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Abstract This paper presents a curve reconstruction algorithm based on discrete data points

and normal vectors using B-splines. The proposed algorithm has been improved in three steps:

parameterization of the discrete data points with tangent vectors, the B-spline knot vector

determination by the selected dominant points based on normal vectors, and the determination

of the weight to balancing the two errors of the data points and normal vectors in fitting model.

Therefore, we transform the B-spline fitting problem into three sub-problems, and can obtain the

B-spline curve adaptively. Compared with the usual fitting method which is based on dominant

points selected only by data points, the B-spline curves reconstructed by our approach can retain

better geometric shape of the original curves when the given data set contains high strength

noises.
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1. Introduction

The B-spline curve reconstruction is one of the classic problem in the field of computer-aided

geometric design and it is an indispensable link in many applications [1, 2]. For example, large

amounts of data generated in engineering such as reverse engineering, terrain modeling, and

aerospace design must be approximated by smooth B-spline curves [3–5].

In previous studies, raw data usually only contains position coordinates of the discrete

points [6–8]. Nowadays, in many applications, the measurement data includes not only the

position coordinates, but also geometric features such as normal vectors and curvature [9–16]. In

many practical problems, curves need to be constructed satisfying certain flow field of dynamic

constraints. One key problem can be transformed into the curve reconstruction based on discrete

data points and normal vectors. The main difficulty of this kind of problem is that the fitting

error of discrete data points and the error of normal vector constraints should be taken into

account at the same time. Moreover, the problem is an ill-posed problem, which means that the

result of curve reconstruction is greatly affected by data noises.

The rest of the paper is organized as follows. The second section will briefly introduce the B-

spline curve reconstruction algorithm using dominant points. The third section will introduce the
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curve reconstruction algorithm based on discrete data points and normal vectors. The numerical

results in the fourth section will show the practicability of the proposed method.

2. The B-spline curve fitting approach using dominant points

First, we review the basic definition of the B-spline curve. A p-th degree (p + 1 order)

non-uniform B-spline curve can be expressed as [17]:

S(u) =

n∑
i=0

QiBi,p(u), (2.1)

with control points {Qi : i = 0, . . . , n} and the p-th degee non-uniform B-spline basis func-

tions {Bi,p(u) : i = 0, . . . , n}, which are determined by the corresponding knot vector U =

[u0, u1, . . . , un+p].

In previous studies, curve reconstruction algorithms are usually composed of three steps:

discrete data points parameterization, knot vector determination and curve fitting approach.

For the discrete data points parameterizaion, three methods have been widely used: uniform

parameterization, accumulated chord length parameterization and centripetal parametrization

[18]. For the knot vector determination, we briefly introduce the Dominant Points Method

(DOM) [19], which solves the problem well and provides some ideas for our method. DOM is an

iterative method and mainly divided into two steps: dominant points selection and knot vector

placement.

Suppose the dominant points {Pdj : j = 0, . . . , n} have already been chosen, then the internal

knots can be determined by the following formula:

up+i =
1

p− 1

i+p−1∑
j=i

tdj , i = 1, . . . , n− p, (2.2)

where ti is the parameter value of the discrete point Pi, dj = i is the original index of the point

Pi if it is the j-th dominant point Pdj .

Note that, according to the Schoenberg-Whitney theorem, this approach can give a non-

singular stable system matrix [20]. More importantly, this method only averages the selected

dominant points so that no bad results will be obtained even if the number of control points is

close to the given data points.

Subsequently, we introduce the selection method of the dominant points. DOM first uses

curvature to select seed points from the point set, then add new dominant point iteratively.

For the seed points, DOM chooses two boundary points and other points with local curvature

maximum (LCM). There are two approaches for calculating curvature. When the noise intensity

is small, the local method is used to calculate the corresponding curvature value [21, 22]. When

the noise is big, the curve fitting method is used [23]. Although the curve fitting method is able

to overcome the influence by the noise to a certain extent, it also spends a lot of time.

Here is an example for selecting seed points using DOM. Figure 1 (a) shows the 101 points

which have been sampled from an original butterfly curve, Figure 1(b) shows the seed points
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have been chosen and Figure 1 (c) shows the curvature variation of the whole curve. Obviously,

the points corresponding to the peak of the curvature variation are chosen to be the seed points.
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Figure 1 Seed points and their corresponding curvature

When the seed points have been selected, a B-spline curve S(u) can be generated by knot

vector determination and the least-square minimization. Then the point Pc can be found, which

contains the largest deviation: ∥S(ti)−Pi∥. DOM then divide the point set into several segments

according to the adjacent dominant points and using the shape index to find the new dominant

point Pw in segment Ss,e that contains Pc, the formula is expressed as follows [19]:

min
w

|λs,w − λw,e|, w ∈ (s, e),

where

λs,e = r
Ks,e

K0,m
+ (1− r)

Ls,e

L0,m
, r ∈ [0, 1], (2.3)

Ks,e and Ls,e denote the total curvature and the chord length of the segment Ss,e, defined as:

Ks,e =
e−1∑
i=s

(|ki|+ |ki+1|)(ti+1 − ti)/2,

Ls,e =
e−1∑
i=s

∥Pi+1 − Pi∥. (2.4)

Note that, if segment Ss,e contains less than three points, then remove Ss,e and find Pc in

rest segments. After the new dominant point has been selected, the iterative process continues

as described above.

3. Curve reconstruction algorithm based on discrete data points and
normal vectors

As for curve fitting method, the least squares method is the most widely used method.

Combining the normal vectors and discrete data points, we now propose a new method for B-

spline curve reconstruction, which is denoted as NDOM (nromal based DOM) in this paper.

3.1. Discrete point parameterization using normal vectors
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It is easy to see that the accumulated chord length parameterization is an approximation of

the arc length parameterization. In some cases, there are still big errors between the approximate

parameters and the original parameters. In this paper, we can further reduce the errors by using

the given normal vectors {Ni : i = 0, . . . ,m} and the discrete points {Pi : i = 0, . . . ,m}.
Since we can easily obtain the unit tangents {Di : i = 0, . . . ,m} of the curve, which is

perpendicular to the normal vector at each point. Naturally, it reminds us of the Taylor’s

formula:

S(ti+1) = S(ti +∆ti) = S(ti) + ∆ti · S′(ti) +
∆t2i
2

· S′′(ti) +
∆t3i
6

· S′′′(ξi).

Referring to the definition of derivative, we can use the following divided difference to ap-

proximate the second-order derivative in Taylor’s formula:

S′′(ti) ≃
Di+1 −Di

∆ti
.

Then we can modify the Taylor’s formula to the following form:

S(ti+1) ≃ S(ti) + ∆ti ·Di +
∆t2i
2

· Di+1 −Di

∆ti
.

So, by the above formula, we can define the improved parameterization as follows.

Definition 3.1 For given discrete points {Pi : i = 0, . . . ,m} and unit tangents {Di : i =

0, . . . ,m}, we compute the parameter for each point by:

∆ti =
2 · ∥Pi+1 − Pi∥
∥Di +Di+1∥

, i = 0, 1, . . . ,m− 1.

t0 = 0, ti = ti−1 +∆ti−1, i = 1, 2, . . . ,m. (3.1)

If it is needed, we can normalize the parameters into [0, 1] by dividing the length tm −
t0. For example, for the discrete data points and normal vectors shown in Figure 1 with 5%

noise intensity, the results obtained by new parameterization are better than the results by the

accumulated chord length parameterization, as shown in the following table.

Original parameters 0.1 0.3 0.5 0.7 0.9 1

Results by chord method 0.083 0.189 0.434 0.518 0.831 1

Results by our method 0.097 0.304 0.518 0.697 0.9 1

Table 1 Comparison of parameterizations for the data in Figure 1

3.2. Dominant points selection based on normal vectors

As described above, the original dominant point selection method (DOM) [19] is based on

the discrete curvature value, which is susceptible to noises and costs a lot of time when the noise

intensity is large.

In this section, we introduce how to select dominant points by using given normal vectors.

Similar to the DOM, we select the seed points at first. But differently, we use normal vectors
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instead of the curvatures in the condition of seed points selection.

Definition 3.2 The normal deviation value δi is defined as follows:

δ1 =
1

3

3∑
j=0

d(N1, Nj), δm−1 =
1

3

m∑
j=m−3

d(Nm−1, Nj),

δi =
1

4

i+2∑
j=i−2

d(Ni, Nj), i = 2, . . . ,m− 2, (3.2)

where d(Ni, Nj) is the angle between the two normal vectors.

Note that, the angle difference between the corresponding normal vectors is related to the

complexity of the curve. Thus, we use δi as the criterion to determine the seed points. Let

δavg be the average of the normal deviations of all data points. In order to reduce the effect of

noises, besides two boundary points, we select those points with local maximal δi and satisfying

δi > δavg/4 as seed points.

Using the same example in Figure 1, we test our approach for choosing the seed points. There

are 101 points (without noise) which have been sampled from the original curve and we obtain

the same 9 seed points as DOM.
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Figure 2 Seed points by our approach and their corresponding normal deviations

We then can obtain a B-spline curve. Using selected dominant points, we divide the given

points into a set of segments:

{Pi : i = 0, . . . ,m} = {Sd0,d1 , Sd1,d2 , . . . , Sdn−1,dn},

where Sdj ,dj+1 is the segment containing all discrete points between two adjacent dominant

points, i.e., {Sdj ,dj+1 = Pdj , P(dj)+1, . . . , Pdj+1}.
Then discard the segment containing too few points from it (|dj+1 − dj | 6 1). Among the

rest segments, we find the segment Ss,e which contains the largest approximation error of the

points ∥S(ti)− Pi∥.

Definition 3.3 The overall normal deviation of segment Ss,e can be defined as:

∆s,e =
e−1∑
i=s

(|δi|+ |δi+1|)(ti+1 − ti)/2.
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Definition 3.4 The proportion of segment Ss,e can be defined as:

∆t(s, e) = t(e)− t(s).

With ∆s,e and ∆t(s, e), we use the following formula to find a new dominant point Pw in

segment Ss,e:

ηs,e = r
∆s,e

∆0,m
+ (1− r)∆t(s, e), r ∈ [0, 1]. (3.3)

It is easy to see that Eq. (3.3) is changed from Eq. (2.3). We replace the curvature term by

∆s,e, and the chord length term by ∆t(s, e). For the parameter r in Eq. (3.3), when the noises

for given data are big, the choice of r is reduced accordingly in our numerical experiments.

For the segment Ss,e and a point Pw ∈ Ss,e, if it minimizes the difference |ηs,w − ηw,e|, then
we add Pw as a new dominant point. That is, we find the point Pw satisfying:

min
w

|ηs,w − ηw,e|, w ∈ (s, e). (3.4)

After the new dominant point is obtained, the new curve can be reconstructed iteratively.

Finally, we use the following stop condition.

Definition 3.5 The algorithm stop condition is defined by

∆s,e < µ ·∆avg, µ ∈ (0, 1), (3.5)

where ∆avg is the average value of all segments.

The parameter µ is selected artificially and can be modified by the noise intensity of data

points. In our experiments, we use bigger parameter µ according to larger noises.

3.3. Curve fitting algorithm based on discrete data points and normal vectors

Although the least-square method is the most widely used approach, in some cases, the

condition number of the linear equation system to be solved may be large and cause the problem

to be ill-posed. This means that the measurement error carried by the given input data can

seriously affect the result. In order to reduce the impact of data noises on the fitting results, the

common practice is to change the original problem into the following variational form [24]:

Φ(S) =
1

m

m∑
ip=0

∥S(tip)− Pip∥2 + α

∫ 1

0

S
′′
(u)2du = min,

where α is the regularization parameter. Its role is to balance the approximation error and the

overall smoothing of the curve.

Different from the above method, we use another new term defined by discrete normal vectors

to replace the integral term. Note that the tangent vector Su(tip) and the normal vector Nip at

each point should satisfies

Su(tip) ·Nip = 0, ip = 0, . . . ,m. (3.6)

We combine the normal vectors constraint with discrete data points approximation error,
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then the curve fitting approach is based on the following optimization problem:

E = EP + αEN = min, (3.7)

with

EP =
m∑

ip=0

∥S(tip)− Pip∥2,

and combining Eq. (2.1) with Eq. (3.6), we have

EN =
m∑

ip=0

[Su(tip) ·Nip ]
2 =

m∑
ip=0

[ n∑
iq=1

a′iq,ip(Qiq ·Nip)
]2
,

where

a′i,j = B′
i,p(tj) = p[

Bi,p−1(tj)

ti+p − ti
− Bi+1,p−1(tj)

ti+p+1 − ti+1
].

We can turn the above minimization problem into the following linear equation system:

∂E

∂Qi
= 0, i = 0, . . . , n.

Then, we get the expanded form of the algorithm:

n∑
iq=0

(
m∑

ip=0

ai,ipaiq,ipI + α
m∑

ip=0

[a′i,ipa
′
iq,ipNipN

T
ip ]) ·Qiq =

m∑
ip=0

ai,ipPip , i = 0, . . . , n, (3.8)

where I is the identity matrix of dimension 2× 2 for the curve S ∈ R2 and 3× 3 for S ∈ R3, and

ai,ip = Bi,p(tip).

Denote two matrices by

A =
( m∑

ip=0

ai,ipaiq,ipI
)
i,iq=0,...,n

, B =
( m∑

ip=0

a′i,ipa
′
iq,ipNipN

T
ip

)
i,iq=0,...,n

,

the column vector composed of all unknown control points by Q = (QT
0 , . . . , Q

T
n )

T , and the right

column vector in Eq. (3.8) by

C =
( m∑

ip=0

a0,ipP
T
ip , . . . ,

m∑
ip=0

an,ipP
T
ip

)T

.

Then the linear system (3.8) is the matrix form (A+ αB)Q = C.

Here, the role of the parameter α is to balance the approximation errors of the discrete points

and normal vectors. In this paper, the de Boor’s method is used to select the parameter α, which

is to balance the trace of the two matrices A and B:

trace(A) = α · trace(B).

This method is also known as the trace balance method [25].

In summary, we conclude the main steps of the above algorithm, denoted by NDOM.
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Algorithm 1 (NDOM) Curve reconstruction based on discrete data points and normal

vectors

Input: The given discrete points {Pi, i = 0, . . . ,m} and corresponding normal vectors

{Ni, i = 0, . . . ,m}.
Output: The reconstructed curve S.

Step 1. Obtain the parameter values {ti, i = 0, . . . ,m} of the discrete points using the

proposed parameterization method in Eq. (3.1).

Step 2. Calculate the normal deviation value {δi, i = 1, . . . ,m− 1} using Eq. (3.2), and

choose the seed points as initial dominant points.

Step 3. Compute the knot vector U by dominant points and Eq. (2.2).

Step 4. Obtain the reconstructed curve S using the fitting algorithm based on discrete

points and normal vectors, as shown in Eq. (3.8).

Step 5. Add a new dominant point Pw satisfying Eq. (3.4), then obtain a new recon-

structed curve S by repeating Steps 3 and 4.

Step 6. Repeat Step 5 until the stopping condition Eq. (3.5) is satisfied.

4. Numerical experiments

In this section, compared with the algorithm DOM in [19], we test the performance of the

proposed algorithm NDOM to reconstruct cubic B-spline curves from the given sample data with

different noise intensities.

Example 4.1 Figure 3 shows a butterfly curve which is defined as:{
x = sin t · (ecos t − 2 cos 4t+ (sin 1

12 t)
5),

y = cos t · (ecos t − 2 cos 4t+ (sin 1
12 t)

5),
t ∈ [0, 2π].
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Figure 3 The sample curve in Example 4.1

We take 101 sample points {Pi = (xi, yi), i = 0, . . . , 100} and normal vectors {Ni =

(Nxi, Nyi), i = 0, . . . , 100} from the curve, as shown in Figure 3 (a). Figure 3(b) shows the

variation of curvature of the whole curve. Since this paper focuses on the data points containing

noises, we use the following formula to simulate the noises of the discrete points and normal
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vectors: 

x̃i = xi · (1 + ψr),

ỹi = yi · (1 + ψr),

Ñxi = Nxi · (1 + ψr),

Ñyi = Nyi · (1 + ψr),

where r is a random number with a range of [−1, 1], and ψ is the simulated noise intensity. In

this example, we show two cases: ψ = 10% and ψ = 20%, as shown in Figure 4 (a) and Figure

5 (a).
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Figure 4 Results with 10% noise intensity in Example 4.1
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Figure 5 Results with 20% noise intensity in Example 4.1

Figure 4 (b) and Figure 5 (b) are correspondingly reconstructed curves by DOM. Figure 4 (c)

and Figure 5 (c) are results by NDOM. It is obvious that NDOM can retain better geometric

shape of the curve than DOM for the two cases.

In addition, we compare curvature variation of the reconstructed curves by two algorithms

DOM and NDOM, as shown in Figure 6. It also shows the results by NDOM are better than

those by DOM for two cases.
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Figure 6 Curvature variations of results in Example 4.1

Example 4.2 Figure 7 shows another plane curve which is defined as:{
x = 2t+ 1,

y = sin(10t) + sin(20t),
t ∈ [0, 1].

The reconstructed results are shown in Figures 8, 9, 10 by DOM and NDOM for two cases of

noises, respectively. Similarly to Example 4.1, NDOM can obtain better results on geometric

shape and curvature variation than DOM.
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Figure 7 The sample curve in Example 4.2
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Figure 8 Results with 10% noise intensity in Example 4.2
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Figure 9 Results with 20% noise intensity in Example 4.2
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Figure 10 Curvature variations of results in Example 4.2
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Furthermore, in order to demonstrate that the algorithm NDOM can also be applied well on

spatial curves, we show the following two examples.

Example 4.3 Figure 11 shows the spatial curve and reconstructed results. The curve is defined

as: 
x = t cos(t),

y = t sin(t),

z = t,

t ∈ [0, 16].

(a) (b) (c)

(d) (e) (f)

Figure 11 (a) the original curve, (b) result obtained with noise free data, (c)-(f) results obtained

with noise intensity of 5%-20% in Example 4.3

Figure 11 (a) shows the original curve and Figure 11 (b)–(f) show the results obtained by

NDOM for different noise intensity of 0%, 5%, 10%, 15% and 20%, respectively.

Example 4.4 Figure 12 shows the Viviani’s curve and reconstructed results by NDOM. The

curve is defined as: 
x = 1

2 (1 + cos t),

y = 1
2 sin t, t ∈ [0, 4π].

z = sin( t2 ),

From the above two examples, NDOM can reconstruct good results even for the sample

spatial data with big noises.

5. Concluding remarks

In this paper, we present a curve reconstruction algorithm based on discrete data points and

normal vectors. This approach is different from the existing methods in the following aspects:

First, it uses tangent vectors to improve the parameterization of the discrete data points, which

is better than accumulated chord length parameterization. Secondly, we modify the dominant
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point selection method with the help of normal vectors. Thirdly, we improve the curve fitting

approximation model by combining the normal vector fitting error with approximation error to

discrete data points. As a result, this approach can retain good geometric shape and curvature

variations, even for the data with big noises. Besides, we also show that this approach can work

well on the data points in 3D space.

(a) (b) (c)

(d) (e) (e)

Figure 12 (a) the original curve, (b) result obtained with noise free data, (c)–(f) results obtained

with noise intensity of 5%–20% in Example 4.4
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