p are orthonormal eigenvectors of CHC corresponding to µi1 , . . . , µip . This,

W = Q1R1 and R−1
1 Z ∈ NSp prove

ran(Vi) = ran([v(1), . . . , v(i1−1), v(ip+1), . . . , v(2n)])⊥ = ran(Q1Z) = ran(WR−1
1 Z) = ran(W ). 2

Lemma 3.3 Let W and Vi be as in Lemmas 3.1 and 3.2, respectively. Under the assumptions

in Lemma 3.1, there exists L ∈ NSp such that Vi = WL.

Proof From Lemma 3.2, there exist l(j) ∈ Cp, j = 1, . . . , p such that v(ij) = Wl(j). By

putting L = [l(1), . . . , l(p)], therefore, we have Vi = WL. The nonsingularity of L follows from

p = rank(Vi) = rank(WL) ≤ min(rank(W ), rank(L)) ≤ rank(L) ≤ p. 2

From Lemma 3.3, we obtain Corollary 3.4.

Corollary 3.4 Let pj and i
(j)
1 , . . . , i

(j)
pj for j = 1, . . . , q be as in Section 1. Suppose Wj ∈ C2n×pj
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and Pj ∈ Cpj×pj satisfy CHCWj = WjPj , rank(Wj) = pj and λ(Pj) ∩ {µ
i
(j)
1
, . . . , µ

i
(j)
pj

}C = ∅ for

j = 1, . . . , q. Define W := [W1, . . . ,Wq]. Then, there exist Lj ∈ NSpj , j = 1, . . . , q such that

V = Wdiag(L1, . . . , Lq).

Proof For j = 1, . . . , q, let Vj := [v(i
(j)
1 ), . . . , v

(i(j)pj
)
]. From Lemma 3.3, there exists Lj ∈ NSpj

such that Vj = WjLj for j = 1, . . . , q. Thus, [W1L1, . . . ,WqLq] = Wdiag(L1, . . . , Lq) and

[V1, . . . , Vq] = V prove the result. 2

Remark 3.5 Since V and diag(L1, . . . , Lq) are nonsingular, so is W .

From Corollary 3.4, we can prove Proposition 1.4 and equivalence of the generalized eigenvalue

problems V H
21 x = λV H

11 x and WH
21x = λWH

11x.

Lemma 3.6 Let pj , j = 1, . . . , q and W be as in Corollary 3.4. Partition W similarly to V in

Theorem 1.1. With all the assumptions in Corollary 3.4, suppose there exists r ∈ {1, . . . , q} such

that p1 + · · ·+ pr = pr+1 + · · ·+ pq = n. Then,

(a) V11 is nonsingular ⇔ W11 is nonsingular;

(b) V22 is nonsingular ⇔ W22 is nonsingular;

(c) V22 is nonsingular ⇔ W11 is nonsingular;

(d) If V11 is nonsingular, (V H
11 )

−1V H
21 = (WH

11)
−1WH

21 ;

(e) For x ∈ Cn and λ ∈ C, V H
21 x = λV H

11 x ⇔ WH
21x = λWH

11x.

Proof Let Lj be as in Corollary 3.4 and L := diag(L1, . . . , Lq). From p1 + · · · + pr = pr+1 +

· · · + pq = n, L can be written as L = diag(Lα, Lβ), where Lα := diag(L1, . . . , Lr) ∈ NSn
and Lβ := diag(Lr+1, . . . , Lq) ∈ NSn. This and V = WL show V11 = W11Lα, V12 = W12Lβ ,

V21 = W21Lα and V22 = W22Lβ , which prove (a), (b), (d) and (e). From (a) and Corollary 2.12,

we finally obtain (c). 2

We finally prove Proposition 1.3.

Theorem 3.7 Let W11 and W21 be as in Lemma 3.6. With all the assumptions in Lemma

3.6, suppose µn > µn+1, W11 is nonsingular, and (WH
11)

−1WH
21 is diagonalizable. Then, all the

eigenpairs of WH
21 − λWH

11 give {(λi, x
(i))}ni=1 in (1.1).

Proof From µn = σ2
n, µn+1 = σ2

n+1 and µn > µn+1, we have σn > σn+1. The nonsingularity

of W11 and Lemma 3.6 (a) and (c) give V11, V22 ∈ NSn. Since (WH
11)

−1WH
21 is diagonalizable,

Lemma 3.6 (d) shows that so is (V H
11 )

−1V H
21 . These discussions, Theorem 1.1, Lemmas 1.2 and

3.6 (e) prove the result. 2

4. Proposed algorithm

Assume as a result of a numerical spectral decomposition of CHC, we have D̃ ∈ R2n×2n and

Ṽ ∈ C2n×2n with D̃ = diag(µ̃1, . . . , µ̃2n) such that CHCṼ ≈ Ṽ D̃, Ṽ H Ṽ ≈ I2n and µ̃1 ≥ · · · ≥
µ̃2n. We compute ηi ∈ R+ satisfying |µi − µ̃i| ≤ ηi, i.e., µi ∈ ⟨µ̃i, ηi⟩ ∈ IR, i = 1, . . . , 2n, which

are required for checking some conditions.
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Let E := CHCṼ − Ṽ D̃, F := In − Ṽ H Ṽ , and ṽ(i) and e(i) be the i-th columns of Ṽ and

E, respectively, for i = 1, . . . , 2n. We can then expect E ≈ 0, F ≈ 0 and e(i) ≈ 0. Suppose

∥F∥∞ < 1, and define δ and εi similarly to Lemmas 2.1 and 2.2, respectively. Then, Lemmas

2.1 and 2.2 give |µi − µ̃i| ≤ δ and minj |µj − µ̃i| ≤ εi, ∀i, respectively. Taking Lemma 2.3 into

account, we compute the above ηi such that

ηi =

{
εi, if minj |µj − µ̃i| = |µi − µ̃i| is verified
δ, otherwise

.

For verifying minj |µj − µ̃i| = |µi − µ̃i|, we can apply Lemmas 2.4 and 2.5.

If ⟨µ̃i, ηi⟩ is isolated from the other intervals, we can compute an interval containing an

eigenvector corresponding to µi based on Lemma 2.6. In fact, if we put

ρi =


µ̃1 − µ̃2 − η2, i = 1;

min (µ̃i−1 − µ̃i − ηi−1, µ̃i − µ̃i+1 − ηi+1), 2 ≤ i ≤ 2n− 1;

µ̃2n−1 − µ̃2n − η2n−1, i = 2n,

then the isolation yields 0 < ρi ≤ minj ̸=i |µj − µ̃i|. If εi < ρi, then there exists an eigenvector

w(i) corresponding to µi such that ∥w(i) − ṽ(i)∥2 ≤ ξi, where ξi := ∥e(i)∥2/ρi. Thus, w(i) can

be enclosed by w
(i)
j ∈ ⟨ṽ(i)j , |w(i)

j − ṽ
(i)
j |⟩ ⊆ ⟨ṽ(i)j , ∥w(i) − ṽ(i)∥2⟩ ⊆ ⟨ṽ(i)j , ξi⟩, j = 1, . . . , 2n. Since

∥w(i)∥2 ̸= 1 in general, v(i) ̸= w(i) in general. Because µi is a simple eigenvalue, however, there

exists li ∈ C \ {0} such that v(i) = liw
(i), which is a special case of Vj = WjLj in the proof of

Corollary 3.4.

If ⟨µ̃i, ηi⟩ is not isolated, let
∪p

k=1⟨µ̃ik , ηik⟩, where i ∈ {i1, . . . , ip}, be a connected domain

which is isolated from the other intervals, and Ṽi := [ṽ(i1), . . . , ṽ(ip)]. In this case, we can

apply [14, Algorithm 2] for computing ⟨Ṽi,Ξi⟩ ∈ IC2n×p and ⟨µ̃, ω⟩ ∈ IR such that ⟨Ṽi,Ξi⟩ ∋ W

and ⟨µ̃, ω⟩ ⊇ λ(P ), where W ∈ C2n×p and P ∈ Cp×p satisfy CHCW = WP , with Ṽi and

µ̃i1 , . . . , µ̃ip being inputs. If ⟨µ̃, ω⟩ ∩
∪

j∈{i1,...,ip}C ⟨µ̃j , ηj⟩ = ∅, then λ(P ) ∩ {µi1 , . . . , µip}C = ∅.
We can verify the condition rank(W ) = p in Lemma 3.1 using ⟨Ṽi,Ξi⟩. In fact, a center-radius

interval arithmetic evaluation [22] yield

Ip −WHW ∈ Ip − ⟨Ṽ H
i ,ΞT

i ⟩⟨Ṽi,Ξi⟩ ⊆ ⟨Ip − Ṽ H
i Ṽi, |Ṽi|TΞi + ΞT

i (|Ṽi|+ Ξi)⟩,

which gives

∥Ip −WHW∥∞ ≤ ∥Ip − Ṽ H
i Ṽi∥∞ + ∥|Ṽi|TΞi + ΞT

i (|Ṽi|+ Ξi)∥∞
≤ ∥Ip − Ṽ H

i Ṽi∥∞ + ∥Ṽi∥1∥Ξi∥∞ + ∥Ξi∥1∥|Ṽi|+ Ξi∥∞ =: ζ.

If ζ < 1, then Lemma 2.10 shows that Ip − (Ip −WHW ) = WHW is nonsingular, which implies

rank(W ) = p. Observe that Ip − Ṽ H
i Ṽi ≈ 0 follows from Ṽ H Ṽ ≈ I2n.

We can verify the condition µn > µn+1 in Theorem 3.7 by checking µ̃n − ηn > µ̃n+1 + ηn+1.

In practical execution, the index sets {i(j)1 , . . . , i
(j)
pj }, j = 1, . . . , q in Corollary 3.4 means that∪pj

k=1⟨µ̃i
(j)
k

, η
i
(j)
k

⟩ is a connected domain which is isolated from the other intervals. Therefore,

if µ̃n − ηn > µ̃n+1 + ηn+1, then ⟨µ̃n, ηn⟩ is isolated from ⟨µ̃n+1, ηn+1⟩, so that n and n + 1

are allocated to different index sets. This implies the existence of r ∈ {1, . . . , q} such that
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p1 + · · ·+ pr = pr+1 + · · ·+ pq = n. Hence, extra work is unnecessary for checking the existence

of r in Lemma 3.6.

Suppose we have intervals W11 and W21 containing W11 and W21, respectively. Then, we

can obtain n intervals containing all the eigenvalues of WH
21 − λWH

11 using Lemma 2.7. Let

mid(W21)
HX̃ ≈ mid(W11)

HX̃Λ̃ be a numerical generalized eigendecomposition where Λ̃ =

diag(λ̃1, . . . , λ̃n), Y ∈ Cn×n be an approximation to (mid(W11)
HX̃)−1, G := Y (WH

21X̃−WH
11X̃Λ̃)

and H := In − YWH
11X̃. We have G ∈ Y (WH

21X̃ − WH
11X̃Λ̃) and H ∈ In − YWH

11X̃, so that

|G| ≤ |Y (WH
21X̃ −WH

11X̃Λ̃)| =: GS and |H| ≤ |In − YWH
11X̃| =: HS . Let g := |G|1, h := |H|1,

gS := GS1 and hS := HS1. These two inequalities show g ≤ gS and h ≤ hS . Therefore, if

∥hS∥∞ < 1, then ∥h∥∞ < 1, so that we can define r := g+∥g∥hh and rS := gS+∥gS∥hS
hS . From

g ≤ gS and h ≤ hS , moreover, we obtain r ≤ rS , which shows
∪n

i=1 ⟨λ̃i, ri⟩ ⊆
∪n

i=1 ⟨λ̃i, (rS)i⟩.
From this and Lemma 2.7, all the eigenvalues of WH

21 − λWH
11 are contained in

∪n
i=1 ⟨λ̃i, (rS)i⟩.

Note that the nonsingularity of W11 is verified within this process. From ∥h∥∞ ≤ ∥hS∥∞,

in fact, ∥hS∥∞ < 1 yields ∥h∥∞ < 1. This and Lemma 2.7 imply the nonsingularity of W11.

Therefore, extra work is unnecessary for verifying the nonsingularity.

Remark 4.1 Lemma 3.6 (b) gives another way for verifying the nonsingularity of V22: checking

that of W22. If we adopt this way, on the other hand, we need to compute an interval containing

[WH
12 ,W

H
22 ]

H . If we verify the nonsingularity of V22 by checking that of W11, however, such

an interval is unnecessary. In other words, Proposition 1.4 enables us to avoid computing the

interval containing [WH
12 ,W

H
22 ]

H .

If ⟨λ̃i, (rS)i⟩∩
∪

j ̸=i⟨λ̃j , (rS)j⟩ = ∅, ∀i = 1, . . . , n, then WH
21 −λWH

11 has n distinct eigenvalues

(see Remark 2.8). The diagonalizability of (WH
11)

−1WH
21 can be verified by this way. In this case,

we can compute intervals containing eigenvectors corresponding to the eigenvalues contained in

⟨λ̃i, (rS)i⟩ for all i by Lemma 2.9. Specifically, we can compute an upper bound for |X̃|J (i)u in

Lemma 2.9 reusing GS , hS and rS .

Based on discussion above, we propose Algorithm 4.2.

Algorithm 4.2 This algorithm computes λi ∈ IC and x(i) ∈ ICn, i = 1, . . . , n such that λi ∋ λi

and x(i) ∋ x(i) for λi and x(i) in (1.1).

Step 1. Compute ηi for i = 1, . . . , n + 1. If µ̃n − ηn > µ̃n+1 + ηn+1 cannot be verified,

terminate with failure.

Step 2. Initialize q ∈ Z and the list L as q = 1 and L = {1, . . . , n}, respectively.
Step 3. If L = ∅, then go to Step 7. Otherwise, let i be the smallest integer in L.
Step 4. If ⟨µ̃i, ηi⟩ is isolated from the other intervals, then delete i from L and go to Step

5. Otherwise, let
∪p

k=1⟨µ̃ik , ηik⟩, where i ∈ {i1, . . . , ip} ⊆ L, be a connected domain which is

isolated from the other intervals, delete i1, . . . , ip from L and go to Step 6.

Step 5. Compute Wq ∈ IC2n which contains an eigenvector corresponding to µi utilizing

Lemma 2.6. Update q = q + 1 and go back to Step 3.

Step 6. Let P ∈ Cp×p and W ∈ C2n×p satisfy CHCW = WP . Compute µq ∈ IR and

Wq ∈ IC2n×p containing λ(P ) and W , respectively, by executing [14, Algorithm2] with Ṽi and
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µ̃i1 , . . . , µ̃ip being inputs. If µq ∩
∪

j∈{i1,...,ip}C ⟨µ̃j , ηj⟩ = ∅ or rank(W ) = p cannot be verified,

then terminate with failure. Otherwise, update q = q + 1 and go back to Step 3.

Step 7. Let W := [W1, . . . ,Wq−1] ∈ IC2n×n. Partition W = [WH
11 ,W

H
21 ]

H , where W11 ∈
ICn×n.

Step 8. Compute λi ∈ IC, i = 1, . . . , n, which contains each eigenvalue of WH
21 −λWH

11 , based

on Lemma 2.7. If λi ∩
∪

j ̸=i λj = ∅, ∀i cannot be verified, then terminate with failure.

Step 9. For all i, compute x(i) ∈ ICn, which contains an eigenvector corresponding to the

eigenvalue included in λi, based on Lemma 2.9. Terminate.

Let pj , j = 1, . . . , q be as in Section 1, and r be as in Lemma 3.6. Steps 5 and 6 involve

O(pjn
2) operations for each j ∈ {1, . . . , r}. Since p1 + · · · + pr = n, Steps 2 to 7 require

O(
∑r

j=1 pjn
2) = O(n3) operations. Thus, a large pj does not enlarge the overall cost of Algo-

rithm 4.2. Costs of the other parts are O(mn2), since the matrix multiplication CHC involves

O(mn2) operations. Therefore, Algorithm 4.2 involves O(mn2) operations.

Remark 4.3 When pj for j ∈ {1, . . . , r} is large, the corresponding rad(µq) becomes large.

See Example 5.3, where the large radius is illustrated. Observe that the large rad(µq) does not

enlarge rad(λi) and rad(x(i)) for i = 1, . . . , n. This is because µq is used only for checking

µq ∩
∪

j∈{i1,...,ip}C ⟨µ̃j , ηj⟩ = ∅.

5. Numerical results

We used a computer with Intel Core 1.51GHz CPU, 16.0GB RAM and MATLAB R2012a

with Intel Math Kernel Library and IEEE 754 double precision. We denote Algorithm 4.2 by M.

We executed the numerical spectral decomposition and generalized eigendecomposition by the

MATLAB function eig. See http://web.cc.iwate-u.ac.jp/~miyajima/NSGEP.zip for details

of the implementation, where the INTLAB [23] code of M (denoted by M.m) is uploaded.

Suppose as a result of execution of M, we have ⟨λ̃i, ri⟩ ∈ IC and ⟨x̃(i), s(i)⟩ ∈ ICn containing

λi and x(i) in (1.1), respectively, for i = 1, . . . , n. To assess quality of enclosure, define the

maximum radius (MR) as max(maxi ri,maxi ∥s(i)∥∞). As mentioned in Section 1, the verification

algorithm designed specifically for {(λi, x
(i))}ni=1 seems to be unavailable in literature. To try to

hint on how large the MR is, we executed [9, Algorithm 1] via symbolic computation using the

MATLAB Symbolic Math Toolbox. Considering this result as the “exact” eigenpair (λ̂i, x̂
(i)),

define the maximum difference (MD) as max(maxi |λ̃i− λ̂i|,maxi ∥x̃(i)− x̂(i)∥∞). We also report

the MD and compare it with the MR. For observing performance of M, we report CPU time (sec)

of [9, Algorithm1] executed in floating point computation (denoted by TI) adding with that of

M (denoted by TM). Let pj , j = 1, . . . , q be as in Section 1, and r be as in Lemma 3.6. In the

examples below, we also report r, q, and pj for j = 1, . . . , q. Note that pj = 1 for j ∈ {1, . . . , q}
implies that the corresponding eigenvalue of CHC is isolated.

Example 5.1 We created matrices A0, B0 ∈ Cm×n so that A0−λB0 has n eigenpairs and added

noise to them by the following procedure employed in [5, 9]:
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• Choose random matrices Ã, B̃ ∈ Cn×n and Q̃ ∈ Cm×n whose entries’ real and imaginary

parts are drawn independently from the Gaussian distribution with zero mean and standard

deviation equal to one.

• Compute the QR decomposition of Q̃ to define Q0 as its Q part.

• Define A0 and B0 by A0 := Q0Ã and B0 := Q0B̃, respectively.

• Define A and B by A := A0 +NA and B := B0 +NB, respectively, where NA and NB are

matrices of random noise.

Real and imaginary parts of the entries of NA and NB are drawn independently from the

Gaussian distribution with zero mean and standard deviation equal to ς. Then, A0 − λB0 has

the same eigenpairs as the square matrix pencil Ã− λB̃. Table 1 displays the MD, MR, TI and

TM for various m and n when ς = 0.25. Table 2 reports the similar quantities for various ς when

m = 100 and n = 5. We obtained r = n, q = 2n, and pj = 1 for j = 1, . . . , q in all the problems.

Hence, the number of the isolated eigenvalues of CHC ∈ C2n×2n is 2n, i.e., all the eigenvalues

are isolated. We see from Table 1 that the MR increased as n increased, whereas it stayed about

the same even when m increased. Table 2 shows magnitude of ς did not affect the MR.

m n MD MR TI TM

100 5 5.4e–14 5.0e–11 6.0e–3 7.5e–2

200 5 7.1e–15 2.1e–11 2.4e–3 2.2e–2

300 5 7.5e–15 2.5e–11 5.7e–3 3.0e–2

100 10 8.4e–15 2.5e–10 1.0e–3 2.3e–2

200 10 2.3e–13 5.1e–9 3.6e–3 2.0e–2

300 10 1.3e–14 4.5e–10 9.1e–3 2.4e–2

100 15 1.4e–14 1.4e–9 2.1e–3 2.4e–2

200 15 5.7e–14 6.4e–9 5.8e–3 2.5e–2

300 15 7.8e–14 1.8e–9 7.9e–3 1.8e–2

Table 1 The MD, MR, TI and TM for various m and n in Example 5.1

ς MD MR TI TM

0.50 2.3e–15 7.2e–12 1.1e–3 1.9e–2

0.75 2.1e–14 2.1e–11 7.0e–4 1.9e–2

1.00 1.7e–14 4.9e–11 5.9e–4 2.4e–2

1.25 3.5e–15 3.8e–11 7.3e–4 2.1e–2

1.50 1.9e–14 4.0e–11 6.7e–4 1.9e–2

Table 2 The MD, MR, TI and TM for various ς in Example 5.1

Example 5.2 We consider the two problems in [9, Section 3.3], where

A = S

[
1 0

0 −1

]
T1, B = ST1, S =


1 0

0 1

1 1

−1 1

 , T1 =

[
1.0001 1

1 0.9999

]
, (5.1)
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A = S

[
1 0

0 −1

]
T2, B = ST2, T2 =

[
1.0001 −1

1 0.9999

]
. (5.2)

In (5.1), B is almost rank-deficient, whereas B in (5.2) is well-conditioned. In the both problem,

A − λB has eigenvalues λ1 = 1 and λ2 = −1. We obtained r = n = 2, q = 3, p1 = p2 = 1, and

p3 = 2 in the both problem. Hence, the number of the isolated eigenvalues of CHC ∈ C4×4 is 2.

Table 3 displays the similar quantities for (5.1) and (5.2). The MR was large in (5.1).

problem MD MR TI TM

(5.1) 1.6e–8 6.3e–3 1.1e–3 4.5e–2

(5.2) 1.8e–40 4.6e–11 5.0e–4 1.8e–2

Table 3 The MD, MR, TI and TM in Example 5.2

Example 5.3 Consider the case where CHC has multiple or nearly multiple eigenvalues. In

the first problem, we generated A,B ∈ C80×40 by the following MATLAB code:

[U,~,V] = svd(randn(80,80) + 1i*randn(80,80)); S = eye(80);

S(1,1) = 40; S(2,2) = 40; for i = 3:40, S(i,i) = 42 - i; end;

C = U*S*V’; A = C(:,41:80); B = C(:,1:40);

Then, µ1 ≈ µ2 ≈ 402, µi ≈ (42− i)2 for i = 3, . . . , 40, and µi ≈ 1 for i = 41, . . . , 80. We obtained

r = 39, q = 40, p1 = 2, pi = 1 for i = 2, . . . , 39, and p40 = 40. Hence, the number of the isolated

eigenvalues of CHC ∈ C80×80 is 38. In the second problem, we generated A,B ∈ C80×40 such

that

S = eye(80); for i = 1:40, S(i,i) = 40; end; C = U*S*V’;

A = C(:,41:80); B = C(:,1:40);

by reusing U and V given above. Then, µi ≈ 402 for i = 1, . . . , 40, and µi ≈ 1 for i = 41, . . . , 80.

We obtained r = 1, q = 2, and p1 = p2 = 40. Hence, the number of the isolated eigenvalues is 0.

Table 4 reports the similar quantities and rad(µq), where µq is as in Step 6 of Algorithm 4.2, for

the two problems. Note that rad(µq) in the first and second problems correspond to the cases

where p1 = 2 and p1 = 40, respectively. This result shows M worked well even in the multiple or

nearly multiple case. We can moreover observe that rad(µq) in the second problem (p1 = 40) is

larger than that in the first problem (p1 = 2) (see Remark 4.3).

problem MD MR TI TM rad(µq)

first 3.2e–12 2.9e–7 6.4e–3 3.8e–2 4.3e–11

second 3.1e–13 2.8e–8 8.0e–3 4.6e–2 1.5e–9

Table 4 The MD, MR, TI, TM and rad(µq) in Example 5.3

6. Conclusion
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In this paper, we proved Propositions 1.3 and 1.4, proposed Algorithm 4.2, and reported the

numerical results. It was mentioned in [9, Proposition 3] that all the eigenpairs of A − λB are

contained in {(λi, x
(i))}ni=1 of (1.1) even if the number of eigenpairs of A−λB is less than n. This

assertion gives all the eigenpairs of A − λB are contained in {(λi,x
(i))}ni=1, where λi and x(i)

are as in Algorithm 4.2. Note that several pairs in {(λi,x
(i))}ni=1 do not contain the eigenpairs

of A−λB when the number is less than n. If Ax(j) −λjBx(j) ̸∋ 0, then we can assert (λj ,x
(j))

does not contain the eigenpair. We can thus exclude such pairs from {(λi,x
(i))}ni=1. Computing

intervals containing all the eigenpairs of A− λB is possible in this manner.

It is clear that Algorithm 4.2 fails when WH
21 − λWH

11 has semi-simple eigenvalues. In this

case, we cannot verify the diagonalizability of (WH
11)

−1WH
21 . Hence, our first future work will be

to develop a verification algorithm which is applicable even in this case. Partition U and Σ in

Theorem 1.1 such that U = [U1, U2] and Σ = diag(Σ1,Σ2), where U1 ∈ Cm×n and Σ1 ∈ Cn×n,

respectively. Then, Â and B̂ in (1.1) can be represented as Â = U1Σ1V
H
21 and B̂ = U1Σ1V

H
11 ,

respectively [9, Eq. (11)]. As mentioned in Section 1, we cannot obtain intervals containing some

columns of U1, V11 and V21 when some singular values of C are multiple or nearly multiple.

Thus, our second future work will be to compute intervals containing Â and B̂ in this case.

Acknowledgements The author acknowledges the referee for valuable comments.
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